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Abstract

Arguably, the two most popular accelerated or momentum-based optimization
methods are Nesterov’s accelerated gradient and Polyaks’s heavy ball, both cor-
responding to different discretizations of a particular second order differential
equation with a friction term. Such connections with continuous-time dynamical
systems have been instrumental in demystifying acceleration phenomena in op-
timization. Here we study structure-preserving discretizations for a certain class
of dissipative (conformal) Hamiltonian systems, allowing us to analyze the sym-
plectic structure of both Nesterov and heavy ball, besides providing several new
insights into these methods. Moreover, we propose a new algorithm based on
a dissipative relativistic system that normalizes the momentum and may result
in more stable/faster optimization. Importantly, such a method generalizes both
Nesterov and heavy ball, each being recovered as distinct limiting cases, and has
potential advantages at no additional cost.

1 Introduction

Gradient based optimization methods are ubiquitous in machine learning since they only require first
order information on the objective function. This makes them computationally efficient. However,
vanilla gradient descent can be slow. Alternatively, accelerated gradient methods, whose construc-
tion can be traced back to Polyak [1] and Nesterov [2], became popular due to their ability to achieve
best worst-case complexity bounds. The heavy ball method, also known as classical momentum
(CM) method, is given by

Vg1 = pog, — €V f(xy), Tht1 = T + Vk41, (D

where p € (0, 1) is the momentum factor, € > 0 is the learning rate, and f : R™ — R is the function
being minimized. Similarly, Nesterov’s accelerated gradient (NAG) can be found in the form

Vg1 = pvg, — €V f(xg + pog), T4l = Tp + Vpg1. 2

Both methods have a long history in optimization and machine learning [3]. They are also the basis
for the construction of other methods, such as adaptive ones that additionally include some gradient
normalization [4-7].

In discrete-time optimization the “acceleration phenomena” are considered counterintuitive. A
promising direction has been emerging in connection with continuous-time dynamical systems
[8-18] where many of these difficulties disappear or have an intuitive explanation. Since one is
free to discretize a continuous system in many different ways, it is only natural to ask which dis-
cretization strategies would be most suitable for optimization? Such a question is unlikely to have
a simple answer, and may be problem dependent. Unfortunately, typical discretizations are also
known to introduce spurious artifacts and do not reproduce the most important properties of the
continuous system [19]. Nevertheless, a special class of discretizations in the physics literature
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Algorithm 1 Relativistic Gradient Descent (RGD) for minimizing a smooth function f(z). In
practice, we recommend setting av = 1 which results in a conformal symplectic method.

Require: Initial state (g, vo) and parameters € > 0, > 0, € (0,1), @ € [0,1]
fork=0,1,... do
Thy1/2 < Tk + \/ﬁvk/\/ pollogl|* + 1
Vg2 < /IWk — €V f(Th41/2)
Tpt1 ¢ aTpryz + (1= Q)zp + vig12//Olvkg122 + 1

Vg1 < /[ Vks1/2
end for

known as symplectic integrators [19-22] are to be preferable whenever considering the special class
of conservative Hamiltonian systems.

More relevant to optimization is a class of dissipative systems known as conformal Hamiltonian
systems [23]. Recently, results from symplectic integrators were extended to this case and such
methods are called conformal symplectic integrators [18,24]. Conformal symplectic methods tend to
have long time stability because the numerical trajectories remain in the same conformal symplectic
manifold as the original system [18]. Importantly, these methods do not change the phase portrait
of the system, i.e. the stability of critical points is preserved. Although symplectic techniques
have had great success in several areas of physics and Monte Carlo methods, only recently they
started to be considered in optimization [14, 18] and are still mostly unexplored in this context. Very
recently a great progress has been made [18] by showing that such an approach is able to preserve
the continuous-time rates of convergence up to a controlled error [18].

In this paper, we relate conformal symplectic integrators to optimization and provide important
insights into CM (1) and NAG (2). We prove that CM is a first order accurate conformal symplectic
integrator. On the other hand, we show that NAG is also first order accurate, but not conformal
symplectic since it introduces some spurious dissipation (or excitation). However, it does so in
an interesting way that depends on the Hessian V2 f; the symplectic form contracts in a Hessian
dependent manner and so do phase space volumes. This is an effect of higher order but can influence
the behaviour of the algorithm. We also derive modified equations and shadow Hamiltonians for
both CM and NAG. Moreover, we indicate a tradeoff between stability, symplecticness, and such an
spurious contraction, indicating advantages in structure-preserving discretizations for optimization.

