
Supplementary Material for Lipschitz-Certifiable
Training with a Tight Outer Bound

Sungyoon Lee
Seoul National University

Seoul, Korea
goman1934@snu.ac.kr

Jaewook Lee
Seoul National University

Seoul, Korea
jaewook@snu.ac.kr

Saerom Park
Sungshin Women’s University

Seoul, Korea
psr6275@sungshin.ac.kr

A The proofs of the propositions

Proposition 1. For an outer bound ẑ(B(x)) ⊃ z(B(x)) and its corresponding worst-translated logit
z(x), the following inequality holds:

max
ζ∈ẑ(B(x))

L(ζ, y) ≤ L(z(x), y), (S1)

where L is the cross-entropy loss function.

Proof.
max

ζ∈ẑ(B(x))
L(ζ, y)

= log
(

1 + max
ζ∈ẑ(B(x)))

∑
k 6=y

exp (−(ζy − ζk))
)

≤ log
(

1 +
∑
k 6=y

max
ζ∈ẑ(B(x)))

exp (−(ζy − ζk))
)

= log
(

1 +
∑
k 6=y

exp
(
− min
ζ∈ẑ(B(x))

(ζy − ζk)
))

= L(z(x), y)

Proposition 2. The while loop in Algorithm 1 finds the optimal solution p = (ζ′)∗ of the optimization
problem (11) in a finite number of iterative steps less than the number of elements in c.

Proof. We denote the number of elements in c as Nc. For n-th iteration, we denote I = {l :

|pl −m(K−1)
l | ≥ r(K−1)l } as In. Then, for each iteration in the while loop, at least one index does

not satisfies the box constraints, i.e., ∃i s.t. |pi −m(K−1)
i | > r

(K−1)
i , and the index i is added to

In. And once an index i is added to In then the i-th elements pi is projected on the box B(K−1)
∞ and

after that it stays in Ik for k ≥ n, i.e., In is a strictly increasing sequence of sets. And if |In| = Nc,
then after the first phase of the iteration, there is no element that violates the box constraints, and
the iteration stops (Note that when |In| = Nc, i.e., Icn = φ, we skip the second phase). Therefore,
n ≤ Nc, i.e., our iterative algorithm stops within a finite number of iterative steps less than Nc. Now,
to prove the proposition, it is enough to show the optimality of the final p.

Without loss of generality, we can assume that z(K−1) = 0, ρ(K−1) = 1 and c ≤ 0. Then we have
lb(K−1) ≤ 0 ≤ ub(K−1), and the final p satisfies p ≥ 0.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

We put v = −c ∈ RNc and J ≡ {l : pl = ub
(K−1)
l }. Then the final p = p[J] + p[Jc] satisfies

p[J] ≤ αv[J] and p[Jc] = αv[Jc] for some α ≥ 1 that is the product of all previous η’s. We
want to prove p is a local minimum of (11), then since (11) is a convex optimization, we can
prove that p is the global optimum. We consider a closed local area B(p, δ > 0) such that for
any q ∈ B(p, δ), q ≥ 0 and we can ignore the box constraint for ql for l ∈ Jc. We call a
local optimal solution of (11) in B(p, δ) as p∗. If p∗[J] = p[J], vT (p − p∗) = vT [Jc](p[Jc] −
p∗[Jc]) = α‖v[Jc]‖2 − ‖v[Jc]‖‖p∗[Jc]‖ cosφ = ‖v[Jc]‖(‖p[Jc]‖ − ‖p∗[Jc]‖ cosφ) ≥ 0 since
‖p[Jc]‖ =

√
1− ‖p[J]‖2 =

√
1− ‖p∗[J]‖2 ≥

√
‖p∗‖2 − ‖p∗[J]‖2 = ‖p∗[Jc]‖ where φ is the

angle between the two vectors, p∗[Jc] and v[Jc]. Thus p is a local optimal.

