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Abstract

Reservoir Computing is a class of simple yet efficient Recurrent Neural Networks
where internal weights are fixed at random and only a linear output layer is trained.
In the large size limit, such random neural networks have a deep connection with
kernel methods. Our contributions are threefold: a) We rigorously establish the
recurrent kernel limit of Reservoir Computing and prove its convergence. b) We test
our models on chaotic time series prediction, a classic but challenging benchmark
in Reservoir Computing, and show how the Recurrent Kernel is competitive and
computationally efficient when the number of data points remains moderate. c)
When the number of samples is too large, we leverage the success of structured
Random Features for kernel approximation by introducing Structured Reservoir
Computing. The two proposed methods, Recurrent Kernel and Structured Reservoir
Computing, turn out to be much faster and more memory-efficient than conventional
Reservoir Computing.

1 Introduction

Understanding Neural networks in general, and how to train Recurrent Neural Networks (RNNs)
in particular, remains a central question in modern machine learning. Indeed, backpropagation in
recurrent architectures faces the problem of exploding or vanishing gradients [1, 2l], reducing the
effectiveness of gradient-based optimization algorithms. While there exist very powerful and complex
RNNs for modern machine learning tasks, interesting questions still remain regarding simpler ones.
In particular, Reservoir Computing (RC) is a class of simple but efficient Recurrent Neural Networks
introduced in [3]] with the Echo-State Network, where internal weights are fixed randomly and only
a last linear layer is trained [4]. As the training reduces to a well-understood linear regression,
Reservoir Computing enables us to investigate separately the complexity of neuron activations in
RNNs. With a few hyperparameters, we can tune the dynamics of the reservoir from stable to chaotic
and performances are increased when RC operates close to the chaotic regime [3].

Despite its simplicity, Reservoir Computing is not fully efficient: computational and memory costs
grow quadratically with the number of neurons. To tackle this issue, efficient computation schemes
have been proposed based on sparse weight matrices [Sl]. Moreover, there is an active community
developing novel hardware solutions for energy-efficient, low-latency RC [6]. Based on dedicated
electronics [7H10], optical computing [11H15], or other original physical designs [[16], they leverage
the robustness and flexibility of RC. Reservoir Computing has already been used in a variety of
tasks, such as speech recognition and robotics [17] but also combined with Random Convolutional
Neural Networks for image recognition [18] and Reinforcement Learning [19]. A very promising
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application today is chaotic time series prediction, where the RC dynamics close to chaos may prove
a very important asset [[6]. Reservoir Computing also represents an important model in computational
neuroscience, as parallels can be drawn with specific regions of the brain behaving like a set of
randomly-connected neurons [20].

As RC embeds input data in a high-dimensional reservoir, it has already been linked with kernel
methods [5]], but merely as an interesting interpretation for discussion. In our opinion, this point
of view has not been exploited to its full potential yet. A study derived the explicit formula of the
corresponding recurrent kernel associated with RC [21]], this important result meaning the infinite-
width limit of RC is a deterministic Recurrent Kernel (RK). Still, no theoretical study of convergence
towards this limit has been conducted previously and the computational complexity of Recurrent
Kernels has not been derived yet.

In this work, we draw the link between RC and the rich literature on Random Features for kernel
approximation [22H26]). To accelerate and scale-up the computation of Random Features, one can use
optical implementations [27, 28] or structured transforms [29, 130]], providing a very efficient method
for kernel approximation. Structured transforms such as the Fourier or Hadamard transforms can be
computed in O(nlogn) complexity and, coupled with random diagonal matrices, they can replace
the dense random matrix used in Random Features.

Finally, we note that Reservoir Computing can be unrolled through time and interpreted as a multilayer
perceptron. The theoretical study of such randomized neural networks through the lens of kernel
methods has attracted a lot of attention recently [31H33], which provides a further motivation to our
work. Some parallels were already drawn between Recurrent Neural Networks and kernel methods
[34,135], but they do not tackle the high-dimensional random case of Reservoir Computing.

