
A Experimental results

In this section, we examine our proposed meta-analogical contrastive learning using pairwise input
samples from cross-domains. Firstly, we show an effect of contrastive learning based on relation
between problems in addition to analogical learning. Then, we examine if our analogical learning is
effective on analogical sampling based learning framework such as existing few-shot meta learning
framework. Additionally, we show generalization performance of our proposed method across
different visual domains.

Analogy sampling based meta learning. In this section, we experimented analogy sampling based
reasoning using the given RPM problem definition (called problem category or task, as mentioned
above) from RPM dataset generation. The meta information from RPM dataset includes discrete
codes composed of attributes and rules. With the given problem category (task), a subset for learning
can be sampled (via domain episode module in Figure 4 in main text). In each subset, a training
sample and a test sample can have analogy relation dependent on their problem categories. In this
experiment, we apply conventional meta (few-shot) learning (e.g. Model-Agnostic Meta-Learning
(MAML)) [23], which consists of K-shot and N -class training samples for classification task. Here,
by replacing class with task, K-shot and N -task reasoning framework can be defined. With this
setting, we examined our proposed method using analogical sampling which contains different
attributes (shape) but similar rule for meta-training (source) and meta-test (target) sets. This analogy
sampling resembles hard task label based contrastive learning.

Here, we show analogical learning with the existing meta learning framework for fast adaptation
from the source domain to the target domain. As similar to above experiments, CoPINet is used to
baseline model in MAML. We use a public PyTorch based MAML code1. We experimented this
method on the same dataset used in the experiment above while meta-test using training and test
samples is different from test settings in the above. Experiments are conducted with settings: 1-shot
training and 1-shot test, number of epochs = 200, batchsize = 16, and number of batches = 100
without hyperparameter optimization.

As shown in Table 4, our proposed analogy learning with analogy sampling (+Analogy Learning in
the table) shows significant performance improvement in terms of test accuracy at the best validation
accuracy compared to analogy sampling based meta learning (Analogy Sampling in the table). Hence,
this result brought a new direction of analogy sampling based analogy learning via the meta-learning
framework.

Table 4: Test accuracy (%) at the best validation accuracy along different number of adaptation ways
(tasks). Different visual shape attributes are used among train and valid/test sets. The best accuracy is
indicated using a bold font.

number of ways Analogy Sampling +Analogy Learning (Ours)

2 40.13 59.17
3 64.63 82.58
4 62.89 90.43
5 55.10 89.90
6 59.05 95.67

Generalization across different configurations. We experimented our proposed method across
different configurations on RAVEN dataset including: 2×2Grid (“distribute four”, corresponding
folder name in the dataset), 3×3Grid (“distribute nine”), O-IC (“in center single out center single”),
O-IG (“in distribute four out center single”), L-R (“left center single right center single”), and U-D
(“up center single down center single”). At each configuration, while shapes can be shared, overall
visual arrangements are different each other. As similar to above experiment, we use training samples
with three shapes (“triangle”, “square”, and “hexagon”) and val/test sample with two different shapes
(“pentagon” and “circle”) to training for a generalization purpose.

1available at https://github.com/tristandeleu/pytorch-maml

12

https://github.com/tristandeleu/pytorch-maml


Table 5: Test accuracy (%) at the best validation accuracy along different target configurations
(domain) from “center” configuration to measure generalization performance on cross domain
problems.

Target Domain Base (CoPINet) Analogy (Ours)

2×2Grid 23.75 38.75
3×3Grid 18.75 36.25

O-IC 30.00 31.25
O-IG 26.25 48.75
L-R 18.75 25.00
U-D 26.25 26.25

To show generalization reasoning performance of source domains on target domains, our model is
trained using samples from “center” configuration (training) and then tested samples from other
six configurations. As shown in Table 5, our proposed method (“+Analogy”) shows significantly
improved generalization performance on cross domain problems.

