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Abstract

As data-driven predictive models are increasingly used to inform decisions, it has
been argued that decision makers should provide explanations that help individuals
understand what would have to change for these decisions to be beneficial ones.
However, there has been little discussion on the possibility that individuals may use
the above counterfactual explanations to invest effort strategically and maximize
their chances of receiving a beneficial decision. In this paper, our goal is to find
policies and counterfactual explanations that are optimal in terms of utility in such
a strategic setting. We first show that, given a pre-defined policy, the problem of
finding the optimal set of counterfactual explanations is NP-hard. Then, we show
that the corresponding objective is nondecreasing and satisfies submodularity and
this allows a standard greedy algorithm to enjoy approximation guarantees. In
addition, we further show that the problem of jointly finding both the optimal poli-
cy and set of counterfactual explanations reduces to maximizing a non-monotone
submodular function. As a result, we can use a recent randomized algorithm to
solve the problem, which also offers approximation guarantees. Finally, we demon-
strate that, by incorporating a matroid constraint into the problem formulation,
we can increase the diversity of the optimal set of counterfactual explanations
and incentivize individuals across the whole spectrum of the population to self
improve. Experiments on synthetic and real lending and credit card data illustrate
our theoretical findings and show that the counterfactual explanations and decision
policies found by our algorithms achieve higher utility than several competitive
baselines.

1 Introduction
Whenever a bank decides to offer a loan to a customer, a university decides to admit a prospective
student, or a company decides to hire a new employee, the decision is increasingly informed by a
data-driven predictive model. In all these high-stakes applications, the goal of the predictive model is
to provide accurate predictions of the outcomes from a set of observable features while the goal of the
decision maker is to take decisions that maximize a given utility function. For example, in university
admissions, the predictive model may estimate the ability of each prospective student to successfully
complete the graduate program while the decision maker may weigh the model’s estimate against
other socio-economic considerations (e.g., number of available scholarships, diversity commitments).

In this context, there has been a tremendous excitement on the potential of data-driven predictive
models to enhance decision making in high-stakes applications. However, there has also been a
heated debate about their lack of transparency and explainability [1–5]. As a result, there already
exists a legal requirement to grant individuals who are subject to (semi)-automated decision making
the right-to-explanation in the European Union [6, 7]. With this motivation, there has been a flurry
of work on interpretable machine learning [8–16], which has predominantly focused on developing
methods to find explanations for the predictions made by a predictive model. Within this line of work,
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the work most closely related to ours [12, 13, 15, 16] aims to find counterfactual explanations that
help individuals understand what would have to change for a predictive model to make a positive
prediction about them. However, none of these works distinguish between decisions and predictions
and, consequently, cannot be readily used to provide explanations to the decisions taken by a decision
maker, which are ultimately what individuals who are subject to (semi)-automated decision making
typically care about.

In our work, we build upon a recent line of work that explicitly distinguishes between predictions and
decisions [17–22] and then pursue the development of methods to find counterfactual explanations
for the decisions taken by a decision maker who is assisted by a data-driven predictive model. These
counterfactual explanations help individuals understand what would have to change in order to
receive a beneficial decision, rather than a positive prediction. Moreover, once we focus on explaining
decisions, we cannot overlook the possibility that individuals may use these explanations to invest
effort strategically in order to maximize their chances of receiving a beneficial decision. However, this
is also an opportunity for us to find counterfactual explanations that help individuals to self-improve
and eventually increase the utility of a decision policy, as noted by several studies in economics [23–
25] and, more recently, in the computer science literature [21, 26, 27]. For example, if a bank explains
to a customer that, if she reduces her credit card debt by 20%, she will receive the loan she is applying
for, she may feel compelled to reduce her overall credit card debt by the proposed percentage to pay
less interest, improving her financial situation, and this will eventually increase the profit the bank
makes when she is able to successfully return the loan. This is in contrast with previous work on
interpretable machine learning, which have ignored the influence that (counterfactual) explanations
(of predictions by a predictive model) may have on the accuracy of predictive models and the utility
of the decision policies1.