Therefore, to prove the proposition with a proof by contradiction, we suppose p∗[J] 6= p[J], i.e.,
there is an index j such that p∗j < ub

(K−1)
j . If Jc = φ, then it contradicts the optimality of p∗

since vTp > vTp∗. Therefore, we can further assume Jc 6= φ, and thus ‖p‖ = 1. Moreover,
if ‖p∗‖ < 1, then we can further extend p∗[Jc] to produce a larger inner product with v, and
this contradicts the assumption. Thus, ‖p‖ = ‖p∗‖ = 1 and ‖p[Jc]‖ < ‖p∗[Jc]‖. We say
(p∗j)2 + ‖p∗[Jc]‖2 = r2. Then we consider a two-dimensional space U spanned by two orthonormal
vectors, ej and p∗[Jc]/‖p∗[Jc]‖, sayu(1) andu(2). Then v(1) = ΠUp

∗ = p∗ju
(1)+‖p∗[Jc]‖u(2) =

r cos θ1u
(1) + r sin θ1u

(2) is on the sphere that has radius r > 0. We consider another vector on
the sphere, v(2) = ub

(K−1)
j u(1) + βu(2) = r cos θ2u

(1) + r sin θ2u
(2) with β ≥ 0. Then, αv

projected on U is ΠU(αv) = (αvTu(1))u(1) + (αvTu(2))u(2) = (αvTu(1))u(1) + (pTu(2))u(2)

with αvTu(1) ≥ ub
(K−1)
j because j ∈ J and ub(K−1)j = pj ≤ αvj . And, p projected on U is

ΠUp = (pTu(1))u(1) + (pTu(2))u(2) with pTu(2) ≤ v(2)Tu(2) = β since ‖v(2)‖ = ‖ΠUp∗‖ ≥
‖ΠUp‖. We can write vT (au(1) + bu(2)) = avj + bv[Jc]Tu(2) = ar1 cos θ0 + br1 cos θ0 with
r1 > 0. Thus vTv(i) = rr1(cos θ0 cos θi + sin θ0 sin θi) = rr1 cos(θi − θ0) for i = 1, 2. Since
0 ≤ p∗j < ub

(K−1)
j ≤ αvTu(1); 0 ≤ αvTu(2) = pTu(2) ≤ β ≤ ‖p∗[Jc]‖ and 0 ≤ θ0 ≤ θi ≤ π/2,

we have tan θ0 = αvTu(2)/αvTu(1) ≤ pTu(2)/ub
(K−1)
j ≤ tan θ2 = β/ub

(K−1)
j < tan θ1 =

‖p∗[Jc]‖/p∗j . Therefore, we have 0 ≤ θ2−θ0 < θ1−θ0 ≤ π/2 and 0 ≤ cos(θ0−θ1) < cos(θ0−θ2).
Therefore, vTv(1) < vTv(2). However, ΠUp is closer to v(2) than to v(1) = ΠUp

∗. Thus, we found
p∗[J−{j}]+v(2) ∈ B(p, δ) which yield a larger inner product with v than p∗ = p∗[J−{j}]+v(1)
which contradicts the local optimality of p∗.

B Outer Bound Propagation

In this section, we present intuition behind the design of BCP and the deferred explanation for
calculating outer bound propagation such as layer-wise Lipschitz constant, propagated circumscribed
box, and extension to a residual layer. We further provide complexity analysis on BCP.