Main contributions — Our goal in this paper is to bridge the gap between the considerable amount
of results on kernels methods, random features — structured or not — and Reservoir Computing.

First, we rigorously prove the convergence of Reservoir Computing towards Recurrent Kernels
provided standard assumptions and derive convergence rates in O(1/v/N), with N being the number
of neurons. We then numerically show convergence is achieved in a large variety of cases and does
not occur in practice only when the activation function is unbounded (for instance with ReLU).

When the number of training points is large, the complexity of RK grows; this is a common drawback
of kernel methods. To circumvent this issue, we propose to accelerate conventional Reservoir
Computing by replacing the dense random weight matrix with a structured transform. In practice,
Structured Reservoir Computing (SRC) allows to scale to very large reservoir sizes easily, as it is
faster and more memory-efficient than conventional Reservoir Computing, without compromising
performance.

These techniques are tested on chaotic time series prediction, and they all present comparable results in
the large-dimensional setting. We also derive the computational complexities of each algorithm and de-
tail how Recurrent Kernels can be implemented efficiently. In the end, the two acceleration techniques
we propose are faster than Reservoir Computing and can tackle equally complex tasks. A public repos-
itory is available at https://github.com/rubenohana/Reservoir-computing-kernels.

2 Recurrent Kernels and Structured Reservoir Computing

Here, we briefly describe the main concepts used in this paper. We recall the definition of Reservoir
Computing and Random Features, define Recurrent Kernels (RKs) and introduce Structured Reservoir
Computing (SRC).

Reservoir Computing (RC) as a Recurrent Neural Network receives a sequential input i) € R%,
for ¢t € N. We denote by () € RN the state of the reservoir, N being the number of neurons in the
reservoir. Its dynamics is given by the following recurrent equation:
1
(t+1) _ (W (®) : ~<t>)
T o' 4+ Wi ey
Vol

where W, € RV*N and W; € RV >4 are respectively the reservoir and input weight matrices. They
are fixed and random: each weight is drawn according to an i.i.d. gaussian distribution with variances
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o2 and o2, respectively. Finally, f is an element-wise non-linearity, typically a hyperbolic tangent.
To refine the control of the reservoir dynamics, it is possible to add a random bias and a leak rate. In
the following, we will keep the minimal formalism of Eq. (] for conciseness.

We use the reservoir to learn how to predict a given output 0¥ € R¢ for example. The output
predicted by the network 6(*) is obtained after a final layer:

oM =w,z® 2)

Since only these output weights W, € R°*" are trained, the optimization problem boils down

to linear regression. Training is typically not a limiting factor in RC, in sharp contrast with other
neural network architectures. The expressivity and power of Reservoir Computing rather lies in the
high-dimensional non-linear dynamics of the reservoir.

Kernel methods are non-parametric approaches to learning. Essentially, a kernel is a function
measuring a correlation between two points u, v € RP. A specificity of kernels is that they can
be expressed as the inner product of feature maps ¢ : RP — H in a possibly infinite-dimensional
Hilbert space H, i.e. k(u,v) = (p(u), p(v))x. Kernel methods enable the use of linear methods

in the non-linear feature space H. Famous examples of kernel functions are the Gaussian kernel
2
k(u,v) = exp (—%) or the arcsine kernel k(u,v) = %arcsin % When the dataset
becomes large, it is expensive to numerically compute the kernels between all pairs of data points.
2 p y p p p

Random Features have been developed in [22] to overcome this issue. This celebrated technique
introduces a random mapping ¢ : R? — RV such that the kernel is approximated in expectation:

k(u, v) = (p(u), o(v)y = (d(u), $(v))gn 3)
with ¢(u) = \/#N[f((wl,u)),...,f((wN,u>)]T € R¥ and random vectors wy, ..., wy € RP. De-
pending on f and the distribution of {w;}¥,, we can approximate different kernel functions.