Our contributions. We cast the above problem as a Stackelberg game in which the decision
maker moves first and shares her counterfactual explanations before individuals best-respond to
these explanations and invest effort to receive a beneficial decision. In this context, we assume
that the decision maker takes decisions based on low dimensional feature vectors since, in many
realistic scenarios, the data is summarized by just a small number of summary statistics (e.g., FICO
scores) [28, 29]. Under this problem formulation, we first show that, given a pre-defined policy,
the problem of finding the optimal set of counterfactual explanations is NP-hard by using a novel
reduction of the Set Cover problem [30]. Then, we show that the corresponding objective function
is monotone and submodular and, as a direct consequence, it readily follows that a standard greedy
algorithm offers approximation guarantees. In addition, we show that, given a pre-defined set of
counterfactual explanations, the optimal policy is deterministic and can be computed in polynomial
time. Moreover, building on this result, we can reduce the problem of jointly finding both the optimal
policy and set of counterfactual explanations to maximizing a non-monotone submodular function.
As a consequence, we can use a recent randomized algorithm to solve the problem, which also
offers approximation guarantees. Further, we demonstrate that, by incorporating a matroid constraint
into the problem formulation, we can increase the diversity of the optimal set of counterfactual
explanations and incentivize individuals across the whole spectrum of the population to self improve.
Experiments using real lending and credit card data illustrate our theoretical findings and show that
the counterfactual explanations and decision policies found by the above algorithms achieve higher
utility than several competitive baselines2.

2 Problem Formulation
Given an individual with a feature vector x ∈ {1, ..., n}d and a (ground-truth) label y ∈ {0, 1}, we
assume a decision d(x) ∈ {0, 1} controls whether the corresponding label is realized3. This setting
fits a variety of real-world scenarios, where continuous features are often discretized into (percentile)
ranges. For example, in university admissions, the decision specifies whether a student is admitted
(d(x) = 1) or rejected (d(x) = 0); the label indicates whether the student completes the program
(y = 1) or drops out (y = 0) upon acceptance; and the feature vector (x) may include her GRE
scores, undergraduate GPA percentile, or research experience. Throughout the paper, we will denote
the set of feature values as X = {x1,x2, . . . ,xm}, where m = nd denotes the number of feature
values, and assume that the number of features d is small, as discussed previously.

1Refer to Appendix A for a discussion of further related work.
2An open-source implementation can be found at https://github.com/Networks-Learning/strategic-decisions.
3Without loss of generality, we assume each feature takes n different values.
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Each decision is sampled from a decision policy d(x) ∼ π(d |x), where, for brevity, we will write
π(x) = π(d = 1 |x). For each individual, the label y is sampled from a conditional probability
distribution y ∼ P (y |x) and, without loss of generality, we index the feature values in decreasing
order with respect to their corresponding outcome, i.e., i < j ⇒ P (y = 1 |xi) ≥ P (y = 1 |xj).
Moreover, we adopt a Stackelberg game-theoretic formulation in which each individual with initial
feature value xi receives a (counterfactual) explanation from the decision maker by means of a feature
value E(xi) ∈ A ⊆ Pπ := {x ∈ X : π(x) = 1} before she (best-)responds4. This formulation
fits a variety of real-world applications. For example, insurance companies often provide online
car insurance simulators that, on the basis of a customer’s initial feature value xi, let the customer
know whether they are eligible for a particular deal. In case the customer does not qualify, the
simulator could provide a counterfactual example E(xi) under which the individual is guaranteed to
be eligible. In the remainder, we will refer toA as the set of counterfactual explanations and, for each
individual with initial feature value xi, we will assume she does not know anything about the other
counterfactual explanations A\E(xi) other individuals may receive nor the decision policy π(x).

