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Abstract

Verifiable training is a promising research direction for training a robust network.
However, most verifiable training methods are slow or lack scalability. In this study,
we propose a fast and scalable certifiable training algorithm based on Lipschitz
analysis and interval arithmetic. Our certifiable training algorithm provides a tight
propagated outer bound by introducing the box constraint propagation (BCP), and
it efficiently computes the worst logit over the outer bound. In the experiments, we
show that BCP achieves a tighter outer bound than the global Lipschitz-based outer
bound. Moreover, our certifiable training algorithm is over 12 times faster than the
state-of-the-art dual relaxation-based method; however, it achieves comparable or
better verification performance, improving natural accuracy. Our fast certifiable
training algorithm with the tight outer bound can scale to Tiny ImageNet with
verification accuracy of 20.1% ({s-perturbation of ¢ = 36/255). Our code is
available at https://github. com/sungyoon-1lee/bcpl

1 Introduction

Deep learning has shown successful results in many applications. However, it has been demonstrated
that deep neural networks are vulnerable to small but adversarially designed perturbations in the input
which can mislead a network to predict a wrong label [33]]. There have been many studies on such
adversarial attacks and defenses against them [[12, [19} 28] 27, 24} 14, [35] 141}, [14]].

However, Athalye et al. [1]] have shown that many of these defense methods are designed to defend
against specific predefined adversarial attacks, and, in turn, the models can yet be broken by unseen
stronger adaptive adversaries. Thus, many verification methods are proposed to guarantee stable
prediction of input within a perturbation set [185,9,116}[38, 134} 123}|11}13,130, 8} 143\ 2]]. Verification of
a neural network provides either lower bounds on the norm of the input perturbations required to fool
the network or upper bounds on the worst-case errors of the network against specified perturbations.
In particular, verifiable training incorporates the verification procedure using the upper bound into
the training loop and yields a robust model [39, 40, [7, 18}, 129, [30].

Verifiable training methods are mainly categorized into two approaches: dual relaxation and layer-
wise bound propagation approaches. The dual relaxation approach formulates the verifiable training
as a convex optimization and uses duality to build a relaxed bound of the optimization problem and to
relieve the computational load [39} 140} 29| [7, 130]]. Although these verifiable training methods can pro-
vide relatively exact robustness bounds for verification, they still involve expensive computations and
poor scalability. In contrast, the layer-wise bound propagation approach calculates the upper bounds
on the worst case error through relaxation on the layer-wise operations and forward propagation for
the perturbation set that can be made of /.- or ¢5-balls [[13} 44} [36] 25 32} [37]. These layer-wise
methods are computationally efficient but have loose bounds in the initial phase of training, hindering
the application to larger networks.
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Apart from these deterministic verification approaches, randomized smoothing is one promising
approach to procure robust classification results. This can make any classifier to acquire a certified
adversarial robustness by constructing a smoothed classifier [22} 21116} 31]. However, the randomized
smoothing methods require a large number of samples to certify the classifier.

In this study, we propose an efficient certifiable training method with a tight outer bound propagation.
This propagation enables the model to scale to Tiny ImageNet. Our algorithm minimizes an upper
bound on the robust classification error. We further tighten the upper bound by introducing a valid
box constraint into the optimization problem, thereby improving the optimal solution. By tightening
the upper bound on the objective, both the robustness and standard accuracy of our method improve.

To summarize, the main contributions of this paper are as follows:

e We propose a fast certifiable training algorithm called Box Constraints Propagation (BCP)
with an efficient computation of the upper bound on the robust classification error. BCP is
over 12 times faster than the state-of-the-art dual relaxation-based method [40]].

e We can obtain tighter outer bounds than those without BCP. These bounds are on average
25.3-55.4% tighter in terms of the length of the worst logit translation. Therefore, our
certificate using BCP achieves the verification accuracy comparable to CAP [40]], while
improving the natural accuracy on CIFAR-10.

e Our approach can scale to Tiny ImageNet and learn a certificate that can achieve 20.1%
verification accuracy (¢ = 36/255). To the best of our knowledge, this is the first non-trivial
(deterministic) verification accuracy on Tiny ImageNet under the ¢5-robustness.

e Our verification loss can adapt to the input locations; thus, the model can learn a behavior
depending on the input locations.