There are two major classes of kernel functions: translation-invariant (TI) kernels and rotation-
invariant (RI) kernels. In our study, we will consider TI kernels of the form k(u,v) = k(|ju — v||3)
and RI kernels of the form k(u,v) = k({u, v)). Both can be approximated using Random Features
[22} 36]. For example, Random Fourier Features (RFFs) defined by:

1 . .
o(u) = \/—N[cos(<w1,u>), oy cos((wp, ), sin((wy, ), ..., sin((wx, u))] " 4)
approximate any TI kernel (provided k(0) = 1). For example, when w1, ..., wx ~ N(0,0721,), we

approximate the Gaussian kernel. A detailed taxonomy of Random Features can be found in [37]].

Random Features can be more computationally efficient than kernel methods, when their number N
is smaller than the number of data points n. For this particular reason, Random Features are a method
of choice to implement large-scale kernel-based methods.

Link with Reservoir Computing. It is straightforward to notice that reservoir iterations of Eq. (I)
can be interpreted as a Random Feature embedding of a vector [x(t), i(t)] (of dimension p = N + d),
multiplied by W = [W,., W;]. This means the inner product between two reservoirs ) y® driven
respectively by two inputs () and j*) converges to a deterministic kernel as N tends to infinity:

<$(t+1), y(t+1)> ~ k([l‘(t),i(t)], [y(t)7j(t)]) (5)

As explained previously, this kernel depends on the choice of f and the distribution of W,. and W;.
By denoting I®) = ¢2(i) j®)) and A®) = ¢2(|i®) — §®)||2, TI and RI kernels are then of the form:
k([m(t), i(t)], [y(t)’j(t)]) - k(af <33(75)7 y(t)> + l(t)) (RI) (6)

= k(o7[|l2 =y @2 + A®) (T @)

The Recurrent Kernel limit. Looking at Eq. (6) and (7), we notice the kernel at time ¢ depends on

approximations of kernels at previous times in a recursive manner. Here, we introduce Recurrent
Kernels to remove the dependence in z(*) and y(*).



We suppose for the sake of simplicity z(°) = 3(0) = 0. We define RI recurrent kernels as:
Ky (1(0)) =k (1(0))
Fn (100, 0 100 = & (02k, (107D, .., 10)) 4 1(® . ®)
1 - =k (07k: (l ) )—|—l ), fort € N
Similarly for TI recurrent kernels with Random Fourier Features, exploiting the property in Eq. (4)
that 2@ = [ly]]* = 1:
ki (A®) =k (A©) ©
ke (AW AQ) =k (02 (2 — 2k, (ACD, ., A0)) + A®) - fort € N*
These Recurrent Kernel definitions describe hypothetical asymptotic limits of large-dimensional
Reservoir Computing, interpreted as recurrent Random Features. We will study in Section [3.1] the
convergence towards this limit.

Structured Reservoir Computing. In the Random Features literature, it is common to use structured
transforms to speed-up computations of random matrix multiplications [29, 30]. They have also
been introduced for trained architectures, with Deep [38]] and Recurrent Neural Networks [39].

We propose to replace the dense random weight matrices W = [WW,., W;] by a succession of Hadamard
matrices [ (structured orthonormal matrices composed of -1/ /p components) and diagonal random
matrices D; for i = 1,2, 3 sampled from an i.i.d. Rademacher distribution [30]:

W = Y2 gD HD, HD, (10)
g

We use the Hadamard transform for its simplicity and the availability of high-performance libraries in

[40]. This structured transform provides the two main properties of a dense random matrix: mixing

the activation of the neurons (Hadamard transform) and randomness (diagonal matrices).

3 Convergence theorem and computational complexity

3.1 Convergence rates

Our first main result is a convergence theorem of Reservoir Computing to its kernel limit. We use
Bernstein’s concentration inequality in our recurrent setting. Several assumptions will be necessary:

* The kernel function k is Lipschitz-continuous with constant L, i.e. |k(a) — k(b)| < L|a — b|.

* The random matrices W, and W; are resampled for each ¢ to obtain uncorrelated reservoir updates:
z(t) = Tlﬁf (Wﬁt)a:(t) + Wi(t)i(t)). This assumption is required for our theoretical proof of
convergence, but we show convergence is reached numerically even without redrawing the weight
matrices, which is standard in Reservoir Computing (in Fig. [).