Now, let c(x, E(xi)) be the cost5 an individual pays for changing from xi to E(xi) and b(π,x) =
Ed∼π(d | x)[d(x)] be the (immediate) benefit she obtains from a policy π, which is just the probability
that the individual receives a positive decision. Then, following Tabibian et al. [21], each individual’s
best response is to change from her initial feature value xi to E(xi) iff the gained benefit she would
obtain outweighs the cost she would pay for changing features, i.e.,

E(xi) ∈ {xj ∈ X : b(π,xj)− c(xi,xj) ≥ b(π,xi)} := R(xi),

and it is to keep her initial feature value xi otherwise. Here, we will refer toR(xi) as the region of
adaptation. Then, at a population level, the above best response results into a transportation of mass
between the original feature distribution P (x) and a new feature distribution P (x |π,A) induced
by the policy π and the counterfactual explanations A. More specifically, we can readily derive an
analytical expression for the induced feature distribution in terms of the original feature distribution,
i.e., for all xj ∈ X ,

P (xj |π,A) = P (xj)I(R(xj) ∩ A = ∅) +
∑
i∈[m]

P (xi)I(E(xi) = xj ∧ xj ∈ R(xi)),

Similarly as in previous work [17, 18, 21, 22], we will assume that the decision maker is rational,
has access to (an estimation of) the original feature distribution P (x), and aims to maximize the
(immediate) utility u(π, γ), which is the expected overall profit she obtains, i.e.,

u(π,A) = Ex∼P (x |π,A),y∼P (y |x),d∼π(x) [yd(x)− γd(x)]

= Ex∼P (x |π,A) [π(x)(P (y = 1 |x)− γ)] ,
(1)

where γ ∈ (0, 1) is a given constant reflecting economic considerations of the decision maker. For
example, in university admissions, the term π(x)P (y = 1 |x) is proportional to the expected number
of students who are admitted and complete the program, the term π(x)γ is proportional to the number
of students who are admitted, and γ measures the cost of education in units of graduated students.
As a direct consequence, given a feature value xi and a set of counterfactual explanations A, we
can conclude that, ifR(xi) ∩ A 6= ∅, the decision maker will decide to provide the counterfactual
explanation E(xi) that provides the largest utility gain under the assumption that individuals best
respond, i.e.,

E(xi) = argmax
x∈A∩R(xi)

P (y |x) for all xi ∈ X \ Pπ such that R(xi) ∩ A 6= ∅, (2)

and, ifR(xi) ∩ A = ∅, we arbitrarily assume that E(xi) = argminx∈A c(xi,x)6.

Given the above preliminaries, our goal is to help the decision maker to first find the optimal set of
counterfactual explanations A for a pre-defined policy in Section 3 and then both the optimal policy
π and set of counterfactual explanations A in Section 4.

Remarks. Given an individual with initial feature value x, one may think that, by providing the
counterfactual explanation E(x) ∈ A ∩R(x) that gives the largest utility gain, the decision maker

4In practice, individuals with initial feature values xi such that π(x) = 1 may not receive any explanation
since they are guaranteed to receive a positive decision.

5In practice, the cost for each pair of feature values may be given by a parameterized function.
6Note that, if A ∩R(xi) = ∅, the individual’s best response is to keep her initial feature value xi and thus

any choice of counterfactual explanation E(xi) leads to the same utility.
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is not acting in the individual’s best interest but rather selfishly. This is because there may exist
another counterfactual explanation Em(x) ∈ A ∩ R(x) with lower cost for the individual, i.e.,
c(x, Em(x)) ≤ c(x, E(x)). In our work, we argue that the provided counterfactual explanations help
the individual to achieve a greater self-improvement and this is likely to result in a superior long-term
well-being, as illustrated in Figure 7(c) in Appendix E. For example, consider a bank issuing credit
cards who wants to maintain credit for trustworthy customers and incentivize the more risky ones
to improve their financial status. In this case, E(x) is the explanation that maximally improves the
financial status of the individual, making the repayment more likely, but requires her to pay a larger
(immediate) cost. In contrast, Em(x) is an alternate explanation that requires the individual to pay
a smaller (immediate) cost but, in comparison with E(x), would result in a higher risk of default.
In this context, note that the individual would be “willing” to pay the cost of following either E(x)
or Em(x) since both explanations lie within the region of adaptationR(x). We refer the interested
reader to Appendix F.2 for an anecdotal real-world example of E(x) and Em(x).