2 Certifiable Training with Worst Logit

In this section, we introduce the robust training problem for multi-class classification, define the
specification based on the worst logit, and establish the objective that provides an upper bound of the
robust training problem.

Notation We consider a c-class classification problem, where x € X C RY is an input,y € Y =
{0,1,...,c — 1} is the label with respect to the input &, and c¢ is the number of classes. A mapping
that takes an input @ and outputs a logit vector { = z(x) € Z is denoted by z : X — Z C R,
and the corresponding classifier is f : X' — Y with f(x) = argmax,, .y 2, (x) where z,, is the
output logit for a class m € ). We assume the classifier network is a feedforward network with
K layers as z*) = h(®)(z(+=1) k= 1,..., K, where z(*) is the vector of the activations in
the k-th layer, zE) = ¢, z® = z, and h® is the operation in the k-th layer. Let B(x,¢€) be
a perturbation set around the input & with a level of perturbation €. Then, for a classifier f, the
robust classification error within the perturbation set B(-, €) on a data distribution D is defined as
R(f) =Pp |3z’ € B(w,¢€) s.t. f(x') # y|. We omit the dependency on D and e for simplicity.

2.1 Robust Training

The main goal of certifiable training is to minimize the robust classification error R(f). However,
because the exact verification for R(f) is NP-complete [18]], a simple surrogate of R(f) is used to
construct the objective of certifiable training. Our certifiable training minimizes an upper bound
on R(f) that builds a certificate of robustness whereas adversarial training [24]] minimizes a lower
bound on R(f). To obtain the upper bound on R(f), we propagate the perturbation set B(x, ¢) and
calculate the outer bound on the propagated image in the logit space Z. For simplicity, B(x) denotes
the input perturbation set B(x, ¢). Let 2(B(x)) C Z be an outer bound on the logit image of the

perturbation set z(B(z)). Then, we can construct the following upper bound R(f) on R(f):

RUf) =B ol e maxtllG = Gv) <0
( . (1)
< EB(ay~p|  max max1[(¢, —¢y) <0]] = R(f),
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where (,,, is the m-th element of the logit vector ¢ and 1[-] denotes the indicator function.

2.2 Worst-Translated Logit

Based on the upper bound R( f) in (1), we can construct an objective for verifiable training as

E(z,y)~D [C g}gﬁ( ) L(¢, y)] using cross-entropy loss £ as a surrogate loss function for the 0-1 loss
€z T

of R( f). However, it is still inefficient to find the optimal solution for the non-convex maximiza-
tion problem . rrb%?( ) L(¢,y). Dual relaxation approach addressed this problem by computing
cz(B(x

a differentiable upper bound on the robust classification error, using a feasible dual solution of
the underlying relaxed LP [39} 140} |8]. In contrast, layer-wise propagation approach proposed the
worst-case logit or the certifiable margin in the logit space to obtain a differentiable upper bound on
the robust classification error [36} (13} 44]]. In this study, we introduce the worst-translated logit z(x)
that provides an upper bound on the cross-entropy loss over an outer bound Z(B(x)) as follows:

Definition 1. The worst-translated logit over an outer bound Z(B(x)) for the input x and the
corresponding label y is defined as z(x;y) = z(x) + t(x;y) where the translation vector t(x;y)
has its m-th element with

tm(@;y) = (2y(®) = zm(2)) (Cy = Gm)- 2)

— min
¢ez(B(x))
When the context is clear, we omit y in z(x;y) and t(x;y), and just write z(x) and t(x) for brevity.

Proposition 1 (Wong and Kolter [39]). For an outer bound 2(B(x)) D z(B(x)) and its correspond-
ing worst-translated logit z(x), the following inequality holds:

cmax L(Gy) < L(2(@),y), 3)

where L is the cross-entropy loss function.

Finally, the objective to be minimized is formulated as follows:

Note that the worst-translated logit z(x) for the input & may not be inside the outer bound Z(B(x)).
The remaining problem is how to calculate the outer bound 2(B(x)) of the logit image z(B(x)) and
how to solve the minimization in (2)) corresponding to the outer bound, which will be discussed in

Section[3.1)and [3.2] respectively.

