
We warmly thank the reviewers for their time and for sharing valuable feedback, we will use it to improve our paper.1

Overall, we are encouraged by the reviewers’ reactions. Next we summarize our contributions at a high level, and then2

we address each reviewer’s comments separately. We hope that our responses clear out any remaining concerns.3

This paper should be regarded as a theoretical contribution that takes a critical stand on the “usual assumptions” on4

which PAC-Bayes inequalities are based (i.e. (a) bounded loss, (b) data-free prior, and (c) i.i.d. data observations),5

clarifying their role and illustrating how to obtain PAC-Bayes inequalities in cases where these assumptions are6

removed. Importantly, our work enables new PAC-Bayes inequalities with data-dependent priors. Furthermore, our7

paper contributes a unified approach to understanding PAC-Bayes inequalities, and their distinctions. Our paper also8

makes a case for the usefulness of formalizing data-dependent distributions as stochastic kernels, which may bring a9

new perspective to the PAC-Bayes literature, in spite of the fact that stochastic kernels are well-known in other literature,10

namely, on stochastic processes and their applications. We did also aim to write an informative and easy-to-read paper11

that may help the larger machine learning community to connect with the PAC-Bayes literature.12

Response to Reviewer 113

We are grateful for your comments on the notation, we gladly will address this in the revised paper. Also we appreciate14

your feedback about the need to elaborate more on the novelty and relevance of our paper. We will add discussions15

about the new kinds of results one can obtain now that were not possible before, including rates where relevant. We will16

add a remark that there is indeed a direct relationship between moments of the loss and concentration of eigenvalues of17

the covariance matrix in the least-squares example. Consider a simple noise-free linear regression Y = X>w?, a “ridge”18

prior p0(w) ∝ e−λ‖w‖
2

, and let Σ̂0 = 1
n

∑
i XiX

>
i − E[X1X

>
1 ]. Then, for the log-exponential moment of the loss19

we have the identity logE
∫
eL(w)−L̂S(w)p0(dw) = d

2 log(2π) + logE|det(Σ̂0 + λI)|− 1
2 which shows equivalence of20

concentration of eigenvalues of Σ̂0 and concentration of the loss since λi(Σ̂0)→ 0 as n→∞ for i.i.d. instances.21

Response to Reviewer 222

We will do a better job at discussing the usual formulation (for all posterior distributions) versus the formulation in23

terms of a stochastic kernel. Their equivalence can be illustrated by discussing specific stochastic kernels. Note that24

each theorem holds for an arbitrary kernel, so in that sense it holds “for all posteriors” as per the usual formulation25

in the literature. On the other hand, as we mentioned in our paper, we think that it is important to make explicit the26

data-dependence of the distributions, which is what the stochastic kernel formulation does. We will add a comment that27

the mathematical proof of our theorem is valid for (convex) F : Rk → R with an arbitrary k, while k = 2 is relevant28

for the known PAC-Bayes bounds. However, applications with k > 2 might emerge in the future, which is why we29

think it is interesting to point out our theorem’s validity for arbitrary k, as this could enable new results. We are aware30

that the refined form of Pinsker inequality (kl(p‖q) ≥ (p − q)2/(2q), for p < q) is stronger than the other one only31

when q < 0.25, we apologize for the imprecision, this will be clarified in the revised paper. Thanks for pointing out the32

missing reference Blanchard & Fleuret (2007), we will make sure to include it in the revised paper.33

Response to Reviewer 334

Many thanks for your positive reaction to our work! Responding to the four raised points regarding the related literature:35

(1) & (3) We will discuss in the introduction the work of Catoni (2007) in connection with data-dependent priors36

(regular conditional probability distributions), and accordingly instead of claiming “firsts” we will highlight instead37

that our work makes a case for the usefulness of representing data-dependent distributions as stochastic kernels, with38

attribution to Catoni (2007) and Alquier (2008) as predecessors. (2) We will comment on our main theorem being valid39

under general data-generation assumptions (i.e. not restricted to (c) i.i.d. data). (We are aware of this, sadly we missed40

commenting on it, but happy to fix it.) We’ll expand the coverage of literature on PAC-Bayes bounds for non-i.i.d. data,41

including Alquier & Wittenberger (2012). The pointer to Rio’s inequality is most helpful, we really appreciate this!42

(4) We meant that in some cases we can have concentration of the smallest eigenvalue of a sample covariance matrix43

even for unbounded instances, our reference is Section 5.4.2 of Vershynin (2011), discussing eigenvalue concentration44

of a sample covariance matrix with heavy-tailed observations. We will add discussion about Holland (2019) too.45

Response to Reviewer 446

We’d like to clarify that our Theorem 2 is not restricted to convex losses, only the function F is restricted to be convex47

(e.g. F (x, y) = c(x− y)2 was used with x = L̂S(h) and y = L(h)), but the theorem is valid e.g. for the 01 loss or for48

the ramp loss, which are non-convex. We are glad for the question, we will emphasize this in the revised paper. Also,49

the notation “KL” (upper-case) is the for KL divergence in the generic case (between any pair of distributions), while50

“kl” (lower-case) is reserved for Bernoulli distributions. We think this notation is helpful as a visual aid, which has been51

used by other authors as well, but of course we can insert reminders throughout the paper to help the reader.52