* The function f is bounded by a constant x almost surely, i.e. | f (Wfé)sx(t) + Wigi)i(t))\ < K.

Theorem 1. (Rotation-invariant kernels) For the RI recurrent kernel defined in Eq. (8), under the
assumptions detailed above, and with A = o2 L. For all t € N, the following inequality is satisfied
Sor any § > 0 with probability at least 1 — 2(t + 1)4:

(t41) (1) _ W 0| o LA -
(@ g — ke (UYL 1) < T-A O(N) if A#1 (1D
< (t+1)8(N) if A=1 (12

2 1 1
with O(N) = 4'§31](\),g L+ 2k%4/ 210%.

Proof. We use the following Proposition (Theorem 3 of [41]] restated in Proposition 1 of [24]):

Proposition 1. (Bernstein inequality for a sum of random variables). Let X1, ..., X N be a sequence
of i.i.d. random variables on R with zero mean. If there exist R,S € R such that |X;| < R
almost everywhere and E[X?] < S fori € {1, ..., N'}, then for any § > 0 the following holds with
probability at least 1 — 26:

1 2Rlog L [281og &
= X;| < 4 9 13
N ; - 3N + N (13




Under the assumptions, Proposition [I] yields with probability greater than 1 — 24:

) . 4k?log * 2log &
‘<x<t+1>7y<t+1>> ~ k(2,0 [y(”,y(”})‘ < 37N($ + 2624/ N L —Q(N) (14

It means the larger the reservoir, the more Random Features N we sample, and the more the inner
product of reservoir states concentrates towards its expectation value, at a rate O(1/+/N). We now
apply this inequality recursively to complete the proof, based on the observation that both Eq. (IT]
and are equivalent to: [(z(*+1), y(tH+Dy — g, (1O, 1O) < (1+ A+ A2+ ..+ AH)O(N).

For ¢t = 0, provided z(?) = 3(©) = 0, we have, according to Eq. with probability at least 1 — 24:

‘<x<1>7y<1>> _ k1(1<0>)‘ <O(N) (15)

For any time ¢ € N*, let us assume the following event A; is true with probability P(A;) > 1 — 2t4:
]<x“>,y(“> - kt(l“‘”,...,l”))] <(L+...+ATHO() (16)
Using the Lipschitz-continuity of k, this inequality is equivalent to:

‘k(af (@®,y®Y 4 10) — k(o2 (1D, ..., 1) + z<t>)\ <(A+...+AHO(N) (17
With Eq. (14), the following event B; is true with probability P(B;) > 1 — 24:

(2, y ) — k(o @,y ) + 1)

T

< O(N) (18)

Summing Eq. and (I8)), with the triangular inequality and a union bound, the following
event A;,q is true with probability P(A;41) > P(B; N A;) = P(By) + P(A4:) — P(B: U 4;) >
1-26+1—2t6—1>1—2(t+1)5:

@D,y D) — k(19,10 < (14 + ADB() (19)
O

A statement and proof of a similar convergence bound for TI recurrent kernels is provided in the
Supplementary Material.

3.2 Numerical study of convergence

The previous theoretical study required three important assumptions that may not be valid for
Reservoir Computing in practice. Moreover, there is still no rigorous proof on the convergence of
Structured Random Features in the non-recurrent case due to the difficulty to deal with correlations
between them. Thus, we numerically investigate whether convergence of RC and SRC towards the
Recurrent Kernel limit is achieved in practice.

In Fig. [ we numerically compute the Mean-Squared Error (MSE) between the inner products
obtained with a Recurrent Kernel and RC/SRC for different number of neurons in the reservoir. We
generate 50 i.i.d. gaussian input time series i,(:) oflength 7', fork=1,...,50and ¢t =0,...,7T — 1.
Each time series is fed into 50 reservoirs that share the same random weights, for RC and SRC.

