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1 Task splits for incremental captioning

Here we first describe the two splitting procedures we propose that are applicable to captioning
datasets with categorical annotations. Then we describe how we apply them to the MS-COCO [2]
and Flick30k [3] datasets.

1.1 Disjoint visual categories

We exploit categorical image annotations available in many captioning datasets. If each image in
the dataset belongs to a single category, we can simply define each task as a set of categories that
does not overlap with any other task. If an image can belong to multiple categories we instead use the
following procedure:

1. Define K tasks. Tasks are sets Ct of categories such that: Ci ∩ Cj = ∅ ∀i 6= j.

2. Identify candidate example sets. For each task t select all the examples in the original
dataset having at least one of the labels in common with task t categories:

Pt = {i | ∃ c ∈ Ct s.t. yic = 1} (1)

where i is the index of example in the original dataset and yi ∈ {0, 1}|Ct| is a multi-label
vector such that yic = 1⇔ the i-th example belongs to category c.

3. Identify common examples sets. Find common examples in candidate sets: Qi,j = Pi∩Pj

4. Define final task examples. Define example sets of each task t as: Et = Pt \ ∪i 6=t(Qt,i)

This guarantees that if an image belongs to multiple tasks due to its labels, it will be completely
pruned from the dataset instead of added to both or added to only one.

1.2 Incremental visual categories

As an alternative to visually-disjoint task splits, we also evaluate continual image captioning in a more
real-life setting, where a first task contains a set of visual concepts that can reappear in following

∗Code for experiments and task splits available here: https://github.com/delchiaro/RATT
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T A S F I
T 3,116 (100.0%) 1,499 (48.11%) 1,400 (44.93%) 1,222 (39.22%) 1,957 (62.80%)
A 1,499 (48.11%) 2,178 (100.0%) 1,175 (53.95%) 1,025 (47.06%) 1,492 (68.50%)
S 1,400 (44.93%) 1,175 (53.95%) 1,967 (100.0%) 933 (47.43%) 1,355 (68.89%)
F 1,222 (39.22%) 1,025 (47.06%) 933 (47.43%) 2,235 (100.0%) 1,530 (68.46%)
I 1,957 (62.80%) 1,492 (68.50%) 1,355 (68.89%) 1,530 (68.46%) 3,741 (100.0%)

Table 1: word overlaps between tasks for our MS-COCO splits.

tasks. Subsequent tasks contain new or more specific concepts, without the guarantee of having no
overlap with the already seen data. The idea is to train the network over general concepts and then
progressively train it on more specific ones. The network should continue to perform well on old
tasks without overfitting to the more recently seen. The procedure is as follows (note that two first
steps are the same as before):

1. Define K tasks. Tasks are sets Ct of categories.

2. Identify candidate example sets. As in point (2) of the previous procedure:

Pt = {i | ∃ c ∈ Ct s.t. yic = 1} (2)

where i is the index of an example in the original dataset and yi ∈ {0, 1}|Ct| is a multi-label
vector such that yic = 1⇔ the i-th example belongs to category c.

3. Define final task examples. Define example sets of each task t as: Et = Pt \∪Ki=t(Pt∩Pi)

Given the sets Et we define the training set for the task t as:

Dt = {xi, Si,1, Si,2, ...Si,Σ | i ∈ Et} (3)

where Si,j is a sentence describing image xi and Σ is the number of sentences describing each image.

1.3 An MSCOCO task split

We applied the disjoint visual categories splitting procedure to arrive at the following task split for
MS-COCO [2]:

• transport: bicycle, car, motorcycle, airplane, bus, train, truck, boat.
• animals: bird, horse, sheep, cow, elephant, bear, zebra, giraffe.
• sports: snowboard, sports ball, kite, baseball bat, baseball glove, skateboard, surfboard,

tennis racket.
• food: banana, apple, sandwich, orange, broccoli, carrot, hot dog, pizza, donut, cake.
• interior: chair, couch, potted plant, bed, toilet, tv, laptop, mouse, remote, keyboard,

cell phone, microwave, oven, toaster, sink, refrigerator.

We removed categories dog and cat from animals because objects of these classes are very likely to
appear also in images of interiors and sports tasks. For the same reason we removed dinning table
from interior because of the likely overlap with the food task. In table 1 we report word overlaps
between tasks for our MS-COCO splits. From this breakdown we see that the task vocabularies are
approximately the same size (between around 2,000 and 3,000 words), and there is significant overlap
between all tasks.

1.4 A Flickr30k task split

In the Flickr30k Entities [3] dataset we have five captions per image and each caption is labeled
with a set of phrase types that refers to parts of the sentence. We use the union of all phrase types
associated to each example as the set of categories for that example. A subset of these categories is
used to split the dataset using the incremental visual categories procedure. For this dataset we use a
single category per task, so tasks are named after assigned categories. The list of categories (tasks) is:
scene, animals, vehicles, and instruments. If a category is over-represented, random sub-sampling
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Figure 1: Flicker30r co-occurrence matrix for assigned categories.

is done to get maximum of 7,500 examples (like in the case of scene). Moreover, the most common
phrase type is people and we omit it in purpose because almost all photos contain people. In figure 1
we give the co-occurrence matrix between Flickr30k images and categories based on phrases types
from [3]. The influence of the people category is clearly visible.