B.1 Intuition behind BCP

BCP provides a tight outer bound that addresses the overestimation problems of the global Lipschitz
constant. An outer bound computed by the global Lipschitz constant is highly overestimated because
of the following reasons. First, it is overestimated when propagating through a linear layer. For a linear
layer (including convolutional, average pooling, and normalization layers), the layer-wise Lipschitz
constant is the maximum eigenvalue of the weight matrix (the factor by which the corresponding
eigenvector is scaled); thus, it overestimates stretching along directions except for the corresponding
eigenvector. On the other hand, with BCP, the box constraint bound out∞(h(k+1)(B(k)

2)) calculates
the radius vector r̂(k+1) by considering scaling along all basis axes. Second, the outer bound is
overestimated because of ReLU layers. After propagating a ball B2(µ, ρ) through a ReLU layer,
we can estimate the propagated outer bound with a new ball B2(µ+, ρ) where µ+ = max(µ, 0).
However, the true image ReLU(B2(µ, ρ)) has no negative elements. In the case of BCP, the box
constraint IA(B(k)

∞) tightens the image of B(k)
∞ in the ReLU layers by cutting off the negative regions.

2

B.2 Power iteration algorithm

In our algorithm, we apply the power iteration to compute the layer-wise Lipschitz constants efficiently.
The obtained Lipschitz constants are used to compute the layer-wise outer bounds, (B(k)

2 ,B(k)
∞). We

run 1 iteration per batch during training as mentioned in [3], which is enough since SGD only makes
small updates to W and its spectral norm. On the other hand, we run the power iteration until
convergence for inference. Note that once we get the layer-wise Lipschitz constants of the trained
model, we don’t have to run the iteration again.

In Algorithm S1, we provide the well-known power iteration method which calculates Lipschitz
constant for a linear layer to make the main paper self-contained.

Algorithm S1 Power iteration.

Input: weight W, initial value u, maximum iteration n
Output: spectral norm σ
Initialize u with a random vector with the same shape of the input for the linear layer if u is not
given.
i← 0
repeat
v ←Wu/‖Wu‖2
u←WTv/‖WTv‖2
i← i+ 1

until it converges or i ≥ n
σ ← vTWu

In case of a convolutional layer, we used the revised version of the power iteration method in [3].
Algorithm S2 illustrates the power iteration algorithm for a convolutional layer. We denote the
conv transpose operation as convT .

Algorithm S2 Convolutional Power iteration [3].

Input: Convolutional weight W, initial value u, maximum iteration n
Output: spectral norm σ
Initialize u with a random vector with the same shape of the input for the convolutional layer if u
is not given.
i← 0
repeat
v ← conv(W,u)/‖conv(W,u)‖2
u← convT (W,v)/‖convT (W,v)‖2
i← i+ 1

until it converges or i ≥ n
σ ← v · conv(W,u)

B.3 The circumscribed box out∞(h(k+1)(B(k)
2))

In Section 3.1, we explained the computation of the circumscribed box out∞(h(k+1)(B(k)
2)) for the

affine transformation h(k+1). In this section, we extend it to nonlinear case with a general proof. For
ease of explanation, we re-write the equation (6) for the affine case as follows:

out∞(h(k+1)(B(k)
2)) = midrad(m̂(k), r̂(k)) s.t.

m̂(k) = h(k+1)(µ(k)), r̂
(k)
i = ‖W(k+1)

i,: ‖2 ρ(k).
(S2)

Proof. It is clear that m̂(k) = h(k+1)(µ(k)). The desired radius r̂(k)i along i-th axis is the maximum
of the inner product eTi W

(k+1)x = W
(k+1)
i,: x, where ‖x‖2 ≤ ρ(k) and W (k+1)

i,: is the i-th row of

the weight matrix W(k+1) of the linear function h(k+1). Therefore, W(k+1)
i,: x ≤ ‖W(k+1)

i,: ‖‖x‖,
and we finally get the radius r̂(k)i = ‖W(k+1)

i,: ‖ ρ(k).

3

In the case of nonlinear activation function σ, we can derive the results m̂(k) = σ(µ(k)), r̂i =
L(σi)ρ

(k) with the Lipschitz constant L(σi) of the nonlinear function σi, because the desired radius
r̂i is the maximum of the inner product eTi σ(x) = σi(x), where ‖x‖2 ≤ ρ(k). In the case of ReLU
activation, we have r̂i = ρ(k) since the Lipschitz constant L(σi) is 1.