As argued very recently [21, 26, 31], due to Goodhart’s law, the conditional probability P (y |x) may
change after individuals (best)-respond if the true causal effect between the observed features x and
the outcome variable y is partially described by unobserved features. Moreover, Miller et al. [31]
have argued that, to distinguish between gaming and improvement, it is necessary to have access to
the full underlying causal graph between the features and the outcome variable. In this work, for
simplicity, we assume that P (y |x) does not change, however, it would be very interesting to lift this
assumption in future work.

3 Finding the optimal counterfactual explanations for a policy
In this section, our goal is to find the optimal set of counterfactual explanations A∗ for a pre-defined
policy π, i.e.,

A∗ = argmax
A⊆Pπ : |A|≤k

u(π,A), (3)

where the cardinality constraint on the set of counterfactual explanations balances the decision
maker’s obligation to be transparent with trade secrets [32]. More specifically, note that, without this
constraint, an adversary could reverse-engineer the entire decision policy π(x) by impersonating
individuals with different feature values x [33].

As it will become clearer in the experimental evaluation in Section 6, our results may persuade
decision makers to be transparent about their decision policies, something they are typically reluctant
to be despite the increasing legal requirements, since we show that transparency increases the utility
of the policies. Moreover, throughout this section, we will assume that the decision maker who
picks the pre-defined policy is rational7 and the policy is outcome monotonic89 [21]. Outcome
monotonicity just implies that, the higher an individual’s outcome P (y = 1 |x), the higher their
chances of receiving a positive decision π(x).

Unfortunately, using a novel reduction of the Set Cover problem [30], the following theorem reveals
that we cannot expect to find the optimal set of counterfactual explanations in polynomial time
(proven in Appendix B.1):

Theorem 1 The problem of finding the optimal set of counterfactual explanations that maximizes
utility under a cardinality constraint is NP-Hard.

Even though Theorem 1 is a negative result, we will now show that the objective function in Eq. 3
satisfies a set of desirable properties, i.e., non-negativity, monotonicity and submodularity10, which
allow a standard greedy algorithm to enjoy approximation guarantees at solving the problem. To
this aim, with a slight abuse of notation, we first express the objective function as a set function
f(A) = u(π,A), which takes values over the ground set of counterfactual explanations, Pπ. Then,
we have the following proposition (proven in Appendix B.2):

7Note that, if the decision maker is rational and her goal is to maximize the utility, as defined in Eq. 1, then,
for all x ∈ X such that P (y = 1 |x) < γ, it holds that π(x) = 0.

8A policy π is called outcome monotonic if P (y = 1 |xi) ≥ P (y = 1 |xj)⇔ π(xi) ≥ π(xj) ∀xi,xj ∈
X .

9If the policy π is deterministic, our results also hold for non outcome monotonic policies.
10A function f : 2X → R is submodular if for every A,B ⊆ X : A ⊆ B and x ∈ X \ B it holds that

f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B).
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Proposition 2 The function f is non-negative, submodular and monotone.

The above result directly implies that the standard greedy algorithm [34] for maximizing a non-
negative, submodular and monotone function will find a solution A to the problem such that f(A) ≥
(1 − 1/e)f(A∗), where A∗ is the optimal set of counterfactual explanations. The algorithm starts
from a solution set A = ∅ and it iteratively adds to A the counterfactual explanation x ∈ Pπ \ A
that provides the maximum marginal difference f(A ∪ {x})− f(A). Algorithm 1 in Appendix C
provides a pseudocode implementation of the algorithm.

Finally, since the greedy algorithm computes the marginal difference of f for at most m elements per
iteration and, following from the proof of Proposition 2, the marginal difference f(A∪ {x})− f(A)
can be computed in O(m), then it immediately follows that, in our problem, the greedy algorithm
has an overall complexity of O(km2).

4 Finding the optimal policy and counterfactual explanations
In this section, our goal is to jointly find the optimal decision policy and set of counterfactual
explanations A∗, i.e.,

π∗,A∗ = argmax
(π,A):A⊆Pπ∧|A|≤k

u(π,A) (4)

where, similarly as in the previous section, k is the maximum number of counterfactual explanations
the decision maker is willing to provide to the population to balance the right to explanation with
trade secrets. By jointly optimizing both the decision policy and the counterfactual explanations, we
may obtain an additional gain in terms of utility in comparison with just optimizing for the set of
counterfactual explanations given the optimal decision policy in a non-strategic setting, as shown in
Figure 6 in Appendix D. Moreover, as we will show in the experimental evaluation in Section 6, this
additional gain will be significant.

