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Abstract

While humans can solve a visual puzzle that requires logical reasoning by observing
only few samples, it would require training over a large number of samples for
state-of-the-art deep reasoning models to obtain similar performance on the same
task. In this work, we propose to solve such a few-shot (or low-shot) abstract visual
reasoning problem by resorting to analogical reasoning, which is a unique human
ability to identify structural or relational similarity between two sets. Specifically,
we construct analogical and non-analogical training pairs of two different problem
instances, e.g., the latter is created by perturbing or shuffling the original (former)
problem. Then, we extract the structural relations among elements in both domains
in a pair by enforcing analogical ones to be as similar as possible, while minimizing
similarities between non-analogical ones. This analogical contrastive learning
allows to effectively learn the relational representations of given abstract reasoning
tasks. We validate our method on RAVEN dataset, on which it outperforms
state-of-the-art method, with larger gains when the training data is scarce. We
further meta-learn our analogical contrastive learning model over the same tasks
with diverse attributes, and show that it generalizes to the same visual reasoning
problem with unseen attributes.

1 Introduction

The visual reasoning task proposed in recent works [ 1, 2] often involves visual puzzles such as Raven
Progressive Matrices (RPM), whose goal is to find an implicit rule among the given image panels,
and predict the correct image panel that will complete the puzzle (see Figure 1b). Since one should
identify a common relational similarity among the visual instances with diverse attributes (shape,
size, and color), solving such a visual reasoning problem requires reasoning skills which might help
take a step further toward general artificial intelligence.

Recently, researchers in the machine learning community have proposed specific models for visual
reasoning using deep learning [1, 3, 4, 5]. Deep neural networks are powerful and effective predictors
for a wide spectrum of tasks such as classification and language modelling, and has yielded impressive
performance on them. However, while humans can solve these logical and abstract reasoning problems
by observing only few samples, the state-of-the-art deep reasoning models still require large number
of training samples to achieve similar performance on the same task (see Figure 1c).

We hypothesize that such sample-efficiency comes from the flexibility of human intelligence, which
can generalize well across different problems by identifying the same pattern in the two problem-pairs
with analogical reasoning. For instance, given any two pairs of relationships, “A is to B” and “C' is
to D”, one can form an analogy from the morphological parallelism between the two, e.g., as “A is to
BasCisto D”or“A: B :: C: D” (Figure 1a). With such an analogical relationship established
between the pairs, one will be able to predict any single entity given the rest of the entities. For visual
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Figure 1: Concept. Analogy defines the relational or structural similarity between two sets. Analogy can be
defined between (a) a pair of words or (b) between sets of visual elements. Analogies allow for sample-efficient
learning, which is not possible with (c) the state-of-the-art deep abstract visual reasoning network [3] which
suffers from dramatic performance degeneration with fewer number of training examples.

reasoning problems, we could also identify a visuospatial analogy [6] between two sets of visual
entities. In general, any pair of sets from which we could identify certain relational or structural
similarity between the two sets can suffice as an analogy. Analogical reasoning has been extensively
investigated to understand human reasoning process in the field of cognitive science [7] and artificial
ingelligence [8, 9].

However, the existing deep visual reasoning models do not have ability to perform such analogical
reasoning. To overcome this limitation, we propose a deep representation learning method that
exploits such analogical relationship between two sets of instances, with the special focus on the
abstract visual reasoning problem. This will allow the model to learn representations that capture
relational similarities between the entities, in a sample-efficient manner. Specifically, we train an
end-to-end abstract visual reasoning network to learn the abstract concepts by learning an analogy
between two problems with the same implicit rules among the set elements, but with different
individual elements (Figure 1b). The set that is paired with the original problem in an analogy can
be either constructed by perturbing the original problem, or by generating a problem with different
attributes. Since we know that the abstract relationships between the elements in two sets are the same,
their relational representations should be as similar as possible. On the other hand, the similarity
should be minimized between a pair of problems with different relations among the set elements,
even when the two are identical at the element level.

To this end, we propose a contrastive learning [10, | 1] framework to maximize the similarity between
analogical pairs of problems while minimizing the similarity across non-analogical pairs. which we
refer to as Analogical Contrastive Learning (ACL). We further propose a meta-learning algorithm to
train the model over analogical pairs with different attributes, such that it can generalize to unseen
attributes (Meta-ACL). We validate our methods on conventional many-shot visual reasoning tasks, as
well as few-shot visual reasoning tasks with both seen and unseen attributes, on which it significantly
outperforms existing methods. The summary of our contribution is as follows:

* We tackle a challenging problem of few-shot visual reasoning, whose goal is to learn to
perform abstract visual reasoning with only a few-instances of the given problem, while
generalizing to problems with unseen attributes.