B.4 BCP through residual layers

Our method can be applied to a wide range of network architectures including residual net-
works. In this section, we consider an operation through the residual layer as h(k+1)(x) =
f (k+1)(x) + g(k+1)(x) for some functions f (k+1) and g(k+1). Therefore, we propagate the pair
(B(k)

2 ,B(k)
∞) through f (k+1) and g(k+1) independently, and obtain two pairs (B(k+1),1

2 ,B(k+1),1
∞)

and (B(k+1),2
2 ,B(k+1),2

∞), respectively. We denote B(k+1),i
2 = B2(z(k+1),i, ρ(k+1),i) and B(k+1),i

∞ =

midrad(m(k+1),i, r(k+1),i), where i = 1, 2. Finally, we can get the pair (B(k+1)
2 ,B(k+1)

∞) for h(k+1)

as follows:
B(k+1)
2 = B2(z(k+1), ρ(k+1)),

B(k+1)
∞ = midrad(m(k+1), r(k+1)) s.t

z(k+1) = z(k+1),1 + z(k+1),2,

ρ(k+1) = ρ(k+1),1 + ρ(k+1),2,

m(k+1) = m(k+1),1 +m(k+1),2,

r(k+1) = r(k+1),1 + r(k+1),2.

(S3)

B.5 Complexity Analysis

In this section, we provide the computational complexity analysis on the proposed algorithm. To
simplify the discussion, we consider a K ′-layered feedforward network which has K ′ linear layers
followed by non-linear activations. We further suppose the network has n neurons for all K ′ − 1
layers except for the output layers which has c� n neurons. The simple forward propagation costs
O((K ′ − 1)n2 + nc) = O(K ′n2) for each input. For the proposed method, it takes O(2(K ′ − 1)n2)
for (6) and (7). In addition, it takes O(2s(K ′ − 1)n2) for the power iteration with the iteration
s(= 1), and takes O(2tn) for computing η in (12) with the iteration t� n. Lastly, to compute the
worst-translated logit, it takes O(cn). Therefore, the total computation of the BCP costs O((4 +
2s)(K ′ − 1)n2 + 2tn+ cn) = O(K ′n2) which is only O(1) times slower than regular training. In
detail, BCP is about 6 times slower than regular training for the iteration s = 1, and we empirically
found that it is roughly correct (e.g. 8 vs 53 sec/epoch for 4C3F on CIFAR-10).

4

C Experimental details

C.1 Data Description

MNIST [7]: 10 classes, 600K training images, 100K test images.
CIFAR-10 [6]: 10 classes, 500K training images, 100K test images.
Tiny ImageNet [2]: 200 classes, 100K training images, 10K validation images, 10K test images.

C.2 Hyper-parameters

We list the hyper-parameters used in the proposed certifiable training in Table S1. They are obtained
using grid search. We considered the parameters, learning rate ∈ [0.0001, 0.0003, 0.001, 0.003, 0.01],
the length of the warm-up period ∈ [1, 3, 5], and the length of the ramp-up period ∈ [10, 20, 50]. We
also considered the hyperparameters used in CRONW-IBP [11]. In our certifiable training, we used
the objective (13). During warm-up period, we conducted the standard training, i.e. λ = 0 while
during ramp-up period, we gradually increased λ from 0 to 1. The sensitivity analysis on the schedule
of λ will be discussed in Section C.4. For CAP [10], we used the pretrained models given by the
authors.1 We used a single iteration for the power iteration as mentioned in Section B.2, and used
10 iterations for the optimization (11) during training on MNIST. On CIFAR-10, we found that it
is enough to run a single iteration for the optimization (11) during training. On Tiny ImageNet, we
cannot run more than one iteration because of the memory constraint, but we can obtain a verification
accuracy of 20.1%. In test phase, we run both iterations until convergence. To evaluate the PGD
accuracy, we set the step-size to εeval/4 and the number of iterations to 100.

Table S1: Hyper-parameters used in the certifiable training.