Similarly as in Section 3, we cannot expect to find the optimal policy and set of counterfactual
explanations in polynomial time. More specifically, we have the following negative result, which
easily follows from Proposition 4 and slightly extending the proof of Theorem 1:

Theorem 3 The problem of jointly finding both the optimal policy and the set of counterfactual
explanations that maximize utility under a cardinality constraint is NP-hard.

However, while the problem of finding both the policy and the set of counterfactual explanations
appears significantly more challenging than the problem of finding just the set of counterfactual expla-
nations given a pre-defined policy (refer to Eq. 3), the following proposition shows that the problem
is not inherently harder. More specifically, for each possible set of counterfactual explanations, it
shows that the policy that maximizes the utility can be easily computed (proven in Appendix B.3):

Proposition 4 Given a set of counterfactual explanationsA ⊆ Y := {x ∈ X : P (y = 1 |x) ≥ γ}11,
the policy π∗A = argmaxπ:A⊆Pπ u(π,A) that maximizes the utility is deterministic and can be found
in polynomial time, i.e.,

π∗A(x) =

{
1 if x ∈ A ∨ {x′ ∈ A : P (y = 1 |x′) > P (y = 1 |x) ∧ c(x,x′) ≤ 1} = ∅ ∧ x ∈ Y
0 otherwise.

(5)

The above result implies that, to set all the values of the optimal decision policy, we only need to
perform O(km) comparisons. Moreover, it reveals that, in contrast with the non strategic setting, the
optimal policy given a set of counterfactual explanations is not a deterministic threshold rule with a
single threshold [17, 22], i.e.,

π(x) =

{
1 if P (y = 1 |x) ≥ γ
0 otherwise,

(6)

but rather a more conservative deterministic decision policy that does not depend only on the outcome
P (y = 1 |x) and γ but also on the cost individuals pay to change features. Moreover, we can build
up on the above result to prove that the problem of finding the optimal decision policy and set of
counterfactual explanations can be reduced to maximizing a non-monotone submodular function. To
this aim, let π∗A be the optimal policy induced by a given set of counterfactual explanations A, as in

11Since the decision maker is rational, she will never provide an explanation that contributes negatively to her
utility.
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Proposition 4, and define the set function h(A) = u(π∗A,A) over the ground set Y . Then, we have
the following proposition (proven in Appendix B.4):

Proposition 5 The function h is non-negative, submodular and non-monotone.

Fortunately, there exist efficient algorithms with global approximation guarantees for maximizing a
non-monotone submodular function under cardinality constraints. In our work, we use the randomized
polynomial time algorithm by Buchbinder et al. [35], which can find a solution A such that h(A) ≥
(1/e)h(A∗), where A∗ and π∗A∗ are the optimal set of counterfactual explanations and decision
policy, respectively. The algorithm is just a randomized variation of the standard greedy algorithm.
It starts from a solution set A = ∅ and it iteratively adds one counterfactual explanation x ∈ Y\A.
However, instead of greedily choosing the element x that provides the maximum marginal difference
h(A ∪ {x}) − h(A), it sorts all the candidate elements with respect to their marginal difference
and picks one at random among the top k. Algorithm 2 in Appendix C provides a pseudocode
implementation of the algorithm.

Finally, since the above randomized algorithm has a complexity of O(km) and, following from the
proof of Proposition 5, the marginal difference of h can be computed in O(m), it readily follows that,
in our problem, the algorithm has a complexity of O(km2).

5 Increasing the diversity of the counterfactual explanations
In many cases, decision makers may like to ensure that individuals across the whole spectrum of the
population are incentivized to self-improve. For example, in a loan scenario, the bank may use age
group as a feature to estimate the probability that a customer repays the loan, however, it may like to
deploy a decision policy that incentivizes individuals across all age groups in order to improve the
financial situation of all. To this aim, the decision maker can increase the diversity of the optimal set
of counterfactual explanations by incorporating a matroid constraint into the problem formulation,
rather than a cardinality constraint.