2 Additional training details

In this section give additional details about network training for the approaches we implemented to
prevent catastrophic interference in LSTM captioning networks.

2.1 Weight Regularization

Optimizing Lt
EWC(θ) (equation (13) in the main paper) we obtain θ̂t and when proceeding to the

task t+ 1 we again use Lt
EWC but supplying instead θ̂ti as its argument. Lt

EWC is applied to every
trainable weight of our network, but we have special cases for the weights of the word embedding and
final classifier: these are only partially shared between tasks. At each new task some of the weights
will be completely new since they are related to new words, we do not want to force these weights
to stay where they are since they have never been trained before, and so we do not regularize them.
Note this problem is not present in the standard continual learning for classification because each
new task has a disjoint set of classes and a dedicated classifier is used per task.

2.2 Recurrent learning without forgetting

The final loss for training the decoder network with LwF is:

Lt(x, S) = L(x, S) + Lt
LwF(p̂t, pt−1) = −

N∑
n=1

[
log pn(Sn)− λH(γ(p̂tn), γ(pt−1

n ))
]

(4)

where λ is the hyperparameter weighting the importance of the previous task. Note that differently
from [1], we do not fine-tune the classifier of the old network because we use a single, incremental
word classifier.

2.3 Recurrent Attention to Trainsent Tasks

The final loss for training the decoder network with RATT is:

Lt(x, S) = L(x, S) + Lt
a = −

N∑
n=1

log pn(sn) + λ

∑
i a

t
x,i(1− a<t

x,i)∑
i(1− a

<t
x,i)

+ λ

∑
i a

t
h,i(1− a<t

h,i)∑
i(1− a

<t
h,i)

. (5)

where λ is the hyperparameter weighting the importance of future tasks: for larger λ, fewer neurons
will be allocated to the current task (and more neurons will be available for the future tasks).
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The backpropagation updates for each LSTM gate matrix are:

Wih ← Wih − λBt
ih �

∂Lt

∂Wih
(6)

Wix ← Wix − λBt
ix �

∂Lt

∂Wix
(7)

Woh ← Woh − λBt
oh �

∂Lt

∂Woh
(8)

Wox ← Wox − λBt
ox �

∂Lt

∂Wox
(9)

Wfh ← Wfh − λBt
fh �

∂Lt

∂Wfh
(10)

Wfx ← Wfx − λBt
fx �

∂Lt

∂Wfx
(11)

Wgh ← Wgh − λBt
gh �

∂Lt

∂Wgh
(12)

Wgx ← Wgx − λBt
gx �

∂Lt

∂Wgx
(13)

During training, we applied the gradient compensation procedure described in [4] to help training the
task-embedding matrices Ax and Ah:

Ax,i ←
smax[cosh(sAx,it

T ) + 1]

s[cosh(Ax,itT ) + 1]

∂Lt

∂Ax,i
(14)

Ah,i ←
smax[cosh(sAh,it

T ) + 1]

s[cosh(Ah,itT ) + 1]

∂Lt

∂Ah,i
. (15)

Moreover, for numerical stability, we clamp |s Ax,it
T | ≤ 50 and |s Ah,it

T | ≤ 50.

3 Additional ablations

In figure 2 we provide a different visualization of the RATT ablation reported in the main paper where
we apply attention masking in different layers of the decoder architecture. In figure 2 we observe an
increase of performance on old tasks when the classifier mask is used, and even more clearly when
the embedding mask is used. Even further improvement in the performance is made when all the
attention masks (the RATT approach) are used and there is no forgetting.

We also conducted an ablation study on the smax parameter on Flickr30k, and results are reported
in figure 3. Different visualizations for this ablation are shown in figure 4 (for MS-COCO) and 5
(for Flickr30k). From the MS-COCO experiment backward transfer for RATT is not noticeable,
while for the Flickr30k case we observe in figure 5 that lower smax values result in a small boost in
performance for previous tasks when the training is started on each new one. However at the end
of each training session the forgetting is always greater than the backwards transfer. Moreover, the
model with highest smax (purple line in figure 5) still shows a small amount of backward transfer,
and in this case the performance gain is retained until the end of training. This is also noticeable in
the last heatmap of figure 3 for the first task (Sport) (bottom row).

Figure 2: RATT ablation on the MS-COCO validation set using different attention masks. Each
heatmap report BLEU-4 performance for one of the ablated models evaluated on different tasks at the
end of the training of each task.
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Figure 3: RATT ablation on Flickr30k validation set using different smax values and finetuning
baseline. Each heatmap reports BLEU-4 performance for one of the ablated models evaluated on
different tasks at the end of the training of each task.

Figure 4: RATT ablation on the MS-COCO validation set using different smax values and finetuning
baseline. Each plot reports BLEU-4 performance evaluated on one of the tasks at different training
epochs and different training tasks for each of the ablated models.