* We propose a simple yet novel meta-analogical contrastive learning framework that allows
the model to capture the relational similarity between a pair of problems.

* We validate our model on a visual reasoning benchmark, RAVEN, and show that it signif-
icantly outperforms existing methods under both the conventional and few-shot learning
setting, as well as on generalization to problems with unseen attributes.

2 Related Work

Analogy and analogical reasoning. Analogies, which are defined on a pair of sets with the same
structures or relation among the elements, are widely used as important heuristics to make new
discoveries [12], as they help obtain new insights and formulate solutions via analogical reasoning.
Analogical reasoning, which is a way to reason about a new problem by drawing an analogy between
it and an existing problem, has been considered as a unique trait of human intelligence and a key
component in building an Al system with general intelligence. In general, if there are common



characteristics between two objects, an analogical argument can be used as follows [12]: “1) S is
similar to T in certain (known) respects. 2) S has some further feature Z. 3) Therefore, T also has
the feature Z, or some feature Z* similar to Z. 1) and 2) are premises. 3) is the conclusion of the
argument.” An analogy is a one-to-one mapping between S and T regarding objects, properties,
relations and functions [12]. Not all of the items in S are required to correspond to that of T. Hence,
in practice, the analogy only identifies selective shared items.

Visual analogy learning. Few existing works tackle the problem of analogical learning in the
computer vision domain. Hwang et al. [13] proposed to encode analogical relationships between
object classes as parallelogram constraints in the learned embedding space. Specifically, they enforced
the difference of the embeddings of two pairs of classes to be the same. Reed et al. [14] further
exploited the analogy to generate analogical images, by adding the difference in the feature vector
for one pair of images to the feature of another image. Our method shares the high-level motivation
of enforcing relational similarities in the learned representation space with these works, while our
work is different from theirs in that we propose a constrastive learning framework for learning the
analogical relation between a pair of abstract reasoning problems.

Visual abstract reasoning. Abstract reasoning aims to understand symbolic representation and
relational structure which are found by disentangling behaviors and combinational attributes such
as shape, color, and line) from the given image. Disentangled representation for abstract reasoning
has also been investigated in [4], where the authors investigated if a disentangled representation
captures the salient factors of variations in the sample space. Zheng et al. [15] proposes a robust
abstract reasoning method, by combining two learning schemes as a teacher and a student model;
reinforcement learning is used to optimize strategy to find abstract features learned by the student
model where their results are calculated for a reward of the teacher model. In the student model, called
logic embedding network, exhaustive embedding learning is conducted using multiple combination of
embedding vectors. Representative example of abstract reasoning is also found in alogrithms [ 1, 5, 16]
for the RPM problem. Perhaps the most relevant work to ours is Hill ez al. [5], which proposes to
perform analogical reasoning task on a visual reasoning task, but they focus on transferring a learned
relation from one problem domain to another, while we focus on learning relational representations
by explicitly enforcing relational similarities between pairs with known analogical relations.

3 Visual reasoning with Raven Progressive Matrices

The Raven Progressive Matrices (RPM) [0, 17] is an abstract visual reasoning task, whose goal is

to predict the missing visual panel given multiple context panels. Formally, given an ordered set of

context visual panels X' = {x;}$_; (where x; € R"** denotes an image panel) arranged spatially in
X1 X2 X3

a 3x3 matrix <X4 X5 X6) with a missing cell at the bottom-right corner (marked by ‘?°), the
X7 X8 ?

goal of this classification task is to predict the index of the correct panel (that should be placed at

the missing cell) from the candidate panels (see [!, 2, 3] for more details). The candidate panels

(c, € R ™) constitutes a choice set C = {Cy}izl- For example, one can generate a simple RPM

task using a mathematical operation or function f : R**% — R"X® a5 follows:

X1 x2 = f(x1) x3= f(x2)
<X4 X5 = f(X4) X6 = f(X5)> )
x7 Xg = f(x7) ?

i.e., the function is applied iteratively in a column-wise manner. In the above example, the missing
panel should be f(xg). Similarly, one can also generate an RPM task by applying the function in a
row-wise manner, e.g., x4 = f(x1). That is, in order to solve the visual reasoning task, we should
infer the hidden rule f (in addition to whether it is applied in column-wise or row-wise manners in
this particular example). However, RPM problems in general can be generated with a variety of rules
and attributes [1, 3] which cannot be clearly defined in such a mathematical form. The rules and
attributes applied in the problem indicate a type of the problem, namely a task.