Formally, consider disjoint sets X1,X2, . . . ,Xl such that
⋃
i Xi = X and integers d1, d2, . . . , dl such

that k =
∑
i di. Then, a partition matroid is the collection of sets {S ⊆ 2X : |S ∩Xi| ≤ di ∀i ∈ [l]}.

In the loan example, the decision maker could search for a set of counterfactual explanationsA within
a partition matroid where each one of the Xi’s corresponds to the feature values covered by each
age group and di = k/l ∀i ∈ [l]. This way, the set of counterfactual explanations A would include
explanations for every age group.

In this case, the decision maker could rely on a variety of polynomial time algorithms with global
guarantees for submodular function maximization under matroid constraints, e.g., the algorithm by
Calinescu et al. [36].

6 Experiments
In this section, we evaluate Algorithms 1 and 2 using real loan and credit card data and show that the
counterfactual explanations and decision policies found by our algorithms achieve higher utility than
several competitive baselines. Appendix E contains additional experiments on synthetic data.

Experimental setup. We experiment with two publicly available datasets: (i) the lending dataset [37],
which contains information about all accepted loan applications in LendingClub during the 2007-2018
period and (ii) the credit dataset [38], which contains information about a bank’s credit card payoffs12.
For each accepted loan applicant (or credit card holder), we use various demographic information
and financial status indicators as features x and the current loan status (or credit payoff status) as
label y. Appendix F.1 contains more details on the specific features we used in each dataset and also
describes the procedure we followed to approximate P (y |x).

To set the values of the cost function c(xi,xj), we use the maximum percentile shift among actionable
features13, similarly as in Ustun et al. [13]. More specifically, let L be the set of actionable (numerical)
features and L̄ be the set of non-actionable (discrete-valued) features14. Then, for each pair of feature
values xi,xj we define the cost function as:

12We used a version of the credit dataset preprocessed by Ustun et al. [13]
13A feature is actionable if an individual can change its values in order to get a positive decision.
14In the credit dataset, L̄ contains Marital Status, Age Group and Education Level and L̄ contains the

remaining features and, in the lending dataset, L contains all features.
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Figure 1: Utility achieved by five types of decision policies and counterfactual explanations against
the value of the parameter α, in the lending and credit datasets. In panel (a), the number of feature
values is m = 400 and, in panel (b), it is m = 3200. In both panels, we set k = 0.05m and we repeat
each experiment 20 times.

c(xi,xj) =

{
α ·maxl∈L |Ql(xj,l)−Ql(xi,l)| if xi,l = xj,l ∀l ∈ L̄
∞ otherwise,

(7)

where xj,l is the value of the l-th feature for the feature value xj , Ql(·) is the CDF of the nu-
merical feature l ∈ L and α ≥ 1 is a scaling factor. As an exception, in the credit dataset,
we always set the cost c(xi,xj) between two feature values to ∞ if Ql(xj,l) < Ql(xi,l) for
l ∈ {Total Overdue Counts,Total Months Overdue} considering the fact that history of overdue
payments cannot be erased. In this context, we would like to acknowledge that more sophisticated
cost functions can be designed in terms of feasibility and difficulty of adaptation, taking into account
domain knowledge and information about the deployed classifier, however, it goes beyond the scope
of our work.

Finally, in our experiments, we compare the utility of the following decision policies and counterfac-
tual explanations:

— Black box: decisions are taken by the optimal decision policy in the non-strategic setting, given by
Eq. 6, and individuals do not receive any counterfactual explanations.

— Minimum cost: decisions are taken by the optimal decision policy in the non-strategic setting,
given by Eq. 6, and individuals receive counterfactual explanations of minimum cost with respect to
their initial feature values, similarly as in previous work [13, 15, 39]. More specifically, we cast the
problem of finding the set of counterfactual explanations as the minimization of the weighted average
cost individuals pay to change their feature values to the closest counterfactual explanation, i.e.,

Amc = argmin
A⊆Pπ : |A|≤k

∑
xi∈X\Pπ

P (xi) min
xj∈A

c(xi,xj),

and realize that this problem is a version of the k-median problem, which we can solve using a greedy
heuristic [40].