Figure 5: RATT ablation on Flickr30k validation set using different smax values and finetuning
baseline. Evaluation is the same as MS-COCO (figure 4).

4 Additional experimental analysis

In this section we give additional comparative performance analysis for RATT, EWC, and LwF on
both datasets.

4.1 Learning and forgetting on MS-COCO

In figures 6 and 7, we give a comparison of performance for all considered approaches on the
MS-COCO validation set. These learning curves and heatmaps allow us to appreciate the ability
of RATT to remember old tasks. The forgetting rate of EWC seems to be higher than the one of
LwF, but EWC shows an ability to recover performance after noticeable forgetting – probably due to
increased backward transfer. This is clear looking at figure 7 in which both LwF and EWC seems to
suffer noticeable forgetting on the first two tasks (transport and animal) after training on the third one
(Sport). EWC seems able to recover when trained on the next task, while LwF continues to forget
more.
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Figure 6: Comparison for all approaches on MS-COCO validation set. Each plot reports BLEU-4
performance evaluated on one of the tasks at different training epochs and different training tasks for
each of the ablated models.

Figure 7: Comparison for all approaches on MS-COCO validation set. Each heatmap reports
BLEU-4 performance for one of the models evaluated on different tasks at the end of the training of
each task.

Figure 8: Comparison for all approaches on Flickr30k validations set. Each plot reports BLEU-4
performance evaluated on one of the tasks at different training epochs and different training tasks for
each of the ablated models.

Figure 9: Comparison for all approaches on Flickr30k validations set. Each heatmap reports BLEU-4
performance for one of the models evaluated on different tasks at the end of the training of each task.

4.2 Learning and forgetting on Flickr30k

In figure 8 and 9 we give a comparison of performance for all approaches on the Flickr30k validation
set. The first figure depicts the training process over all tasks, where the model is evaluated on
each task while progressing through training. The results for Flickr30k show more variance than
MS-COCO, as this setting is more challenging and the validation dataset is much smaller.

RATT exhibits almost no forgetting in comparison to other methods – an almost straight line
after learning each task. Degradation of the FT model is visible, but for Flickr30k we notice that
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subsequent, more specific tasks keep previously learned and more generic concepts rather than
completely forgetting (i.e. the first task category scene). The BLEU-4 score for LwF remains almost
at the same level after learning the task, and EWC shows similar performance but with a bigger drop
when going from task A to V. In figure 9 an evaluation summary is provided in form of BLEU-4
heatmaps. Going from the left (FT) to right (RATT), less forgetting can be observed by each of
evaluated method, with RATT showing almost no loss in performance when reaching the final task.

It is useful to compare and contrast results on Flickr30k and MS-COCO. In Flickr30k there is much
more information shared between tasks and this is shown by the significant forward transfer that we
see: after training on the first task (scene), the performance on the last task (instrument) is significant
for all methods. Forward transfer is much less evident for RATT, and this is due to the fact that it use
the task embedding of future tasks for which it has no information (they all are randomly initialized).
The backward transfer on Flickr30k is also evident looking at the relatively high performance of the
FT baseline in figures 8 and 9 (and comparing with the MS-COCO equivalents in figures 6 and 7).

Although the overall performance on Flickr30k is much lower than on MS-COCO (evident when
looking at the anti-diagonal of FT in figures 7 and 9), given the difficulty of the dataset itself and given
the small number of examples (especially in validation/test sets) is difficult to draw firm conclusions
about backward transfer for LwF and EWC.

5 Additional captioning results

In figure 10 we give an example image from each of the first four MS-COCO tasks with the prediction
made by the models after training on the correct task (on the left) and the one made after training on
the complete sequence of tasks (on the right). Both EwC and LwF retain some correct words and
“insight”, but they are clearly confused by the last task on which they are trained. In the second image
EWC predicts zebras in a living room because the last task contain house interiors. In a similar way,
in the last picture EWC predicts the words refirgerator and bed, while LwF predicts table. In figure
11 we can see a similar analysis conducted on Flickr30k dataset. Again the quality of RATT captions
is retained after training on the last task. In figure 12 we give two qualitative examples taken from the
last task from the MS-COCO dataset for which fine-tuning provides better descriptions than RATT. In
this case the baseline does not suffer from catastrophic forgetting because we evaluate the last trained
task. RATT could be limited by the fact that neurons allocated to previous tasks are not trainable.

Figure 10: Captioning results for all methods on MS-COCO. Images and target captions belong to a
specific task and captions are generated by all techniques after training the correct task (left) and a
later task (right). Approaches except RATT contextualize to some degree generated captions with
respect to the most recently learned task.
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Figure 11: Captioning results Flickr30k. Images and target captions belong to a specific task and
captions are generated by all techniques after training the correct task (left) and a later task (right).

Figure 12: Examples of images from MS-COCO dataset for which fine tuning achieve better results
than the proposed method. These images are taken from the last task, so there is no catastrophic
interference.
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