We compute the MSE between inner products of pairs of final reservoir states (x](CT)7 xl(T)> and the
deterministic limit obtained directly with k7 (i\" ", i" =" il i) forall k1 =1,...,50.
The computation is vectorized to be efficiently implemented on a GPU. Three different activation
functions, the rectified linear unit (ReL.U), the error function (Erf), and Random Fourier Features
defined in Eq. (@), have been tested with different variances of the reservoir weights. The larger the
reservoir weights, the more unstable the reservoir dynamics becomes.

Nonetheless, convergence is achieved in a large variety of settings, even when the assumptions of
the previous theorem are not satisfied. For example, the ReL.U non-linearity is not bounded and
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Figure 1: Convergence of Reservoir Computing towards its Recurrent Kernel limit for different
variances of the reservoir weights af (columns), activation functions (lines: ReLLU, Erf, RFFs) and
times, for RC (solid lines) and SRC (dashed lines). We observe that for the two bounded activation
functions (Erf and RFFs), RC always converge towards the RK limit even at large times ¢. For ReLU,
RC converges when Uf = (.25 and 1, and diverges as t increases when af = 4. We also observe
that SRC always yields equal or faster convergence than RC. The MSE decreases with an O(1/N)
scaling, which is consistent with the convergence rates derived in Theoremm

converges when o2 > 1. It is interesting to notice even for a large variance 02 = 4 do Reservoir
Computing and Structured Reservoir Computing converge towards the RK limit for the second and
third activation functions. This behavior has been consistently observed with any bounded f.

On the other hand, Structured Reservoir Computing seems to always converge faster than Reservoir
Computing. We thus confirm in the recurrent case the intriguing effectiveness of Structured Random
Features [42], that may originate from the orthogonality of the matrix W, in SRC.

As a final remark, weight matrices in Fig. [T] were not redrawn as supposed in Section 3.1} This
assumption was necessary as correlations are often difficult to take into account in a theoretical
setting. This is important for Reservoir Computing as it would be unrealistically slow to draw new
random matrices at each time step.

3.3 When to use RK or SRC?

The two proposed alternatives to Reservoir Computing, Recurrent Kernels and Structured Reservoir
Computing, are computationally efficient. To understand which algorithm to use for chaotic system
prediction, we need to focus on the limiting operation in the whole pipeline of Reservoir Computing,
the recurrent iterations. They correspond to Eq. (I)) for RC/SRC and Eq. (8] [9) for RK. We have a
time series of dimension d, that we split into train/test datasets of lengths n and m respectively. The
exact computational and memory complexities of each step are described in Table[T]

Forward: In both Reservoir Computing and Structured Reservoir Computing, Eq. (I) needs to
be repeated as many times as the length of the time series. For Reservoir Computing, it requires
a multiplication by a dense N x N matrix, the associated complexity scales as O(N?). On the
other hand, Structured Reservoir Computing uses a succession of Hadamard and diagonal matrix
multiplications, reducing the complexity per iteration to O(N log N).



Reservoir Computing | Structured Reservoir Computing | Recurrent Kernel
Forward O(nN?) O(nNlog N) O(n?7)
Training O(nN? + N3) O(nN? + N3) O(n?)
Prediction O(mN?) O(mN log N) O(mnr)
Memory O(nN + N?) O(nN) O(n? +mn)

Table 1: Computational and memory complexity of the three algorithms. SRC accelerates the forward
pass and decreases memory complexity compared to conventional RC. The complexity of RK depends
on the number of training and testing points and would be advantageous when n < N.

Recurrent Kernels need to recurrently compute Eq. (8] [9) for all pairs of input points. For chaotic
time series prediction, this corresponds to a n x n kernel matrix for training, and another kernel
matrix of size n x m for testing. To keep computation manageable, we use a well-known property
in Reservoir Computing, called the Echo-State Property: the reservoir state should not depend on
the initialization of the network, i.e. the reservoir needs to have a finite memory 7. This property is
important in Reservoir Computing and has been studied extensively [3l43545]]. Transposed in the
Recurrent Kernel setting, it means we can fix the number of iterations of Eq. (8 [9) to 7, by using a
sliding window to construct shorter time series if necessary. A preliminary numerical study of the
stability of Recurrent Kernels is presented in the Supplementary.