Recent deep reasoning models for RPM focus on measuring relationships between the context and
answer panels by extracting exhaustive embedding vectors and then calculating the output score
for the embeddings of each context-answer pair. Then, they select the final answer based on the
answer panel with the highest relation score. Specifically, Relation Network [16] and Wild Relation
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Figure 2: Different types of analogies in the RPM problem. (a) Intra-problem analogy. We can create
an analogy of the form X" :: X’ by perturbing the original problem with augmentations that do not affect its
problem semantics (e.g., by perturbing a random panel). (b) Inter-problem analogy. We can also construct an
analogy by generating two problems with the same problem semantics but with different attributes (e.g., shapes
and colors). (c) Non-analogy. We also construct non-analogies as negative pairs for contrastive learning, by
randomly shuffling the elements of the original problem instance to break its relational structure.

Network (WReN) [1] calculate all possible relations using a number of combinations of context
panels to extract relational representations. CoPINet [3] on the other hand learns to identify the
correct answer by maximizing the similarity between the aggregated context panel embedding and
the correct answer embedding, while minimizing the similarity between that aggregated context
embedding and incorrect answer embeddings.

As mentioned in the introduction, most existing works targeting RPM problems leverage a large
number of training samples (e.g., more than 42,000 problem sets for RAVEN (Relational and
Analogical Visual rEasonNing) dataset [2] and 1 million sets for PGM (Procedurally Generated
Matrices) [5]), and fail to generalize well when trained with few training instances. Moreover, they
only consider generalization to the problems with the same attributes (e.g. shapes and colors), and
may not generalize well to problems with unseen attributes. In the next section, we introduce a visual
reasoning framework which can generalize well even under such challenging scenarios.

4 Abstract Visual Reasoning with Meta-analogical Contrastive Learning

A reason why existing models for RPM have poor generalization performance, is because they exploit
very little information from each given task itself, by only learning the mapping from each input to
its assigned label. To address this limitation, we extract relational similarities by contrasting a pair
of problems that constitutes an analogy. Such analogy learning may enable the model to learn with
fewer training instances, and generalize better to problems with completely unseen attributes. To
this end, we introduce analogies we can exploit from the RPM problems, and propose the analogy
learning methods to enforce them in the representation learning, in the following subsections.

4.1 Types of analogies in the RPM problem

As explained in Section 3, the panels in each context set X € R¥*"*% of an RPM task have an
unknown relationships among them (e.g., between rows and columns of the set). That is, there exists
an implicit relation between some two panels (or two subsets of panels) a and b, ‘a : b’, where
a,b € X. Our goal is to capture such an implicit relations among the panels by drawing an analogy
between two problem instances that have the same relational structure. We exploit two types of
analogies: 1) Intra-problem analogies, X :: X”, that can be found between a context set X’ and its
perturbation &', and 2) Inter-problem analogies, Xs :: A7, that exist between the context sets Xs and
X7 of two different problem instances with the same implicit relations.

Intra-problem analogies. First, for each problem instance, we draw an analogy X" :: X " between
a context set X € R¥*"Xw and its perturbation X € R3*"*®_The paired context set X" can be
constructed by perturbing a random panel of the context set (for example, by replacing it with a noise
image as in Figure 2a). Following the convention of existing meta-learning literature, we refer to X
as the support S and its paired context set X " as the query Q. We assume that Q is approximately
analogical to S since its relation among the set elements remains unchanged even when removing a
single element. By defining a query Q; by replacing the i-th panel with a noise panel, we can prepare
multiple analogical relations between the support and queries as follows:

{§:91,8:095,....8 : Qs} = {S= Qq;}?:l. (1)
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Figure 3: Different types of analogical learning objectives. 1) The inference analogy enforces the analogical
problem instances to have similar output probability vectors, 2) the latent analogy enforce them to have similar
latent representations, and 3) the generative analogy enforces the reconstructed panels to be similar.

Although this inter-problem analogy may look largely different from conventional notion of analogies,
the two still constitutes an analogy as their relational structure is near-identical.

Inter-problem analogies. We can simply create an analogical pair of problem instances by gener-
ating two problems with the same semantics but with different attributes, as we know that the implicit
relations between the elements in the two context sets will be the same even with the changes in the
attributes (see Figure 2b). We refer to these instances from two different domains as source S and
the target T respectively, where the S € R®*"*% and T € R8*"*% We can use the inter-problem
analogies in our meta-analogical constrastive learning framework which we discuss later, where we
learn by paring two semantically identical problems with randomly sampled attributes.