Furthermore, by using the worst-translated logit z () as a certificate that guarantees robustness to
adversarial perturbations, we can obtain verification error of the model f on the test data D as
follows:

Ry (f) = Ploy)opie [ min (2, (@) - 2, () < 0] )

which is larger than the robust classification error R(f) on the test data Dyes:.

3 Lipschitz-Certifiable Training with Tight Outer Bound

In this section, we propose a tight outer bound estimation and an efficient algorithm for calculating
the worst-translated logit. We mainly focus on /5-perturbation sets in the input space, but our method
can be easily extended to any ¢,,-perturbations for p > 0 and {.-perturbations, as described later.

Notation The /;-perturbation set and the ¢ -perturbation set in the input space are denoted by
Bo(x,e) = {z' : ||’ — x|j2 < €} and Boo(z,€) = {&’ : |2} — 25| < ¢,Vi}, respectively. To
obtain a tight outer bound Z(B(x, €)), we propagate the perturbation sets through the layers and
calculate layerwise outer bounds ng) and IB%&I;) in the k-th layer. The k-th layer /.-bound IB%EJZ) can
be represented as the box constraint B&) = midrad(m® r®)) = {p: |p; — m{"| < r®™ vi} with
the midpoint m¥) and the radius %) [26]. We call the ng) "ball outer bounds" and the Iﬂ%gi) "box
outer bounds".
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Figure 1: Illustration of BCP. For the k-th layer, the k-th box Bgﬁ)(left) is propagated to the next box
Bgyl)(right), both colored in red. Note that the k-th ball ng) is independently propagated to the
next ball ]B%ékﬂ) which has L) times larger radius.

3.1 Outer Bound Estimation

The outer bound from ¢5-perturbation Z(Bs(x, €)) can be simply constructed by using the global
Lischiptz constant L of the logit function z, where 2(Bo(x, €)) = Ba(z(x), eL) [36]. The global
Lipschitz constant is efficiently computed as the product of all layer-wise Lipschitz constants,
L = Hszl L™, To tighten the spherical outer bound in the logit space, Tsuzuku et al. [36]
replaced it with the ellipsoidal outer bound, 2(By(z,€)) = AU (By(z K1, p(K=1)), where
pF) =€ Hle L® _ In the objective @), the ellipsoidal outer bound enables the Lipschitz-margin to
solve the optimization in (2)) explicitly. However, the global Lipschitz constant can still overestimate
the outer bound and impose a strong penalty for it, limiting the expressiveness of the model [17]. It
leads to a poor classification performance, not getting sharp transitions near decision boundary [[15].
On the other hand, using local Lipschitz constants to estimate the outer bounds for each given input
x is computationally infeasible to be integrated into the training loop for medium-sized networks,
and thus limited to 2-layered networks [15 [10} 20].

To this end, we propose a method called BCP, using layer-wise propagation with the Lipschitz
constant and interval arithmetic to efficiently approximate the propagation of the perturbation set
adaptive to the input location. This addresses the problems of the global Lipschitz constant-based
outer bound and remains the efficient computations for certifiable training. In addition, it enables
us to obtain a certificate that can adapt to local properties of the classifier. We further discussed the
intuition behind the design of BCP in the supplementary material.

Box Constraint Propagation Our outer bound propagation starts with the ¢5- and /.- perturba-
tions sets (IB%;O), ng)), propagates them through layers, and derive the tight /. -outer bound Bg’;) in
each layer by circumscribing the propagated images and finding the intersection of the circumscribed
boxes. In the penultimate layer, we combine the propagated box constraint bound IB%gf =Y and the

propagated global Lipschitz bound IB%QK*U to tighten the final outer bound Z(B(x)).

For ¢5-certifiable training, we first consider the pair (IB%(QO), B((g)), where Béo) = By (x, €) and B((,g) =

)

Boo(x, €) circumscribing IB%gO in the input space. Next, we propagate them through the layers to

compute the layerwise outer bound pair (B;k) , Bgé)). Here, we assume a feedforward network, but
we can extend it to residual networks (see the supplementary material). The ball outer bound in the

k-th layer ]B%ék) is the Lipschitz outer bound B (z(*), p(*)) with the radius p(*) = ¢ Hle L) where
we use the power iteration to estimate the layer-wise Lipschitz constants L(?). The box outer bound
B(OIEH) in the (k + 1)-th layer (k = 0,1,--- , K — 2) is obtained by two box constraints that one
circumscribes the propagated ellipse image h(++1) (ng)) of the ball Bék) and the other circumscribes

the propagated parallelepiped image h(*+1) (Bg’é)) of the box IB%EJZ) as described in Figure