Optimization can be challenging in a landscape with large gradients, e.g. for a function with fast
growing tails. The only way to control divergences in methods such as (1) and (2) is to make the step
size very small, but then the algorithm becomes slow. One approach to this issue is to introduce a
suitable normalization of the gradient. Here we propose an alternative approach motivated by special
relativity in physics. The reason is that in special relativity there is a limiting speed, i.e. the speed of
light. Thus, by discretizing a dissipative relativistic system, we obtain an algorithm that incorporates
this effect and may result in more stable optimization in settings with large gradients. Specifically,
we introduce Algorithm 1. Besides the momentum factor o and the learning rate e—also present in
(1) and (2)—the above RGD method has the additional parameters 6 > 0 and 0 < o < 1 which
brings some interesting properties:

e When § = 0 and oo = 0, RGD recovers NAG (2). When § = 0 and o = 1, RGD becomes
a second order accurate version of CM (1), which has a close behavior but an improved
stability. Thus, RGD can interpolate between these two methods. Moreover, RGD has the
same computational cost as CM or NAG. These facts imply that RGD is at least as efficient
as CM and NAG if appropriately tuned.

o Lety, = axpiq/o+(1—a)zy. The last update in Algorithm 1 implies || 1 —yr|| < 1/9.
Thus, with § > 0, RGD is globally bounded regardless how large ||V f|| might be; this is in
contrast with CM and NAG where § = 0, i.e. || zx+1 — yx|| < oo. The square root factor in
Algorithm 1 has a “relativistic origin” and its strength is controlled by d. For this reason,
RGD may be more stable compared to CM or NAG, potentially preventing divergences in
settings of large gradients; see Fig. 3 in Appendix C and the plots in Appendix D.

o As we will show, a = 1 implies that RGD is conformal symplectic, whereas o = 0 implies
a spurious Hessian driven damping similarly found in NAG. Thus, RGD has the flexibility



of being “dissipative-preserving” or introducing some extra “spurious contraction.” How-
ever, based on theoretical arguments and empirical evidence, we advocate for o = 1.

Let us mention a few related works. Applications of symplectic integrators in optimization was first
considered in [14]—although this is different than the conformal symplectic case explored here.
Recently, the benefits of symplectic methods in optimization started to be indicated [25]. Actu-
ally, even more recently, a generalization of symplectic integrators to a general class of dissipative
Hamiltonian systems was proposed [18], with theoretical results ensuring that such discretizations
are “rate-matching” up to a negligible error; this construction is general and contains the confor-
mal case considered here as a particular case. Relativistic systems are obviously an elementary
topic in physics but—with some modifications—the relativistic kinetic energy was considered in
Monte Carlo methods [26,27] and also briefly in [28]. Finally, we stress that Algorithm 1 is a com-
pletely new method in the literature, generalizing perhaps the two most popular existing accelerated
methods, namely CM and NAG, and also has the ability to be conformal symplectic besides being
adaptive in the momentum which may help controlling divergences. We also provide several new
insights into CM and NAG in Appendices B and C which may be of independent interest.

2 Conformal Hamiltonian Systems

We start by introducing the basics of conformal Hamiltonian systems and focus on their intrinsic
symplectic geometry; we refer to [23] for details. The state of the system is described by a point on
phase space, (7, p) € R?", where z = z(t) is the generalized coordinates and p = p(t) its conjugate
momentum, with £ € R being the time. The system is completely specified by a Hamiltonian
function H : R?"® — R and required to obey a modified form of Hamilton’s equations:

i =VyH(z,p), p=-V.H(z,p)—p 3)
Here = = Z—f, p= %, and v > 0 is a damping constant. A classical example is given by
) = 5 ) @
2m

where m > 0 is the mass of a particle subject to a potential f. The Hamiltonian is the energy of

the system and upon taking its time derivative one finds H = —v||p||> < 0. Thus H is a Lyapunov
function and all orbits tend to critical points, which in this case must satisfy V f(z) = 0 and p = 0.
This implies that the system is stable on isolated minimizers of f.3

Define
_ |z 10 I 10 0

where I is the n x n identity matrix, to write the equations of motion (3) concisely as*

2=QVH(z)—~Dz. (6)
—_———
C(z) D(z)
Note that Q0T = QTQ = I and Q2 = —1I, so that  is real, orthogonal and antisymmetric. Let

£,m € R?" and define the symplectic 2-form w(&,n) = €TQn. It is convenient to use the wedge
product representation of this 2-form, namely”

w(&,n) = (dz A dp)(&,n). @)

’The only reason for introducing this extra parameter, 0 < o < 1, into Algorithm 1 is to actually let the
experiments decide whether oo = 1 (symplectic) or o« < 1 (non-symplectic) is desirable or not.