4.2 Analogical self-supervised contrastive learning

We now exploit the previously described analogies for relational representation learning. The basic
idea is as follows: we maximize the similarity between a pair of analogical sets, while minimizing
the similarity between a pair of non-analogical sets. To achieve this goal, we propose a simple
self-supervised contrastive learning loss for each context set X:

Lanatogy (X, Xay Xnj @) :=log Ky(X, &y) +log (1 — Ky(X, X)) (2)

where X, € A(X) is an analogical set to the given X, X,, € N(X) is a non-analogical set, and
K4(+,-) is a similarity kernel parameterized by ¢, with the value between 0 and 1. We define the
Ky(X, X') between the context set X' and X’ as K4 (X, X') = exp(—\- D(X, X’; ¢)), where D is
a measure that defines the semantic distance between two relational embeddings parameterized by ¢,
which we describe in detail in Section 4.2.1 and Section 4.2.2. We generate the set of non-analogical
pairs N'(X) by randomly perturbing the order of the elements (panels) in the original problem
(see Figure 2c). Such a randomly perturbed context set could be considered as a hard-negative
example, since although it contains exactly the same set of elements, it will not have the same
relational structure with the original problem. Minimizing Eq. 2 will maximize the similarity between
analogical pairs of sets, and minimize the similarity between the non-analogical pairs. Note that this
is an unsupervised loss that does not require access to the ground-truth candidate set C.

4.2.1 Intra-problem analogies

By modifying Eq. 2, we define the intra-analogy loss as follows:

Lintra(S; ) : ZlogK¢ (S, Q) +Zlog 1— Ky(S,9))) 3)

=1 =1

where S is the support (original instance), Q; is its intra-problem analogy generated by replacing a
random panel with a noise panel, and Q’, contains the same panels as S but with randomized ordering.
We propose three different approaches to measure the distance between two context sets, which we
describe in the following paragraphs.

1) Inference analogy. We first note that a hidden task 7 which generated the problem [3], should
be the same across a pair of analogical context sets. Given a problem & and its paired problem
Q, we first encode each problem into the corresponding embeddings s and q, using any existing
neural networks (such as CNN, LSTM, CoPINet [3]). Then, by utilizing the task probability vector



p(T|s) € [0,1]* (¢ denotes the number of predefined number of rules) given a context embedding s,
we define the distance between the support S and the query Q as the binary cross-entropy as follows:

Dint(S, Q5 ¢) := —E,, (115 [log ps(T|a)], 4)

where inference probabilities py (7 |s) and p, (7 |q) are modeled via the network parameterized by ¢
following by the sigmoid function. Between two analogical pairs, D;,¢ should be close to zero.

2) Latent analogy. We further propose to learn the latent representation space of the relational
structure on a certain (normal) distribution. We can measure distributional discrepancy between the
latent variables of the two context sets as follows:

Ps(2ls)
Diaten S,Q;¢ =KL z[s)||pe(zla)] = —Ep, (2/s |:10g ; %)
lat t( ) Lp¢( ‘ )H ¢( | )] Py (2]s) p¢(z|q)
where K L][-||-] denote the Kullback-Leibler divergence which is used to measure a probability

distribution of query to that of support. We assume that random variable z is drawn from the multi-
dimensional Gaussian distribution parameterized with the mean p(-) and the variance o (-) which are
modeled by neural networks, respectively (see Appendix B for further details).

3) Generative analogy. Given a pair of context panels S and Q, we assume that one of the panels
in S is replaced with a noise panel. If the pair constitutes an analogy, we should be able to reason
about the content of the missing panel by inferring it from the matching panel from its analogical pair.
This can be done by minimizing the distance between the original and the analogically reconstructed
panel, which is defined as the negative likelihood as follows:

Dgen(S, Q; 0) := —E,(s1s)[log p(S|q)] (6)

where p,(S|-) denote a conditional probability to estimate the original context panels which is mod-
elled by a decoder network parametrized with ¢ following by the sigmoid function. The parameters of
the decoder is learned with the additional loss, —[E,, (s)[log pg(S|s)] — E,,, (s)[log pe(S|q)] where
p¢(S) is an empirical probability of the support image panels following by the sigmoid function.

