
We thank the reviewers for the valuable feedback. We will reflect minor errors instantly and try suggestions in the1

future. We want to address concerns and to clarify misconceptions. In this rebuttal, CAP denotes Wong et al.2

[R2 R3] Under `2-norm, IBP does not work well enough. In IBP, the authors didn’t mention the certifiable training3

for `2-norm. In CROWN-IBP, however, the authors explained that IBP can be applied to `2-norm. We run the code for4

IBP provided by the authors of CROWN-IBP on CIFAR-10 under `2-setting with `2-norm 36/255, where we considered a5

wide range of parameters including those suggested by CROWN-IBP and our range of settings described in Section C.6

IBP achieved the verification (standard) accuracy of 22.6-23.0% (31.3-33.5%) which was inferior to CAP = 50.29%7

(60.14%) and to LMT = 37.20% (56.49%). It also implies LMT-bound is much tighter than IBP-bound under `2-norm.8

Thus, we compared our method to LMT and CAP rather than IBP under `2-case in the main text. [R2 R3] On the9

novelty. BCP was carefully designed in a layer-wise manner (Fig1) to obtain the tighter outer bound. One may simply10

use IBP to get the additional box constraint in (11), but this box constraint is redundant because it is much looser11

than the `2-constraint in (11). BCP is designed to provide a nonredundant box constraint in (11) to tighten the bound.12

We observed the tightness in Fig2 and Fig3. As a result, BCP outperforms both LMT and IBP in a large margin13

(>12-28%p) under `2-norm. For further intuition behind the layerwise design of BCP, refer to Section B.1. [R2 R3]14

BCP outperforms the others with a meaningful margin. In Tab 1, the evaluation results at a single εeval seem to be15

a marginal improvement compared to CAP. However, when considering a wide range of εeval in Fig4 (and in FigS3),16

BCP outperforms CAP by 3.7-5.6%p in standard accuracy on CIFAR-10. For εeval > 36/255, BCP outperforms CAP in a17

large margin. For example, when evaluating at 72/255, BCP (34.2%) defeats CAP (23.9%) by 10.3%p. Moreover, only18

BCP can achieve a meaningful verification accuracy on Tiny ImageNet, while others cannot. [R1 R2] Fig2 illustrates19

how BCP can tighten the outer region by introducing the box constraint. In Fig2 (a)-(c), we can easily visualize20

the high-dimensional ellipsoid hK(B(K−1)
2 ) ⊂ Rc in 2D plane with ζy- and ζm′-axes (line 211-212) by projection.21

However, a high-dimensional parallelogram hK(B(K−1)
∞ ) for c > 2 is hard to visualize in the 2D plane. Thus, we22

use the red lines in Fig2 to indicate that the projection of the outer region hK(B(K−1)
2 ∩ B(K−1)

∞ ) must lie above the23

red line and inside the ellipsoid. Based on (9), we used the verification boundary (ζy − ζm′ ≥ ζ∗y − ζ∗m′), where24

the red line is obtained from the solution ζ∗y , ζ
∗
m′ of (9) for ẑ(B(x)) = hK(B(K−1)

2 ∩ B(K−1)
∞ ), and the blue line is25

for ẑ(B(x)) = hK(B(K−1)
2 ). Fig2 (d) explicitly illustrates the ellipsoid and the parallelogram with the verification26

boundary for a toy binary classification (c = 2). Fig2 shows typical examples for which the verification succeeds with27

BCP but fails without BCP (R2-8-3). On comparing the gap between BCP and other baselines, the visualization of the28

logit space can be inappropriate because it is not possible to directly compare the logits from the models obtained by29

different certifiable training methods. As verification methods, comparing only verification phase using one trained30

model can be unfair because the performance highly depends on which method the model is trained with. [R2 R3] We31

computed the radius ρ(k) with the layerwise Lipschitz constants L(i)’s. We computed L(i) for each i-th operation32

(BCP.py line 254,286), and then computed ρ(k) = εΠk
i=1L

(i), multiplying the expansion rate (=Lipshitz constant)33

through each layer (line 114-118,137-139, Section B.2). We are sorry to make R2 confused. Lipschitz constant usually34

refer to the global Lipschitz constant (gL) rather than a local one (lL) when not specified. We used the gL for the35

efficient computation (line 127-128). For the layerwise Lipschitz constant, when the layerwise operation hk is linear, the36

maximum eigen-value of weight matrix corresponds to both gL and lL (gL = lL). [R3] On the stabilization of ρ(K−1).37

In FigS1 (top), the Lipschitz constant keeps increasing through standard training. To stabilize the Lipschitz constant,38

we applied a commonly-used scheduling scheme on ε and λ during the BCP training (line 195-200). In FigS1 (bottom),39

L(−1) = ΠK−1
i=1 L

(i) is about 10 after training with BCP, and it is multiplied by ε to provide ρ(K−1) = εL(−1). Thus,40

ρ(K−1) is about 10ε. In the code, we initialize ρ(0) = ε (BCP.py line 214) and update the radius by ρ(i+1) = ρ(i)∗L(i+1)41

(r = r*p) for each layer as implemented in BCP.py line 236-243,270,300. We also tried BN, but it is not effective42

to improve robustness. Moreover, there is a paper named "Batch Normalization is a Cause of Adversarial Vulnerability".43

[R3] On the implementation of BCP. Our main focus is on `2-certifiable training. In the main text, we describe the44

BCP algorithm and provide the results for `2-case, so, in the code, we set args.linfty=False as default. However,45

BCP can be applied to `p-norm for any p ∈ (0,∞] (line 154-155). In appendix, we presented the results for `∞-norm46

in Tab S2, and the implementation is available by setting args.linfty=True in the code (BCP.py line 216-217).47

Therefore, the description of the algorithm, including the `∞-case (line 154-159), is consistent with the implementation.48

Moreover, for reproducibility, we provided how to run the code in one-line command in README.md and explained49

details of the hyper-parameters in Section C, including the scheduling on ε and λ. For reference, in the `∞-case, BCP is50

not IBP but a generalized version of IBP because BCP still uses the `2-bound propagation. [R3] c and z(K−1) have the51

same shape. The notation Wi is for the i-th row vector of the matrix W (line 144). Let W(K) ∈ Rm×n, then W
(K)
i52

is an n-dimensional row vector, and z(K−1) is an n-dimensional column vector. Therefore, since cT = W
(K)
1 −W

(K)
0 ,53

c has the same dimension to z(K−1). [R1] Trade-off between efficiency and accuracy. BCP is much faster than CAP54

(Tab1) as well as achieving the better performance in a wide range of εval (Fig4). BCP can outperform LMT and IBP in55

a large margin with affordable computational overhead.56