3This can actually be generalized for any H that is strongly convex on p with the minimum at p = 0.

*C(z) and D(z) will be used later on and stand for “conservative” and “dissipative” parts, respectively.

31t is not strictly necessary to be familiar with differential forms and exterior calculus to understand this
paper. For the current purposes, it is enough to recall that the wedge product is bilinear and antisymmetric, i.e.
dz A (ady + bdz) = adx A dy + bdzx A dz and dz A dy = —dy A dx for scalars a and b and 1-forms dz, dy,
dz (think about this as vector differentials); we refer to [29] and [30] for more details if necessary.



We denote w; = dx(t) A dp(t). The equations of motion define a flow ®; : R*" — R?" i.e.
P4 (20) = 2(t) where z(0) = z. Let J;(z) denote the Jacobian of ®;(z). From (6) it is not hard to
show that (see e.g. [23])

JIQT, =e 0 = w = e . (8)
Therefore, a conformal Hamiltonian flow ®; contracts the symplectic form exponentially with re-
spect to the damping coefficient ~y. It follows from (8) that volumes on phase space shrink as
vol(®:(R)) = [ |det Jy(2)|dz = e """ vol(R) where R C R®". This contraction is stronger
as dimension increases. The conservative case is recovered with v = 0 above; in this case, the
symplectic structure is preserved and volumes remain invariant (Liouville’s theorem). A known and
interesting property of conformal Hamiltonian systems is that their Lyapunov exponents sum up in
pairs to «y [31]. This imposes constraints on the admissible dynamics and controls the phase por-
trait near critical points. For other properties of attractor sets we refer to [32]. Finally, conformal
symplectic transformations can be composed and form the so-called conformal group.

3 Conformal Symplectic Optimization

Consider (6) where we associate flows ®¢ and @7 to the respective vector fields C(z) and D(z).
Conformal symplectic integrators can be constructed as splitting methods that approximate the true
flow ®; by composing the individual flows ®¢ and ®. Our procedure to obtain a numerical map
W,,, with step size h > 0, is to first obtain a numerical approximation to the conservative part of the
system, 2 = QV H(z). This yields a numerical map \I/g that approximates <I>E for small intervals
of time [¢,¢ + h]. One can choose any standard symplectic integrator for this task. Let us pick the
simplest, i.e. the symplectic Euler method [30, pp. 189]. We thus have V¢ : (z,p) — (X, P) where
X =x+hV,H(z, P), P=p—hV,H(z,P). )
Now the dissipative part of the system, £ = —yDz, can be integrated exactly. Indeed, ¢ = 0 and
p = —p, thus U2 : (z,p) = (z,e”""p). With ¥}, = U§ o UL we obtain ¥y, : (z,p) = (X, P)
as
P=¢"p —hV,H(z,P), X =2a+hV,H(z,P). (10)
This is nothing but a dissipative version of the symplectic Euler method. Similarly, if we choose the
leapfrog method [30, pp. 190] for ¥ and consider ¥, = W}, o U§' o ¥, we obtain

X=x+ %VPH(X, e_'yh/2p), (11a)
P=e M2y (v, H(X,e ")+ V. H(X,P)), (11b)
X=X+54v,HX,P), (11c)
P=e 2P, (11d)

This is a dissipative version of the leapfrog, which is recovered when v = 0. Note that in general
(10) is implicit in P, and (11) is implicit in X and P. However, both will become explicit for
separable Hamiltonians, H = T'(p) + f(x), and in this case they are extremely efficient. Note also
that (10) and (11) are completely general, i.e. by choosing a suitable Hamiltonian H one can obtain
several possible optimization algorithms from these integrators. Next, we show important properties
of these integrators. (Below we denote ¢, = kh fork = 0,1,..., 2z = 2(tx), etc.)