4.2.2 Inter-problem analogy

We further consider the analogy across two different problem instances. If we know that the two
problems have the same relations among the context panels, it will remain as the same problem even
though their attributes (e.g., shapes) have been changed. We enforce an analogy between the two
problem instances with different attributes (see Figure 2b). Similar to Eq. 4, we apply analogical
contrastive learning between the instances from the source problem and target problem as follows:

log Ky(Xs, X7) if A5 is analogical to Xt
log(1 — Ky(Xs, X7)) if Xs is non-analogical to Xt
(N

where X5 and X7 are instances from the source and target domain S and T, respectively, and X, is
the negative sample generated by shuffling the elements of the source context set X5 (or A7). The
semantic distance between the two problems Xs and A are further defined as follows:

Dinter(Xs, X1;0) := —Ep(r, (es)) [log p(rg(e1))] x |d(es, eT)] )

where es € {s,q}s and et € {s, q}1 denote the embeddings of Xs and X7 and r denotes the
relational embedding function parameterized with ¢. Instead of as hard binary categorization ({0, 1})
indicating positive or negative pairs in general contrastive metric learning [ | 0], we use a soft similarity
(analogy) metric between problems: d = —(|[p(7|es) — p(7T|et)|| — n) where n is a constant to
determine a positive/negative value. This metric is used to determine whether to minimize or
maximize their distances, i.e., if d > 0 (or d < 0), X5 is analogical (or non-analogical) to A.

Linger (Xs, X135 ¢) :=log (1 — K¢(X57Xn))+{

4.3 Analogical contrastive learning for abstract visual reasoning

We now incorporate the previously defined analogy losses into the learning objective for visual
reasoning tasks. To predict the correct answer panel (y € R) given a context set, we again use the
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Figure 4: Overview of our meta-analogical contrastive learning framework. We maximize similarity
between an instance and its intra-problem and inter-problem analogical pairs, while minimizing similarities
between non-analogical pairs, over problems sampled with different attributes. This allows the model to learn
relational representations that is agnostic to its surface appearance.

Noise Contrastive Estimation (NCE) learning objective to infer the final answer from a noise sample,
following [3]. This framework has been used in many previous works related to detect contextual

answers such as neural language modelling [18, 19], image captioning [ 1], and visual reasoning [3].
The NCE loss for all the panels, £, is given as follows:
8
Luce(X,C;0) := lnee(S, C; ) +Zem Q;,C; 9), )
where
gnce(‘)(vc;(b) = log( (X cy ’(rb Z IOg X Cy’¢) ) (10)
yFY*

and b is a scalar bias term [3]. In above, o(+; ¢) is a neural network parameterized by ¢ with a
sigmoid output and y* is the index of the correct answer. Intuitively, the NCE loss will maximize
the probability of predicting the correct answer panel, while minimizing the probability of having an
incorrect answer panel, by pushing the former to 1 and the latter to 0. The final combined loss for
analogy reasoning for each problem instance X’ can be written as follows:

»Cinstance(‘){v C; ¢) = »Cintra(‘)(; ¢) + »Cnce (Xa 67 ¢) (1 l)

For simplicity, we omit the balancing parameters for controlling the contribution of individual losses.

4.4 Meta-analogical contrastive learning

We now briefly describe our meta-analogical contrastive learning objective that includes the inter-
problem 10ss Lipter (Xs, X7; @) defined over samples with diverse pair of tasks that are defined by
their attributes, such that it can generalize to unseen attributes. This is done by optimizing the final
loss Lsina1 over sampled tasks as follows:

m(;n ES,TNp(T) [EXSNS,XTNT [‘Cinter(x& XT; (b) + ‘Cinstance (XS, CS; (b) + Einstance(XTy CT; ¢)]]
(12)
where S and T are two tasks with different attributes sampled from the task distribution p(7), Xs and
X7 are sampled problems from each task, Cs and Ct are candidate sets, L;pter 1S the inter-analogy

loss in Eq. 7, and ¢ is the model parameter. We illustrate an overview of our analogical contrastive
learning framework in Figure 4.

S Experiments

5.1 Experimental setup

We validate our method on a publicly available RPM dataset, RAVEN [2]. We resize the input images
to 80 %80 pixels, and train all models on NVIDIA Tesla V100 GPUs using the ADAM optimizer. We



Table 1: Accuracy (%) of the baselines and our analogical contrastive learning framework on the full RAVEN
dataset. For baseline models, we report the accuracy of each model reported in [3]. L-R denotes the Left-Right
configuration, U-D Up-Down, O-IC Out-InCenter, and O-IG Out-InGrid. We denote the best results for each
task with bold fonts. AL and ACL denote our analogical self-supervised learning, and analogical constrastive
learning, respectively. Batchsize=32.