In case of linear layers, the circumscribed box about the propagated ellipse image,
outoo (hE+D (BY)), is calculated as follows:

outos (W*TD(BS)) = midrad (i ®) | #®)) st ™ = pEHD (20 7+ = WD |, p®),
(6)



where W( 1 is the i-th row of the weight matrix W (*+1) of the linear function 2(**1). Simulta-
neously, we use the interval arithmetic to obtain the other box about the propagated parallelepiped

image, T A(B B )) as in [13[:
TABY) = midrad(m®, #®)) st m®) = pE+H) () - 50 — Wkl p(R) - (7)

where |W/| takes the element-wise absolute values of W. The above two propagations can be easily
extended to nonlinear layers. The details are described in the supplementary material.

Finally, we can obtain the box outer bound B& Y = = out oo (hFHY) (ng))) NI A(IB%QZ)) for the next
(k 4 1)-th layer as illustrated in Figure I 1| with the following equations:

m(k+1) _ (ub(k+1) + lb(k+1))/2 ,r,(k-i-l) _ (ub(k—i-l) _ lb(k+l))/2 St

ub®t) — max (1 (k) | f(k) =~ (k) ;,(k))7 b+ — min(’rh(k) _ f'(k),'rh(k) _ ,;.(k)) ®)

i
where max and min take the element-wise maximum and minimum values, respectively.

(K—1)

In the penultimate layer, we obtain the intersection IBS(Of D B, 13355 -1

of the box outer bound
and the ball outer bound ]B%éK_l). The intersection is propagated to the logit space through the last
linear layer to obtain the tight outer bound, as 2(B(z)) = h¥) (B ( (K=D n IB(K 1)) C Z.

Extension to /,-norm We note that BCP can be easily extended to £,,-certifiable training for any
p > 0 by modifying Bgo) = Bo(x, €) to Bo(x, €) circumscribing B, (z, €) in the input space R,

where ¢ = N1/2-1/maz(p.2)¢  For the /,,-case, we can use IB%%O) = By(x, v/ Ne) circumscribing

ng). Thus, for £,,-bound, BCP can be considered as a generalized version of IBP (Interval Bound

Propagation) [13]]. We found that BCP shows a similar performance to IBP as an /. -certified training
(see the supplementary material for the details). For now we focus on the performance of BCP under
{o-perturbations.

3.2 Certifiable Training Algorithm

Formulation Our certifiable algorithm aims to minimize the objective J(f, D) in (@) to get a
robust classifier. The objective contains the worst-translated logit z(), which requires computation
of the translation vector ¢(x) in (2). In this section, we propose an efficient algorithm to calculate ¢(x
for the tight propagated outer bound 2(B(x)) = h(%) (IB%(O?_I) N IB%;K_I)) proposed in Section
In Equation (@), z, () — 2, () is easily obtained by a forward pass through the network. However,
the optimization Cemm (¢y — ¢m) is nontrivial and dependent on the outer bound 2(B(x)).

Without loss of generality, we can assume that y = 1 and m = 0. Then, the optimal values (g, ] are
as follows:
CS» Cik = argmin (Cl - C())v (9)
(Co,¢1)€llo,12(B(2))
where Il ; is the projection onto the (n(;-plane. Then, we can formulate the following optimization:

. T : Ty (K)(r
m - m - h
Cez(é?m))(el )¢ C’EJBQK”%I%JB(Of*l)(el ) © 10
- min (“g,:) ( ))C b( )7bé )7

¢ eBF VAR —Y

where e; is the ¢-th standard basis vector, and WE) and b'5) is the weight matrix and the bias
vector for the last linear layer h(%). Note that ¢’ is the vector in the penultimate layer. Therefore, we
can construct the following optimization problem that finds the largest violation of the specification
to verify the network:

H%i/n cTC-/ St ||<- K 1)”2 <p(K 1) |C/7m(K71)| < ,,,(Kfl), (11)

where c is a specification vector with ¢’ W(K) W((JK) and the second constraint takes the
element-wise absolute value and the element-wise 1nequahty Since it is computationally expensive to