Definition 1. A numerical map Wy, is said to be of order r > 1if | ¥y, (2) — ®5(2)|| = O(h"+Y) for
any z € R®™. (Recall that h > 0 is the step size and ®}, is the true flow.)
Definition 2. A numerical map Uy, is said to be conformal symplectic if z+1 = Uy, (2k) is confor-

mal symplectic, i.e. wpy1 = e Mwy, whenever Dy, is applied to a smooth Hamiltonian. Iterating
such a map vyields wy, = e~ wyq so that (8) is preserved.

Theorem 3. Both methods (10) and (11) are conformal symplectic.

Proof. Note that in both cases U§ is a symplectic integrator, i.e. its Jacobian JS obeys
(JHTQJC = Q—see (8) with v = 0. Now the map W2 defined above is conformal symplec-
tic, i.e. one can verify that its Jacobian J obeys (JP)TQJP = e~7"(). Hence, any composition
of these maps will be conformal symplectic. For instance,

(i T Iy ) = ()T ) QIS T = (9)) T = e (12)
The same would be true for any type of composition whose overall time step add up to h. O



Theorem 4. The numerical scheme (10) is of order r = 1, while (11) is of order r = 2.

Proof. The proof simply involves manipulating Taylor expansions for the numerical method and the
continuous system over a time interval of h; this is presented in Appendix A. O

‘We mention that one can construct higher order integrators by following the above approach, how-
ever these would be more expensive, involving more gradient computations per iteration. In practice,
methods of order » = 2 tend to have the best cost benefit.

4 Symplectic Structure of Heavy Ball and Nesterov

Consider the classical Hamiltonian (4) and replace into (10) to obtain

Pri1 =€ o — AV (2k),  Thgr = Tk + Lppi, (13)

where we now make the iteration number £ = 0,1,... explicit for convenience of the reader in
relating to optimization methods. Introducing a change of variables,

o= Lp,  e=k p=e (14)
we see that (13) is precisely the well-known CM method (1). Therefore, CM is nothing but a

dissipative version of the symplectic Euler method. Thanks to Theorems 3 and 4 we have:

Corollary 5. The classical momentum (1), or heavy ball, is a conformal symplectic integrator for
the Hamiltonian system (4). Moreover, it is an integrator of order r = 1.

Consider again the Hamiltonian (4) but replaced into (11). Let us also replace the last update (11d),
i.e. from a previous iteration, into the first update (11a).® We thus obtain

Tit1/2 = Tt o oo, pri1 =€ P Pe—hV f(@ht1/2),  Thi1 = Tip1jot g Prgr. (15)

Define )
vk.z%mpk, ez%, p=e " (16)

Then (15) can be written as

Tht1/2 = Tk + POk, Vpy1 = vy — €V f(Tpq1/2), Tpy1 = Tpyrj2 + k1. (A7)

The reader can immediately recognize the close similarity with NAG (2); this would be exactly NAG
if we replace wy, 11 /9 — ¥y in the third update above. As we will show next, this small difference has
actually profound consequences. Intuitively, by “rolling this last update backwards” one introduces
a spurious friction into the method, as we will show through a symplectic perspective (Theorem 6
below). The method (15) is actually a second order accurate version of (13). In order to analyze the
symplectic structure one must work on the phase space (z,p). The true phase space equivalent to
NAG is given by

Tpr1/2 =Tk + e o, pryt = e o — AV f(Tpr1/2)s Thar = T+ Lppga,  (18)

which is completely equivalent to (2) under the correspondence (14). We thus have the following.

Theorem 6. Nesterov’s accelerated gradient (2), or equivalently (18), is an integrator of order
r = 1 to the Hamiltonian system (4). This method is not conformal symplectic but rather contracts
the symplectic form as

2 b
T [I — 292 f ()] wi + O(3). (19)
Proof. The details are presented in Appendix B, though the argument is simple. First, compare

Taylor expansions of (18) and (z(t+ h),p(t+ h)). Second, use the variational form of (18), replace
into dzy1 A dpk+1, and then use basic properties of the wedge product. O

SNote that it is valid to replace successive updates without changing the algorithm.