Method Avg. Acc  Center 2x2Grid 3x3Grid L-R U-bD O-IC O-IG
LSTM 13.07 13.19 14.13 13.69 1284 1235 12.15 1299
CNN 36.97 33.58 30.30 33.53 39.43 4126 4320 37.54
WReN (Tag, Aux) 33.97 58.38 38.89 37.70 21.58 19.74 38.84 22.57
ResNet 53.43 52.82 41.86 44.29 58.77 60.16 63.19 53.12
ResNet+DRT 59.56 58.08 46.53 50.40 65.82 67.11 69.09 60.11
CoPINet 91.42 95.05 77.45 78.85 99.10  99.65 98.50 91.35

+ AL (Ours) 93.49 98.63 80.50 83.15 99.71 99.76 9941 93.25

+ ACL (Ours) 93.71 98.41 81.03 84.01 99.66 99.76 99.38  93.89
Human 84.41 95.45 81.82 79.55 86.36  81.81 8636 81.81

set the number of epoch using the validation set provided in the dataset. As for the baselines, we
use publicly available implementations to reproduce the results reported in [, 3]. We provide more
details of the experimental settings in the Section A of the Appendix. The RAVEN dataset consists of
70,000 problems, equally distributed across seven different tasks (e.g. ‘Center’, ‘2x2 Grid’, ‘3x3
Grid’, etc) [2, 3]. The dataset is split into ten subsets, where six of them are used as the training
set, two are used for validation, and the remaining two are used for test. We compare our model
against both simple baselines, namely (LSTM [20], CNN [21], vanilla ResNet [22]), and two strong
baselines (WReN [1] and ResNet+DRT [2]) whose performances are reported in Zhang et al. [3].

5.2 Experimental Results

Effect of analogical contrastive learning. We first evaluate the generalization performance of
the proposed method using the full training data, by comparing the test accuracy (%) of different
models on the RAVEN dataset. We only use inference analogy as the intra-problem analogy for
this experiment since latent and generative analogies require additional encoder and the decoder
which are slow to train on large datasets. As shown in Table 1, our proposed analogical learning
frameworks, AL (ACL without negative pairs) and ACL, yield significant performance improvement
over existing methods. Moreover, ACL, which uses the contrastive loss with non-analogical pairs as
the negative pairs, outperforms AL with only the positive analogical pairs, which demonstrates the
effectiveness of the hard negative examples, that contain the same elements as the original problem
with randomized ordering of elements. Although CoPINet surpasses human performance on this task,
leaving little room for any improvement, our method obtains significant performance gains over it.
Both WReN and ResNet+DRT, which mainly target PGM, heavily rely on additional supervisions
such as rule specifications and structural annotations. However since the RAVEN dataset provides
relatively little information (e.g. all [‘Type’, ‘Size’, ‘Color’] parts are encoded as [1,1,1] among
9-digit rule-attributes tuple) compared to the PGM dataset, WReN obtains very low performance
on RAVEN when using the additional supervisions. Thus we report the results of WReN without
additional supervision. For a fair evaluation of the performance of all methods, we set all settings,
including the batch size (B = 32) to be the same across all baselines and our model.

Results on limited amount of training data. The experimental results in the previous paragraph
are obtained from the models trained on the full training set, which contains around 20,000 problem
instances. However, as mentioned in the introduction, an important advantage of analogical reasoning
is its ability to learn useful knowledge with a limited amount of samples. To validate this point, we
further evaluate our model with extremely small number of samples (14 to 651), which correspond
to 0.049 % or 1.6 % of all training images. We also evaluate our model only with analogical
learning without negative pairs, to clearly demonstrate the effects of different types of analogical
self-supervised learning. As shown in Table 2, all variants of our analogical self-supervised learning
achieves significantly higher performance over the state-of-the-art method, CoPINet on this few-
shot abstract reasoning task. We further observe that CoPINet+Analogies, which simply augments
the original data with generated analogies, often obtain similar performance to the base CoPINet,



Table 2: Accuracy (%) of the baselines and our models with different analogical self-supervised learning
approaches on the RAVEN dataset under few-shot settings. The full training set has n = 42, 000 samples, and
we divide the number of samples by 2° (651) through 2'° (14). CoPINet+Analogies denotes the base model,
CoPINet, trained with analogical examples generated using our method, but without the analogical contrastive
learning. The bold fonts indicate the best accuracy for each sample size (row-wise). Batchsize=2.