B Experimental settings

Implementation. For reasoning experiments, we used PyTorch code based implementation to
reproduce the baseline methods (LSTM [20], CNN [21], and vanilla ResNet [22]) and strong
baselines (WReN [1], ResNet+DRT [2], and CoPINet) based on publicly available PyTorch code2.
For dataset generation, we used publicly available RAVEN PyTorch code3 in the experiment “Cross
domains for unseen visual experience”.

Hyper-parameter settings. All models were trained using the Adam optimiser, with exponential
decay rate parameters β1 = 0.9, β2 = 0.999, and ε = 1e−8. We fixed the random seed (‘12345’,
following open codes of the baseline method), and learning rate 1e−4. An input size of image panels
are resized to 80× 80 from 160× 160. Images are normalized into [−1, 1]. Any other transformation
or data augmentation techniques are not used.

Model details. Here, we provide details for all our models.

1) Task inferences. An architecture of the task inference encoder is defined in detail as follows,

e(·) := [MLP1, reshape, softmax,MLP2, sum]

where

• MLP consists of an inner-product layer, MLP1 ∈ R(d×(a·r)), MLP2 ∈ R(r×64),
• d denotes a dimensionality of a (feature) vector before a classifier,
• a denotes the predefined number of attributes, r number of rules, (a = 10, r = 6)
• reshape makes the vector size from (batchsize× (a · r)) to (batchsize · a× r),
• and sum make summation along a to make a feature vector as (batchsize× r).

2) Variational context latent. We provide an architecture of the variational encoder in detail as
follow,

v(·) := [MLPµ,MLPσ]
where MLP consists of an inner-product layer, MLPµ ∈ R(d×p) for the mean latent vector, MLPσ ∈
R(d×p) for the standard-deviation latent vector, d denotes a feature dimension before a classifier, and
p = 256.

3) Generative contextual images. We provide an architecture of the denoising decoder for context
images generation in detail.

d(·) := [ConvT1,BN,DeResCNN1,ConvT2,BN, concat([DeCNN1,DeCNN2]),

2available at https://github.com/Fen9/WReN and https://github.com/WellyZhang/CoPINet
3available at https://github.com/WellyZhang/RAVEN

13

https://github.com/Fen9/WReN
https://github.com/WellyZhang/CoPINet
https://github.com/WellyZhang/RAVEN


ConvT3,upsample, reshape]
where

• an input size is (batchsize · channelsize× 64× 20× 20),
• ConvT1 denotes a ConvTranspose2d layer (which is a transposed version a 2D convolutional

layer implemented in PyTorch) parameterized with [input-channel: 64, output-channel: 128,
kernesize: 3, stride: 2, padding: 1, bias: False] in PyTorch,

• BN denotes the batch normalization,
• ResNet block with transposed convludtional layers,

DeResCNN1 := [ConvT4,BN,ReLU, identity + [ConvT5,BN],ReLU]

with ConvT4 (ConvTranspose2d) with [input-channel 128, output-channel: 128, kernesize:
3, stride: 1, padding: 1, bias: False], ConvT5 (ConvTranspose2d) with [input-channel: 128,
output-channel: 128, kernelsize: 3, stride: 2, padding: 1, bias: False],

• concat denotes a concatenation,
• ConvT3 (ConvTranspose2d) with [input-channel: 64, output-channel: 1, kernelsize: 5,

stride:2, padding:0, bias: False],
• upsample makes an output (80× 80) size,
• reshape makes (batchsize · channelsize× 1× 80× 80) to (batchsize× channelsize×
80× 80),

• A transposed convolutional layer for column-wise computation,

DeCNN1 := [ConvT6,BN,ReLU]

with ConvT6 (ConvTranspose2d) with [input-channel: 64, output-channel: 32, kernesize: 3,
stride: 2, padding: 0, bias: False], and

• A transposed convolutional layer for row-wise computation,

DeCNN2 := [ConvT7,BN,ReLU]

with ConvT7 (ConvTranspose2d) with [input-channel: 64, output-channel: 32, kernesize: 3,
stride: 2, padding: 0, bias: False].

14


	Experimental results
	Experimental settings