Data image size # class optimizer optimizer parameters epoch learning
rate

warm-up/
ramp-up

weight decay
(×γ)

MNIST (28,28) 10 Adam γ = 0.1 60 0.0003 1/20 [21,30,40]
CIFAR-10 (3,32,32) 10 Adam γ = 0.5 100 0.001 10/121 every 10 epochs after 131

Tiny
ImageNet (3,64,64) 200 SGD

γ = 0.1
momentum=0.1
weight decay=2e−4

100 0.001 2/50 [50,70,90]

C.3 Network architectures

We denote the convolutional layer with the output channel c, the kernel k, and the stride s as C(c, k, s)
(or C(c, k, s, p) if it uses the padding p 6= 0) and the linear layer with the output channel c as F(c).
We apply ReLU activation after every convolutional layers and linear layers except for the last linear
layer. For brevity, we omit the notation for the ReLU activation layers and the flatten layer before the
first linear layer. The network 4C3F is the same as that used in Wong et al. [10].

• 4C3F:
C(32,3,1,1)-C(32,4,2,1)-C(64,3,1,1)-C(64,4,2,1)-F(512)-F(512)-F(10)

• 6C2F:
C(32,3,1,1)-C(32,3,1,1)-C(32,4,2,1)-C(64,3,1,1)-C(64,3,1,1)-C(64,4,2,1)-F(512)-F(10)

• 8C2F (Tiny ImageNet):
C(64,3,1,1)-C(64,3,1,1)-C(64,4,2)-C(128,3,1,1)-C(128,3,1,1)-C(128,4,2)-C(256,3,1,1)-
C(256,4,2)-F(256)-F(200)

1https://github.com/locuslab/convex_adversarial/model_scaled_l2

5

https://github.com/locuslab/convex_adversarial/model_scaled_l2

C.4 Additional Experiments

Lipschitz constant. The Lipschitz constant of a neural network is tightly correlated with the excess
risk, the difference between the test error and the training error. This implies that a network with a
large Lipschitz constant shows poor generalization performance [1]. However, the Lipschitz constant
keeps increasing through standard training as shown in Figure S1 (top). On the other hand, the
Lipschitz constant keeps decreasing in the BCP training phase as shown in Figure S1 (bottom). The
left dotted vertical line indicates the step when warm-up ends, and the other line indicates the step
when the ramp-up ends. It demonstrates that our objective (13) encourages the model to be robust
and to generalize better than standard training.

On the other hand, strong constraints on the global Lipschitz constant may reduce the expressive
capacity and the performance of the network [5]. As shown in Figure 2 and 3, BCP can compute a
tighter outer bound, and thus it can relieve the constraints on the Lipschitz constant of the model.

Figure S2 shows the ratio of the Lipschitz constant of the model trained with BCP (L(−1)
BCP =

ΠK−1
k=1 L

(k)
BCP) to its counterpart trained without BCP (L(−1)

0 = ΠK−1
k=1 L

(k)
0). Using BCP had 17.2%

larger Lipschitz constant, achieving a higher model capacity as shown in the results of the standard
accuracy in Table 2.

Therefore, we can conclude that our certifiable training can keep generalization performance without
excessive loss of the expressive capacity.

0 20 40 60 80 100
epoch

100

102

104

106

108

Lip
sc

hi
tz

 c
on

st
an

t

conv1
conv2
conv3
conv4
conv5
conv6
lin1
L(1)

0 20 40 60 80 100
epoch

10 1

100

101

102

103

104

105

Lip
sc

hi
tz

 c
on

st
an

t

Figure S1: The change of the Lipschitz constants in a log scale during standard training (top) and the
BCP training (bottom).