Algorithm 1 Box Constraint Propagation (BCP) Certifiable Training

Input: training data (x, y) ~ D, target perturbation size €¢qrget, nNetwork parameterized by 6
Output: Robust network fy
repeat
Read mini-batch B from D and adjust € and A according to the schedule.
// Compute the box outer bound and the ball outer bound //
BE Y = midrad(m &=, 2K D) where m K1 p(K—1) = BCP(x, ; 0) ((&-@.-
B = By(25 1, pK D) where 25D = b5 oo b0 (z) and pF D = ¢ [T L
// Solve the optimization in (1) for each m # y in parallel //
Tnitialize p = 2K~ — p<K’1>ﬁ.
while not |p — m(K_1>| < p(E=1 go
Decompose p into two parts: p = p[I] + p[I°], where I = {l : |p; — ml(Kfl)\ > rl(Kfl)}.
First phase Project p[I] onto B,
Second phase With the scaling parameter 7 in (I2), update p < I -1 p[I] + np[I°].
end while
Calculate the worst-translated logit z(x) = z(x) + t(x) with ) and (10):
tm () = T (2EY — p).
// Update Parameters //
Update the parameter 6 with the objective (T3):
0« 0— Ochj(fg,B;)\).
until training phase ends

integrate a typical optimization tool within the training loop, we propose a simple iterative algorithm
that approaches to the optimal solution of in a finite number of steps. We emphasize that by
solving (TT) we can obtain a better certificate than the global Lipschitz-based certificate because it
uses additional box constraint, ¢’ — mE~D| < #(K=1)_ We will see how this additional constraint
affects the outer bound and the verification performance in Section 4]

Solving the optimization We solve the optimization (TT)) by using an efficient iterative algorithm
that terminates when none of the elements violate the box constraint. Our algorithm starts with the
initial point p = z(K—1) — p(K-1) ﬁ which is the optimal solution of (TT)) when ignoring the box
constraint. Then p satisfies the ball constraint but is not guaranteed to satisfy the box constraint. We
decompose the indices of p into two parts, I and I¢, where I = {I : |p; — ml(K_l)\ > rl(K_l)}. Then,
we can represent p = p[I] + p[I¢], where p[J] = >, ; pie;. Note that I or I¢ can be empty, and
we define p[¢] = 0. Then, we iterate the following two phases to find the optimal solution efficiently.
In the first phase, p[I] is projected onto the box, denoted by -1 p[I]. In the second phase, p[I°]

is scaled with an adaptive parameter > 1, as computed by:

D) My pl] — 2K 2
[Pl - 2% D[] |

n= (12)
Based on (I2), the next point p < Iy x-1)p[I] + np[I¢] is on the boundary GIB%K*D of the ball

IBSéK_l) when I¢ # ¢. We skip the scaling in the case of I¢ = ¢. This iterative algorithm terminates
when p satisfies the box constraint. The following proposition shows that our algorithm terminates
within a finite step which is determined by the number of elements in c.

Proposition 2. The while loop in Algorithm nds the optimal solution p = ({')* of the optimization
problem (1)) in a finite number of iterative steps less than the number of elements in c.

Proof. The proof is deferred to the supplementary material. O

Algorithm [T] illustrates the BCP training algorithm. Similar to Kurakin et al. [19], we train on a
mixture of normal logit z(x) and the worst logit z(x) as follows:

T, D) = Eggyon[(1 = VLG (@), y) + AL (2(w),9)] (13)



We gradually increase the perturbation € from 0 to the target bound €;4,e¢ and increase A in (13) from
0 to 1, stabilizing the initial phase of training and improving natural accuracy [[13| 44]. Therefore,
our algorithm enables fast certifiable training of the robust model with a tight outer bound and is,
thus, scalable to large networks.