4.1 Alternative Form

It is perhaps more common to find Nesterov’s method in the following form:

Try1 = Yr — €V f(Yr), Ykt1 = Tht1 + k1 (Thy1 — Tn)s (20)

where pr+1 = k/(k + 3). This is equivalent to (2), as can be seen by introducing the variable
v = T — Tkx—1 and writing the updates in terms of x and v. When py, is constant, Theorem 6
shows that the method is not conformal symplectic. When p, = k/(k + 3), the differential equation
associated to (20) is equivalent to (3)/(4) with v = 3/¢. It is possible to generalize the above results
for time dependent cases [18]. Therefore, also in this case, NAG does not preserve the symplectic
structure; we note that (19) still holds with e 7" — e~3108(1+h/tk) where t;, = hk.

4.2 Preserving Stability and Continuous Rates

An important question is whether being symplectic is beneficial or not for optimization. Very re-
cently, it has been shown [18] that symplectic discretizations of dissipative systems may indeed
preserve continuous-time rates of convergence when f is smooth and the system is appropriately
dampened (choice of 7); the continuous-time rates can be obtained via Lyapunov analysis. Thus,
assuming that we have a suitable conformal Hamiltonian system, conformal symplectic integrators
provide a principled approach to construct optimization algorithms which are guaranteed to respect
the main properties of the system, such as stability of critical points and convergence rates. Further-
more, we claim that there is a delicate tradeoff where being conformal symplectic is related to an
improved stability, in the sense that the method can operate with larger step sizes, while the spurious
dissipation introduced by NAG (Theorem 6) may improve the convergence rate slightly, since it in-
troduces more contraction, but at the cost of making the method less stable. Due to the lack of space,
we defer these details to Appendix C. In Appendix B we also provide important additional insights
into CM and NAG, such as their modified or perturbed equations and their shadow Hamiltonians,
which describe these methods to a higher degree of resolution.

5 Optimization from a Dissipative Relativistic System

Let us briefly mention some simple but fundamental concepts to motivate our approach. The previ-
ous algorithms are based on (4) which leads to a classical Newtonian system where time is just
a parameter, independent of the Euclidean space where the trajectories live. This implies that
there is no restriction on the speed, ||v|| = ||dx/dt|, that a particle can attain. This translates to
a discrete-time algorithm, such as (13), where large gradients V f give rise to a large momenta
p, implying that the position updates for = can diverge. On the other hand, in special relativity,
space and time form a unified geometric entity, the (n + 1)-dimensional Minkowski spacetime with
coordinates X = (ct;x), where ¢ denotes the speed of light. An infinitesimal distance on this
manifold is given by ds? = —(cdt)? + ||dz||?>. Null geodesics correspond to ds? = 0, implying
|[v]|> = ||dx/dt||> = c?, i.e. no particle can travel faster than c. This imposes constraints on
the geometry where trajectories take place—it is actually a hyperbolic geometry. With that being
said, the idea is that by discretizing a relativistic system we can incorporate these features into an
optimization algorithm which may bring benefits such as an improved stability.

A relativistic particle subject to a potential f is described by the following Hamiltonian:

IplI? + m2c® + f(x). 20D

In the classical limit, ||p|| < mc, one obtains H = mc?+||p||?/(2m) + f(z) + O(1/c?), recovering
(4) up to the constant Ejy = mc?, which has no effect in deriving the equations of motion. Replacing
(21) into (3) we thus obtain a dissipative relativistic system:

. cp .
= p=-Vf—p (22)
VIIpll* +m?e
Importantly, in (22) the momentum is normalized by the /- factor, so & remains bounded even if
p was to go unbounded. Now, replacing (21) into the first order accurate conformal symplectic
integrator (10), we readily obtain

hepy 41

Vllprsi[? +m2c

Prt1 =€ pr — WV f(qr), Tyl = Tp + (23)



When ¢ — oo the above updates recover CM (13). Thus, this method is a relativistic generalization
of CM or heavy ball. Moreover, the method (23) is a first order conformal symplectic integrator by
construction (see Theorems 3 and 4).