Verification Performance As in Figure 4 in Section 4, we conducted the same analysis on different
settings as demonstrated in Figure S3. On MNIST, we use ε′target = 2 instead of 2εtarget because
εtarget = 1.58 is already large enough. The verification accuracies of BCP and LMT slowly decrease
as increasing εeval almost linearly. However, CAP fails to achieve robustness under the large

6

0 20 40 60 80 100
epoch

1.0

1.1

1.2

1.3

1.4

Lip
sc

hi
tz

 c
on

st
an

t r
at

io

L(1)
BCP /L(1)

0

Figure S2: The change of the ratio of the Lipschitz constant between a model trained with BCP and a
model trained without BCP during training.

perturbations for εtarget and to train the robust model for ε′target. For CIFAR-10, we also tested on
6C2F architecture and found that BCP outperforms the other state-of-the-art methods. Unlike in the
case of BCP where the verification accuracy decreases slowly as increasing εeval, the verification
accuracy of CAP with εtarget drastically decreases when εeval becomes larger than εtarget.

We also analyze the trade-off between standard accuracy and certifiable robustness. We used different
target bounds εtarget = {30, 32, 34, 36, 38, 40, 42}/255 during training to obtain different models
while fixing the evaluation bound with εeval = 36/255. Figure S4 shows the trade-off for 7-layer
convolutional networks, 4C3F, trained with BCP, without BCP, and with LMT [9] on CIFAR-10.
The true robust classification error is lower bounded by the classification error against PGD [8]
and is upper bounded by the verification error. In Figure S4, the x-axis indicates standard accuracy
(as) and on the y-axis, we plot line segments representing intervals [l, u] containing the true robust
classification accuracy with the lower bound of verification accuracy (l = av) and with the upper
bound of classification accuracy against PGD (u = aPGD). We connected the points, (as, av), with
the dotted lines in Figure S4, demonstrating that BCP has the best trade-off among those methods.
The smaller the target bound, the better the standard accuracy achieved. We also found that the robust
accuracy against PGD increases with standard accuracy.

Comparison to IBP [4] and CAP [10] as an `∞-certifiable training As mentioned in Section
3.1, BCP can be extended to other norm-bounded perturbations, e.g., `∞-norm. We compare the
performance of BCP to IBP and CAP as an `∞-certifiable training. We repeated training 4C3F
networks 9 times for BCP and IBP models respectively, evaluated them, and reported the results in
Table S2. We used the pre-trained 4C4F network for CAP as in the previous experiments. We set
εtarget and εeval to 8/255. For BCP and IBP, we present median, maximum, and minimum values of
9 results. Table S2 shows that BCP has comparable performance to IBP and outperforms CAP.

Table S2: Comparison to other `∞-verifiable training methods. Best performances are highlighted in
bold.

Method Accuracy (%); median (max/min)
standard PGD Verification

BCP 36.50 (38.56/34.65) 27.82 (29.53/26.85) 24.20 (25.45/22.01)
IBP 35.81 (38.62/31.23) 27.30 (30.20/23.73) 23.68 (26.68/21.18)
CAP 19.00 17.33 16.06

7

0.0 0.5 1.0 1.5 2.0 2.5 3.0
eval

0

20

40

60

80

100

Ve
rif

ica
tio

n
Ac

c

BCP
CAP
LMT
IBP

0.0 0.1 0.2 0.3 0.4 0.5
eval

0

20

40

60

Ve
rif

ica
tio

n
Ac

c

BCP
CAP
LMT
IBP

0.0 0.1 0.2 0.3 0.4 0.5
eval

0

20

40

60

Ve
rif

ica
tio

n
Ac

c

BCP
CAP
LMT
IBP

Figure S3: The verification accuracy when varying the `2-perturbations εeval. We use ε′target = 2 on
MNIST dataset (Top), and εtarget (Middle) and 2εtarget (Bottom) on CIFAR-10 dataset for training,
which are represented with the vertical lines.