— Diverse: decisions are taken by the optimal decision policy in the non-strategic setting, given by
Eq. 6, and individuals receive a set of diverse counterfactual explanations of minimum cost with
respect to their initial feature values, similarly as in previous work [16, 41], i.e.,

Ad = argmax
A⊆Pπ : |A|≤k

∑
xi∈X\Pπ

P (xi)I(R(xi) ∩ A 6= ∅),

To solve the above problem, we realize it can be reduced to the weighted version of the maximum
coverage problem, which can be solved using a well-known greedy approximation algorithm [42].

— Algorithm 1: decisions are taken by the optimal decision policy in the non-strategic setting, given
by Eq. 6, and individuals receive counterfactual explanations given by Eq. 2, where A is found using
Algorithm 1.

— Algorithm 2: decisions are taken by the decision policy given by Eq. 5 and individuals receive
counterfactual explanations given by Eq. 2, where A is found using Algorithm 2.

Results. We start by comparing the utility achieved by each of the decision policies and counterfactual
explanations in both datasets, for several values of the parameter α, which is proportional to the
difficulty of changing features. Figure 1 summarizes the results, which show that Algorithm 1 and
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Figure 2: Transportation of mass induced by the policies and counterfactual explanations used in
Algorithm 1 and 2 in both the lending and the credit dataset. For each individual in the population,
whose best-response is to change her feature value, we record her outcome P (y = 1 |x) before the
best response (Initial P (y = 1 |x)) and after the best response (Final P (y = 1 |x)). In each panel,
the color is proportional to the percentage of individuals who move from initial P (y = 1 |x) to final
P (y = 1 |x) and we set α = 2.
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Figure 3: Number of counterfactual explanations and information leakage. Panel (a) shows the utility
achieved by five types of decision policies and counterfactual explanations against the number of
counterfactual explanations k. Panel (b) shows the utility achieved by Algorithm 2 against the number
of counterfactual explanations k for several values of the leakage probability pl. In both panels, we
use the lending dataset, the number of feature values is m = 400, we set α = 2, we repeat each
experiment involving randomization 20 times.

Algorithm 2 consistently outperform all baselines and, as the cost of adapting to feature values
with higher outcome values decreases (smaller α), the competitive advantage by jointly optimizing
the decision policy and the counterfactual explanations (Algorithm 2) grows significantly. This
competitive advantage is more apparent in the credit card dataset because it contains non actionable
features (e.g., credit overdue counts) and, under the optimal decision policy in the non-strategic
setting, it is difficult to incentivize individuals who receive a negative decision to improve by just
optimizing the set of counterfactual explanations they receive. For specific examples of counterfactual
explanations provided by Algorithm 1 and the minimum cost baseline, refer to Appendix F.2.

To understand the differences in utility caused by the two proposed algorithms, we measure the
transportation of mass induced by the policies and counterfactual explanations used in Algorithm 1
and 2 in both datasets, as follows. For each individual in the population whose best-response is to
change her feature value, we record her outcome P (y = 1 |x) before and after the best response.
Then, we discretize the outcome values using percentiles. Figure 2 summarizes the results, which
show several interesting insights. In the lending dataset, we observe that a large portion of individuals
do improve their outcome even if we only optimize the counterfactual explanations (Panel (a)). In
contrast, in the credit dataset, we observe that, if we only optimize the counterfactual explanations
(Panel (c)), most individuals do not improve their outcome. That being said, if we jointly optimize
the decision policy and counterfactual explanations (Panels (b) and (d)), we are able to incentivize a
large portion of individuals to self improve in both datasets.