#samples  CoPINet +Analogies +Inference +Latent +Generative +All
14 (0.05%) 24.29 28.12 28.12 27.55 30.42 30.37
35 (0.08%) 32.45 34.62 36.65 41.79 36.24 33.55
77 (0.18%) 45.24 45.57 45.56 46.02 51.22 47.04

161 (0.38%) 50.00 50.55 53.35 51.41 53.37 56.97
322 (0.77%) 54.25 58.09 59.42 59.28 60.50 64.26
651 (1.56%) 60.02 69.11 67.23 68.13 65.64 71.76

Table 3: Accuracy of baselines and our methods (%) on few-shot RAVEN tasks with unseen attributes. The
bold fonts indicate the best test accuracies. Batchsize=2.

Method Tasks
Center 2x2Grid  3x3 Grid L-R U-D O-IC O-IG
CoPINet 57.50 21.25 46.25 82.50 90.00 55.00 43.75
+AL (Ours) 75.00 31.50 46.25 82.50 90.00 63.75 50.00
+ACL (Ours) 76.25 32.50 46.25 86.25 90.00 66.25 53.75
+Meta-AL (Ours) 70.00 50.00 58.75 86.25 92.50 72.50 55.00
+Meta-ACL (Ours) 77.50 46.25 70.00 88.75 95.00 67.50 63.75

which shows the importance of enforcing explicit analogies via our proposed analogical contrastive
learning. Also, Generative analogies outperformed other approaches when trained with extremely
few examples (14-77) which makes sense since it provides more information to better guide the
learning of the correct representation, via pixel-level supervision. However, with larger number of
examples (161-651), using all types of analogies worked the best. For this experiment, we used a
smaller minibatch size (B = 2), since we empirically observed that using a small batch size works
better than with all methods, including the baseline CoPINet.

Generalization to visual reasoning problems with unseen attributes. To further validate the
generalization performance of our model, we evaluate the performance of our model and CoPINet
on test instances with unobserved attributes, from the RAVEN dataset. We use training samples
that contain the same type of visual reasoning problems along a training set and validation/test sets
but different shapes. Specifically, problem instances from the training set contains shapes such
as (“triangle”, “square”, and “hexagon’), and problem instances in the validation/test set contains
(“pentagon” and “circle”). We report the performance of our AL and ACL with the best-performing
type of analogy (inference analogy, latent analogy, and generative analogy) for this experiment,
selected using the RAVEN validation set. The results in Table 3 show that our proposed meta-analogy
learning frameworks (Meta-AL and Meta-ACL) obtain significantly improved performance over both
the base CoPINet and our models without meta-learning.

6 Conclusion

In this paper, we proposed a framework to learn the representations for abstract relations among the
elements in a given context, by exploiting the analogical relations among them. Specifically, we
focused on the analogy between the set representing the original problem instance and its perturbation,
as well as to another problem instance from the same task class with different attributes, and then
enforced the representations of the analogical pair of instances to be as similar as possible to discover
implicit relational similarity between them, while minimizing similarities between non-analogical
pairs that contain the same elements but in different layouts. Moreover, to allow the model to solve
for unseen tasks, we further meta-learn our contrastive learning framework over pairs of samples with
different attributes. While we mostly focused on a visual reasoning task in this work, our proposed
analogical learning strategy may be applicable to other domains (e.g. natural language tasks) as long
as there exists relational similarity between a pair of problem instances at any abstraction level.



Statement of Broader Impact

We investigated a low-shot visual reasoning problem, which requires a higher-level relational reason-
ing skills that goes beyond perception of each individual elements. To this end, we introduce a new
visual analogical learning framework that allowed the model to learn relational structure among the set
elements from a pair of problems, which achieves significantly improved generalization performance
with a limited amount of training samples, and generalizes well to problems with unseen attributes.
Although we only considered a specific visual reasoning problem in this work, the proposed method
is sufficiently general and we believe that the same analogical learning scheme could be applied to
a wide variety of applications from non-vision domains, such as natural language understanding.
Analogical reasoning is also a unique property of human intelligence and thus our work may be in
the footsteps of the progress toward implementing artificial general intelligence (AGI).

Disclosure of Funding

We received no third party funding for this work.

References

[1] Adam Santoro, Feilx Hill, David GT Barrett, Ari S Morcos, and Timothy Lillicrap. Measuring
abstract reasoning in neural networks. In Proceedings of International Conference on Machine
Learning (ICML), 2018.