Training requires, after a forward pass on the training dataset, to solve an n X N linear system for
RC/SRC and a n x n linear system for RK. It is important to note SRC and RK do not accelerate this
linear training step. We will use Ridge Regression with regularization parameter « to learn W,,.

Prediction in Reservoir Computing and Structured Reservoir Computing only requires the computa-
tion of reservoir states and multiplication by the learned output weights. Recurrent Kernels need to
compute a new kernel matrix for every pair (i, j,) with ¢, in the training set and j, in the testing set.
Note that the prediction step includes a forward pass on the test set, followed by a linear model.

4 Chaotic time series prediction

Chaotic time series prediction is a task arising in many different fields such as fluid dynamics,
financial or weather forecasts. By definition, it is difficult to predict their future evolution since
initially small differences get amplified exponentially. Recurrent Neural Networks and in particular
Reservoir Computing represent very powerful tools to solve this task [46 47].

The Kuramoto-Sivashinsky (KS) chaotic system is defined by a fourth-order partial derivative equation
in space and time [48] 49]. We use a discretized version from a publicly available code [47] with
input dimension d = 100. Time is normalized by the Lyapunov exponent A = 0.043 which defines
the characteristic time of exponential divergence of a chaotic system, i.e. |6z(*)| = e*|5z(9)|.

Algorithm 1: Recurrent Kernel algorithm
Result: Predictions () € Re*™
Input: A train set {i\" }"_, € R™*? with outputs 0 € R*", a test set {jét)}gll € R4,
Training: Initialize an n x n kernel matrix GO =
fort=0,...,7—1do
Compute ngl) = ktH(iff), igt), . ,igo), igo)) using Eq. or @) and fos),
end
Compute the output weights W, € R that minimize ||o — W,G™ |2 + a||[W,||3;

Prediction: Initialize an n x m kernel matrix K (© = 0;
fort=1,...,7do
Compute Kﬁgﬂ) = kt+1(i£~t)7j¢§t), . ,isoo),jéo)) using Eq. (8) or @) and K.
end
Compute the predicted outputs 6) = W, K(7);
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Figure 2: (a) Comparison of different algorithms for the prediction of the Kuramoto-Sivashinsky
dataset. True output (top), predictions of RC/SRC/RK (left) and differences with the true output
(right), with reservoirs in RC/SRC of size N = 3,996. We observe that each technique is able to
predict up to a few characteristic times. (b) Mean-Squared Error as a function of the prediction time
for RC (full lines), SRC (dashed lines), and RK (black). For all the reservoir sizes considered, the
performances of RC and SRC are very close and they converge for large dimensions to the RK limit.

KS data points i(?), . .., i(*=1) are fed to the algorithm. The output in Eq. (2) for Reservoir Computing
consists here in predicting the next state of the system: 6() = (), This prediction is then used for
updating the reservoir state in Eq. , the algorithm outputs the next prediction 6(**1), and we repeat
this operation. Thus, Reservoir Computing defines a trained autonomous dynamical system that one
wants to be synchronized with the chaotic time series [46].

The hyperparameters are found with a grid search, and the same set is used for RC, SRC, and RK
to demonstrate their equivalence. To improve the performance of the final algorithm, we also add
a random bias and use a concatenation of the reservoir state and the current input for prediction,
replacing Eq. (2) by 6¢ = W, [z(®), (1)),

Prediction performance is presented in Fig.[2] RC and SRC are trained on n = 70,000 training
points and RK on a sub-sampling of 7,000 of these training points, due to memory constraints. The
testing dataset length was set at 2,000. The sizes [V in Reservoir Computing and Structured Reservoir
Computing are chosen so the dimension p = N +d in Eq. (I0) is a power of two for the multiplication
by Hadamard matrix. Linear regression is solved using Cholesky decomposition.