Next, we focus on the lending dataset and evaluate the sensitivity of our algorithms. First, we measure
the influence that the number of counterfactual explanations has on the utility achieved by each of the
decision policies and counterfactual explanations. As shown in Figure 3(a), our algorithms just need
a small number of counterfactual explanations to provide significant gains in terms of utility with
respect to all the baselines. Second, we challenge the assumption that individuals do not share the
counterfactual explanations they receive with other individuals with different feature values. To this
end, we assume that, given the set of counterfactual explanationsA found by Algorithm 2, individuals
with initial feature value x receive the counterfactual explanation E(x) ∈ A given by Eq. 2 and, with
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Figure 4: Increasing the diversity of the provided counterfactual explanations. Panel (a) shows
the population per age group, rejected by the optimal threshold policy in the non strategic setting.
Panel (b) shows a comparison of the age distribution of counterfactual explanations in A produced
by the greedy algorithm under a cardinality and a matroid constraint. Panel (c) shows the relative
improvement of each age group. In all panels, we use the credit dataset and we set k = 32 and α = 2.

probability pl, they also receive an additional explanation E ′(x) picked at random from A and they
follow the counterfactual explanation that benefits them the most. Figure 3(b) summarizes the results
for several values of pl and number of counterfactual explanations, which show that the policies and
explanations provided by Algorithm 2 present a significant utility advantage even when the leakage
probability pl is large.

Finally, we focus on the credit dataset and consider a scenario in which a bank aims not only to
continue providing credit to the customers that are more likely to repay but also provide explanations
that incentivize individuals across all age groups to maintain their credit. To this end, we incorporate
a partition matroid constraint that ensures the counterfactual explanations are diverse across age
groups, as described in Section 5, and use a slightly modified version of Algorithm 1 to solve
the constrained problem [34], which enjoys a 1/2 approximation guarantee. Figure 4 summarizes
the results, which show that: (i) optimizing under a cardinality constraint leads to an unbalanced
set of explanations, favoring the more populated age groups (25 to 59) while completely ignoring
the recourse potential of individuals older than 60; (ii) the relative group improvement, defined as∑

xi∈Xz\Pπ P (xi)[P (y |xij)−P (y |xi)]/
∑

xi∈Xz\Pπ P (xi), where Xz is the set of feature values
corresponding to age group z and xij is the best response of individuals with initial feature value
xi ∈ Xz , is more balanced across age groups, showing that the matroid constraint can be used to
generate counterfactual explanations that help the entire spectrum of the population to self-improve.

7 Conclusions
In this paper, we have designed several algorithms that allow us to find the decision policies and
counterfactual explanations that maximize utility in a setting in which individuals who are subject to
the decisions taken by the policies use the counterfactual explanations they receive to invest effort
strategically. Moreover, we have experimented with synthetic and real lending and credit card data
and shown that the counterfactual explanations and decision policies found by our algorithms achieve
higher utility than several competitive baselines.

By uncovering a previously unexplored connection between strategic machine learning and inter-
pretable machine learning, our work opens up many interesting directions for future work. For
example, we have adopted a specific type of mechanism to provide counterfactual explanations
(i.e., one feature value per individual using a Stackelberg formulation). A natural next step would
be to extend our analysis to other types of mechanisms fitting a variety of real-world applications.
Moreover, we have assumed that the cost individuals pay to change features is given. However, our
algorithms would be more effective if we develop a methodology to reliably estimate the cost function
from real observational (or interventional) data. In our work, we have assumed that features take
discrete values and individuals who are subject to the decisions do not share information between
them. It would be interesting to lift these assumptions, extend our analysis to real-valued feature
values, and develop decision policies and counterfactual explanations that are robust to information
sharing between individuals (refer to Figure 3(c)). Finally, by assuming that P (y |x) does not change
after individuals best respond, we are implicitly assuming that there are not unobserved features that
partially describe the true causal effect between the observed features x and the outcome variable
y. However, in practice, this assumption is likely to be violated and P (y |x) may change after
individuals best respond, as recently noted by Miller et al. [31]. In this context, it would be very
interesting to find counterfactual explanations that are robust to unmeasured confounding.
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8 Broader Impact

In recent years, there has been a heated debate concerning the (lack of) transparency of machine
learning models used to inform decisions that have significant consequences for individuals. In this
context, decision makers are usually reluctant to share their decision policy with the individuals
they decide upon because of trade secret concerns. In our work, we show that, if explanations for
(semi-)automated decisions are chosen taking into account how individuals will best respond to
them, the explanations can significantly increase the decision-maker’s utility while also helping the
individuals to self-improve, making transparency desirable for both sides.
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