Sensitivity analysis on the schedule parameter λ0 and λ1 We gradually increase λ in (13) from
λ0 = 0 to λ1 = 1 during training. In this section, we perform a sensitivity analysis on the parameters
λ0 and λ1. We train a model with the 4C3F architecture on CIFAR-10. Table S3 shows that the
performance has little to do with the initial weight λ0 but it is highly related with the final weight λ1.
When the final weight λ1 is close to 1, we get a lower standard accuracy and a higher verification
accuracy. We trained three models for each pair (λ0, λ1), and report average performance measures
in Table S3.

8

50 55 60 65 70 75
Accuracy(%)

30

35

40

45

50

55

60

65

Ro
bu

st
 A

cc
ur

ac
y(

%
)

BCP
w/o BCP
LMT

Figure S4: Trade-off graph between standard accuracy and robustness. The vertical line segments
indicate the verification accuracy (lower end points) and the PGD accuracy (upper end points).

Table S3: Sensitivity analysis on the parameters λ0 and λ1. We provide three performance measures
(standard/PGD/verification accuracy (%)).

λ0

λ1 1 0.9 0.5 0.01
1 66.13/59.92/49.72 66.29/59.90/49.90 66.47/59.65/49.96 66.09/60.00/49.95
0.9 67.18/60.52/48.99 66.90/60.23/49.19 66.91/60.50/49.41
0.5 69.86/61.08/42.32 69.96/61.19/42.70
0.01 71.20/59.57/20.69

3.0 3.5 4.0 4.5 5.0
k y (188)

4.0

4.5

5.0

5.5

y (
0)

Logit space
BCP
w/o BCP
PGD
PGD-Margin
Decision Boundary

Figure S5: Illustration of the outer bounds for the BCP trained model on ImageNet.

9

References
[1] P. L. Bartlett, D. J. Foster, and M. J. Telgarsky. Spectrally-normalized margin bounds for neural

networks. In Advances in Neural Information Processing Systems, pages 6240–6249, 2017.

[2] T. default course project for Stanford CS231N. Tiny ImageNet Visual Recognition Challenge,
2018. URL https://tiny-imagenet.herokuapp.com/.

[3] F. Farnia, J. M. Zhang, and D. Tse. Generalizable adversarial training via spectral normalization.
arXiv preprint arXiv:1811.07457, 2018.

[4] S. Gowal, K. Dvijotham, R. Stanforth, R. Bunel, C. Qin, J. Uesato, T. Mann, and P. Kohli. On
the effectiveness of interval bound propagation for training verifiably robust models. arXiv
preprint arXiv:1810.12715, 2018.

[5] T. Huster, C.-Y. J. Chiang, and R. Chadha. Limitations of the lipschitz constant as a de-
fense against adversarial examples. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 16–29. Springer, 2018.

[6] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Technical
report, Citeseer, 2009.

[7] Y. LeCun, C. Cortes, and C. J. Burges. Mnist handwritten digit database. AT&T Labs [Online].
Available: http://yann. lecun. com/exdb/mnist, 2, 2010.

[8] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models
resistant to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.

[9] Y. Tsuzuku, I. Sato, and M. Sugiyama. Lipschitz-margin training: Scalable certification of
perturbation invariance for deep neural networks. In Advances in Neural Information Processing
Systems, pages 6541–6550, 2018.

[10] E. Wong, F. Schmidt, J. H. Metzen, and J. Z. Kolter. Scaling provable adversarial defenses. In
Advances in Neural Information Processing Systems, pages 8400–8409, 2018.

[11] H. Zhang, H. Chen, C. Xiao, B. Li, D. Boning, and C.-J. Hsieh. Towards stable and efficient
training of verifiably robust neural networks. arXiv preprint arXiv:1906.06316, 2019.

10

https://tiny-imagenet.herokuapp.com/

	The proofs of the propositions
	Outer Bound Propagation
	Intuition behind BCP
	Power iteration algorithm
	The circumscribed box OutB2
	BCP through residual layers
	Complexity Analysis

	Experimental details
	Data Description
	Hyper-parameters
	Network architectures
	Additional Experiments