The predictions in Fig. 2] show that all three algorithms are able to predict up to a few characteristic
times. Since the prediction performance varies quite significantly between different realizations, we
also display the Mean-Squared Error (MSE) of each algorithm, as a function of the prediction time
and averaged over 10 realizations. We normalize each curve by the MSE between two independent
KS systems.

We observe a decrease in the MSE when the size of the reservoir increases, meaning a larger reservoir
yields better predictions. Performances are equivalent between RC and SRC, and they converge
towards the RK performance for large reservoir sizes. Hence, this means RC, SRC, and RK can
seamlessly replace one another in practical applications.

Timing benchmark. Several steps in the Reservoir Computing pipeline need to be assessed sepa-
rately, as described in[3.3] We present the timings on a training set of length n = 10, 000 and testing
length of m = 2,000 in Table[2]for all three algorithms.

The forward pass, i.e. computing the recurrent iterations of each algorithm, is considered separately
from the linear regression for training, to emphasize the cost of this important step. In RC, the
most expensive operation is the dense matrix multiplication; the GPU memory was not large enough
to store the square weight matrix for the two largest reservoir sizes. With Structured Reservoir
Computing, this forward pass becomes very efficient even at large sizes, and memory is not an
issue anymore. We observe that the forward pass complexity becomes approximately constant until
dimension ~ 10°. On the other hand, Recurrent Kernels iterations are very fast, as we only need to
compute element-wise operations in a kernel matrix.



Prediction requires a forward pass and then is performed with autonomous dynamics as presented on
Fig. 2] where Eq. () is repeated 600 times. For Recurrent Kernels, prediction remains slow, and this
drawback is exacerbated by the autonomous dynamics strategy in time series prediction, that requires
successive prediction steps.

This shows that SRC is a very efficient way to scale-up Reservoir Computing to large sizes and reach
the asymptotic limit of performance. On the other hand, the deterministic Recurrent Kernels are
surprisingly fast to iterate, at the cost of a relatively slow prediction when the number of training
samples n is large.

N=1948 | N =3996 N=28092 | N=16284 | N =32,668
RC | 2.6/0.02/1.9 | 3.1/0.05/4.6 | 10.4/0.16/15.4 | Mem. Err. Mem. Err.
SRC | 3.3/0.02/1.6 | 3.4/0.05/2.7 | 3.5/0.16/3.7 | 3.6/0.57/6.8 | 3.6/2.57/13.0
RK 0.7/0.09/23.0

Table 2: Timing (Forward/Train/Predict, in seconds) for a KS prediction task as a function of V.
We observe that Recurrent Kernels are surprisingly fast, except for prediction. Structured Reservoir
Computing reduces drastically the speed of the forward pass at large sizes and is more memory-
efficient than Reservoir Computing. Experiments were run on an NVIDIA V100 16GB.

5 Conclusion

In this work, we strengthened the connection between Reservoir Computing and kernel methods
based on theoretical and numerical results, and showed how efficient implementations of Recurrent
Kernels can be competitive with standard RC for chaotic time series prediction. Future lines of work
include a deeper study of stability and the extension to different recurrent networks topologies. We
deeply think this connection between random RNNs and kernel methods will open up future research
on this important topic in machine learning.

We additionally introduced Structured Reservoir Computing, an acceleration technique of Reservoir
Computing using fast Hadamard transforms. With only a simple change of the reservoir weights, we
are able to speed up and reduce the memory cost of Reservoir Computing and therefore reach very
large network sizes. We believe Structured Reservoir Computing offers a promising alternative to
conventional Reservoir Computing, replacing it whenever large reservoir sizes are required.

Broader Impact

Our work consists in a theoretical and numerical study of acceleration techniques for random RNNs.
Theoretical studies are important to understand machine learning to avoid relying on black boxes,
towards a more responsible use of these algorithms as more and more applications appear in our daily
life.

On the other hand, efficient machine learning is necessary due to the ever-increasing power consump-
tion required for computation. The Recurrent Kernels and Structured Reservoir Computing methods
we developed pave the way towards much more efficient Reservoir Computing algorithms.
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