4 Experiments

We demonstrate that the proposed method can provide a tight outer bound for ¢5-perturbation set
and train certifiably robust networks, comparing its performance against state-of-the-art certifiable
training methods (LMT [36], CAP [40], and IBP [13]) on MNIST and CIFAR10. Moreover, we
also show that the BCP scheme can scale to Tiny ImageNet and obtain a meaningful verification
accuracyﬂ We further investigate the robustness under a wide range of perturbation. The details
of hyper-parameters and architectures used in the experiments can be found in the supplementary
material.
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Figure 2: Illustration of the outer bounds for the BCP trained models on (a) MNIST, (b) CIFAR-10,
and (c) Acorn-or-seashore classification tasks. BCP cuts off the lower area under the red line from the
elliptic area and tightens the outer bound. The shaded parallelogram area in (c) indicates the image of
the feasible region for the box constraint after the last linear layer.

Visualization of Tightening Effects Figure [2]illustrates how BCP can tighten the outer region by
introducing the box constraint IBBgf “Din (TT). We can easily visualize the high-dimensional ellipsoid
R(K) (BgK_l)) C R€ in 2D plane with ¢,- and (,,/-axes by projection, where m’ corresponds
with the most probable class except the true class y. However, a high-dimensional parallelogram
h(E) (Bg _1)) is hard to visualize in the 2D plane. Thus, we use the red lines in Figure(a)-(b) to

indicate that the projection of the outer region h (%) (BgKﬁl) N IB%gf 71)) must lie above the red line

and inside the ellipsoid, showing how much area is cut off by the box constraint Bgff D we compute
the worst-case margin (Cy — (m > C;; — (/) based on () and build the verification boundary with it,
where the red line is obtained from the solution (7, ¢, of () for 2(B(x)) = h(K) (IB%&K_U B~ ),
and the blue line is for 2(B(x)) = hK) (BéKﬁl)). To verify the network, we utilize the verification
boundary, where the verification for By (@, €4rget) Succeeds if the verification boundary is above the
decision boundary ({; = (). Figureexplicitly illustrates the ellipsoid 7/ (BgKﬁl)) and the

parallelogram h (%) (Bg _1)) with the verification boundary for a toy binary classification problem
between acorn’ and ’seashore’ derived from Tiny ImageNet dataset. We also indicate the logits for
the adversarial examples against PGD attacks based on cross-entropy loss (PGD) and margin-based
loss (PGD-Margin), which cannot go over the verification boundaries.

Quantitative Analysis of Tightness of Outer Bounds To quantitatively analyze how much BCP
can tighten the outer bound, we use "normalized ¢;-norm" of the translation vector as a measure of

"https://tiny-imagenet.herokuapp.com/
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tightness of the outer bound 2(B(z)) for given input @, defined as 7(x) = 3, ti(z; j)/c(c — 1).

Without BCP, this is a constant, 7 = >, . pE-D ||W£K) - W§K> l2/¢c(c— 1), over X since it only
considers the global Lipschitz constant and does not depend on the input. We indicate this constant
tightness measure 7 for each dataset as the dotted lines in Figure[3] On the other hand, using BCP,
we can consider the local properties of inputs, and thus, we can obtain different tightness for each
input. As shown in the violin plots of the tightness in Figure[3] BCP can tighten the outer bounds by
55.4% (MNIST), 45.8% (CIFAR-10), and 25.3% (Tiny ImageNet) on average.

L N v w/o BCP
[ — T S— ) Table 1: Computation time compared to CAP
6 ‘ | [40]. BCP is over 12 times faster than CAP
s P . o8 (* For WRN, CAP uses two GPUs because of
2, £ 100 2 06/ the memory limit).
é , § 075 ¢ E Computation
— 0.4 1
, 0.50 Data  Structure _time (s/epoch) Speed up
0.2 CAP BCP
1 0.25
MNIST 4C3F 689 575 x12.0
0 T 0.00 T 0.0 T
MNIST CIFAR-10 Tiny ImageNet 4C3F 645 53.0 x122
_ o , CIFAR-10 6C2F 1369 565 x24.2
Figure 3: Violin plots of the tightness of the outer WRN  1,121* 89.5 x125
bounds. The dotted lines indicate the tightness with- Tiny

out BCP. A smaller value indicates a better tightness. ~ ImageNet sC2F - 3,268 -

Verification performance We evaluate our certifiable training algorithm and other state-of-the-art
methods (LMT [36]], CAP [40], and IBP [13])) with €;4rge¢ = 1.58,36/255, and 36/255 on MNIST,
CIFAR-10 and Tiny ImageNet, respectively. We use the same bound for evaluation, €cyai = €target-
For MNIST, BCP outperforms other methods not only in terms of verification accuracy but also
in terms of standard accuracy. For CIFAR-10, BCP outperforms LMT and IBP, and produces
comparable performance with CAP in terms of verification accuracy, whereas outperforming in terms
of both standard accuracy and robust accuracy against PGD. For Tiny ImageNet, BCP can achieve a
verification accuracy of 20.08%, while LMT and IBP learn constant models and CAP is not scalable
to Tiny ImageNet.