[2] Chi Zhang, Feng Gao, Baoxiong Jia, Yixin Zhu, and Song-Chun Zhu. Raven: A dataset for
relational and analogical visual reasoning. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

[3] Chi Zhang, Baoxiong Jia, Feng Gao, Yixin Zhu, HongJing Lu, and Song-Chun Zhu. Learning
perceptual inference by contrasting. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 1075-1087, 2019.

[4] Sjoerd van Steenkiste, Francesco Locatello, Jiirgen Schmidhuber, and Olivier Bachem. Are
disentangled representations helpful for abstract visual reasoning? In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information
Processing Systems 32, pages 14245-14258, 2019.

[5] Felix Hill, Adam Santoro, G. T. David Barrett, S. Ari Morcos, and P. Timothy Lillicrap. Learning
to make analogies by contrasting abstract relational structure. /CLR, 2019.

[6] Victoria M. Leavitt. Raven Progressive Matrices, pages 2114-2115. Springer New York, New
York, NY, 2011.

[7] Melanie Mitchell. Analogy-Making as Perception: A Computer Model. MIT Press, Cambridge,
MA, USA, 1993.

[8] John E. Hummel and Keith J. Holyoak. Distributed representations of structure: A theory of
analogical access and mapping. PSYCHOLOGICAL REVIEW, 104(3):427-466, 1997.

[9] Keith J. Holyoak, Robert G. Morrison, and Keith J. Holyoak. Analogy and relational reasoning,
11 2012.

[10] Nikunj Saunshi, Orestis Plevrakis, Sanjeev Arora, Mikhail Khodak, and Hrishikesh Khande-
parkar. A theoretical analysis of contrastive unsupervised representation learning. In Kamalika
Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Confer-
ence on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages
5628-5637, Long Beach, California, USA, 09—15 Jun 2019. PMLR.

[11] Bo Dai and Dahua Lin. Contrastive learning for image captioning. In Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pages 898-907, 2017.

10



[12] Paul Bartha. Analogy and analogical reasoning. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, spring 2019
edition, 2019.

[13] Sung Ju Hwang, Kristen Grauman, and Fei Sha. Analogy-preserving semantic embedding for
visual object categorization. In Sanjoy Dasgupta and David McAllester, editors, Proceedings of
the 30th International Conference on Machine Learning, volume 28 of Proceedings of Machine
Learning Research, pages 639-647, Atlanta, Georgia, USA, 17-19 Jun 2013. PMLR.

[14] Scott E Reed, Yi Zhang, Yuting Zhang, and Honglak Lee. Deep visual analogy-making. In
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in
Neural Information Processing Systems 28, pages 1252-1260. Curran Associates, Inc., 2015.

[15] Kecheng Zheng, Zheng jun Zha, and Wei Wei. Abstract reasoning with distracting features. In
Advances in Neural Information Processing Systems, 2019.

[16] Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan Pascanu, Peter
Battaglia, and Timothy Lillicrap. A simple neural network module for relational reasoning. In
Advances in Neural Information Processing Systems 30, pages 4967-4976, 2017.

[17] L. S. Penrose and J. C. Raven. A new series of perceptual tests: preliminary communication.
British Journal of Medical Psychology, 16, 1936.

[18] Andriy Mnih and Koray Kavukcuoglu. Learning word embeddings efficiently with noise-
contrastive estimation. In Proceedings of the 26th International Conference on Neural Informa-
tion Processing Systems - Volume 2, NIPS’ 13, page 2265-2273, Red Hook, NY, USA, 2013.
Curran Associates Inc.

[19] Andriy Mnih and Yee Whye Teh. A fast and simple algorithm for training neural probabilistic
language models. In Proceedings of the 29th International Coference on International Confer-
ence on Machine Learning, ICML’12, page 419—426, Madison, WI, USA, 2012. Omnipress.

[20] Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural Computation,
9(8):1735-1780, November 1997.

[21] Dokhyam Hoshen and Michael Werman. Iq of neural networks, 2017.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pages 770-778. IEEE Computer Society, 2016.

[23] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning
Research, pages 1126—1135, International Convention Centre, Sydney, Australia, 06—11 Aug
2017. PMLR.

11



	Introduction
	Related Work
	Visual reasoning with Raven Progressive Matrices
	Abstract Visual Reasoning with Meta-analogical Contrastive Learning
	Types of analogies in the RPM problem
	Analogical self-supervised contrastive learning
	Intra-problem analogies
	Inter-problem analogy

	Analogical contrastive learning for abstract visual reasoning
	Meta-analogical contrastive learning

	Experiments
	Experimental setup
	Experimental Results

	Conclusion