To further investigate robustness of the models, in Figure[d] we demonstrate the change of verification
accuracy for different {o-perturbations €c,q;. We train the robust models with €47 = 1.58 on
MNIST (Figure and €qrget = 36/255 and 2€;4rger = 72/255 on CIFAR-10 (Figure .
Comparing to state-of-the-art methods, BCP achieves the highest verification accuracy in a wide

Table 2: Comparison to other verifiable training methods. Best performances are highlighted in bold.

Accuracy (%)
Data Structure # parameters Method Standard  PGD — Verification
CAP 88.39 62.25 43.95
MNIST 4C3F 1974762 LMT 86.48 53.56 40.55
BCP 92.41 64.70 47.95
CAP 60.14 55.67 50.29
LMT 56.49 49.83 37.20
4C3F 2466858 IBP 34.50 31.79 24.39
BCP 63.88 58.75 49.58
CAP 60.10 56.20 50.87
CIFAR-10 LMT 63.05 58.32 38.11
6C2F 2250378 IBP 3296 3108 2342
BCP 65.72 60.78 51.30
CAP 60.70 56.77 51.63
WRN 4214850 LMT 61.33 56.39 33.35
BCP 64.79 59.16 50.33
Tiny ImageNet 8C2F 4342984 BCP 28.76 26.64 20.08




range of €¢,4;. The verification accuracy of BCP slowly decreases as increasing €, and the decrease
seems almost linear, while we observe a significant drop in verification accuracy when €cyq; > €target
for CAP. We emphasize that the verification accuracy against a range of perturbation involves more
meaningful understanding of robustness than the verification performance at a specific perturbation
bound €.y, In Table@] (see the supplementary material for more detailed results).
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Figure 4: Verification performances of verifiable training methods. The vertical lines indicate €;qget-

Computational Cost Table|I|shows that BCP is over 12 times faster than CAP. We evaluate the
computation times on a single Titan X GPU. For a fair comparison, we use the same batch size for
both methods as 50 on MNIST and CIFAR-10 and 5 on Tiny ImageNet. Because CAP is memory-
inefficient, they cannot increase the batch size, whereas we can further speed up with a larger batch
size. In the case of WRN [42] on CIFAR-10, we can speed up to 61.1 sec/epoch using batch size of
128, while CAP needs two GPUs to run with a batch size of 50. It implies that our certifiable training
is efficiently applicable to a large-scale dataset.

5 Conclusion

In this study, we propose a fast certifiable training with a tight outer bound. To obtain a tight
outer bound, we propose BCP that efficiently computes box constraints which can tighten the outer
bound. Then, we train a certifiably robust model by minimizing the certificate loss based on the
worst-translated logit over the tight outer bound. By doing so, we can build the first certifiable robust
model on Tiny ImageNet under the /5-perturbation. We hope that our method can serve as a strong
benchmark for certifiable training on a large-scale dataset.

Broader Impact

Verifiable training can be used as one of a general learning scheme for applications to security-
sensitive domains such as self-driving cars, face recognition, and medical diagnostics. In these
applications, an adversarial example is a potential safety hazard that we want to avoid. By training a
model with BCP, we can guarantee that no adversarial attack within a given norm-based perturbation
can break the model. However, we should note that there is a trade-off between security and
performance. Our work tends to lean to the security aspect, having relatively low accuracy on natural
data. The sacrifice of performance can halve the benefits of applying deep learning models, and
security concerns can restrain deployments in the real system. We are already familiar with deep
learning models embedded in our everyday products or services, such as a smart speaker, ridesharing
apps, and social media services. Therefore, a balance of performance and security is required
depending on the characteristics of the application. The development of verifiable training algorithm
enables to improve standard accuracy, exactly quantifying the security. In addition, the quantification
of performance and security can help to adjust the balance between them.
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