One can replace the Hamiltonian (21) into (11) to obtain a second order version of (23). However,
motivated by the close connection between NAG and (15)—recall the comments following (17)
about NAG “rolling back™ the last update—Ilet us additionally introduce a convex combination,
azpq1/2 + (1 — o)z, where 0 < o < 1, between the initial and midpoint of the method. In this
manner, we can interpolate between a conformal symplectic regime and a spurious Hessian damping
regime (recall Theorem 6). Therefore, we obtain the following integrator:

Tpi1)2 = Tp + (hc/Q)e_"*h/ka/\/e—7h||pk||2 +m2c2, (24a)
Priiyz =€ " 2pn = WV f(2p41/2), (24b)
Try1 = Qpyry2 + (1 — @)z + (hc/2)pk+1/2/\/\|pk+1/2||2 +m3c?, (24c)
Prrr=e " . (24d)

We call this method Relativistic Gradient Descent (RGD). By introducing

NS ek, €=dn, op=eM 5=4/(ch) (25)

the updates (24) assume the equivalent form stated in Algorithm 1 in the introduction.

RGD (24) (resp. Algorithm 1) has several interesting limits, recovering the behaviour of known al-
gorithms as particular cases. For instance, when ¢ — oo (resp. § — 0) it reduces to an interpolation
between CM (13) (resp. (1)) and NAG (18) (resp. (2)). If we additionally set « = 0 it becomes
precisely NAG, whether when @ = 1 it becomes a second order version (in terms of accuracy) of
CM.” When a = 1, and arbitrary ¢ (or §), RGD is a conformal symplectic integrator thanks to
Theorems 3. Recall also that Theorem 4 implies that RGD is a second order accurate integrator.
When a = 0, and arbitrary ¢ (or §), RGD is no longer conformal symplectic and introduces a Hes-
sian driven damping in the spirit of NAG. Finally, the parameter ¢ (or §) controls the strength of
the normalization term in the position updates of (24) (or Algorithm 1), which can help preventing
divergences when navigating through a rough landscape with large gradients, or fast growing tails.
Indeed, note that ||y 1 — axjy1/2 — (1 —a)z|| < 1/6 is always bounded for § > 0; this becomes
unbounded when § — 0, i.e. in the classical limit of CM and NAG.

In short, RGD is a novel algorithm with quite some flexibility and unique features, generalizing
perhaps the two most important accelerated gradient based methods in the literature, which can be
recovered as limiting cases. Next, we illustrate numerically through simple yet insightful examples
that RGD can be more stable and faster than CM and NAG.

6 Numerical Experiments

Let us compare RGD (Algorithm 1) against NAG (2) and CM (1) on some test problems. We stress
that all hyperparameters of each of these methods were systematically optimized through Bayesian
optimization [33] (the default implementation uses a Tree of Parzen estimators). This yields optimal
and unbiased parameters automatically. Moreover, by checking the distribution of these hyperpa-
rameters during the tuning process we can get intuition on the sensitivity of each method. Thus, for
each algorithm, we show its convergence rate in Fig. 1 when the best hyperparameters were used.
In addition, in Fig. 2 we show the distribution of hyperparameters during the Bayesian optimization
step—the parameters are indicated and color lines follow Fig. 1. Such values are obtained only when
the respective algorithm was able to converge. We note that usually CM and NAG diverged more
often than RGD which seemed more robust to parameter choice. Below we describe some of the
optimization problems where such algorithms were tested over. In Appendix D we provide several
additional experiments illustrating the benefits of RGD. The actual code related to our implementa-
tion is extremely simple and can be found at [34].

"The dynamics of both CM and this second order version is pretty close, and if anything the latter is even
more stable than the former (see Appendix C).
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Figure 1: Convergence rate showing improved performance of RGD (Algorithm 1); see text.
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Figure 2: Histograms of hyperparameter tuning by Bayesian optimization. Tendency towards a ~ 1
indicates benefits of being symplectic, while o ~ 0 of being extra damped as in NAG. Tendency
towards ¢ > 0 indicates benefits of relativistic normalization. (Color line follows Fig. 1.)

Correlated quadratic Consider f(z) = (1/2)z7Qx where Q;; = pI"™7l, p = 0.95, and Q
has size 50 x 50—this function was also used in [14]. We initialize the position at random, zg ; ~
N(0,10), and the velocity as vg = 0. The convergence results are shown in Fig. 1a. The distribution
of parameters during tuning are in Fig. 2a, showing that o — 1 is preferable. This gives evidence
for an advantage in being conformal symplectic. Note also that § > 0, thus “relativistic effects”
played a role in improving convergence.

Random quadratic Consider f(q) = (1/2)zTQz where Q is a 500 x 500 positive definite ran-
dom matrix with eigenvalues uniformly distributed in [10~2,10]. Convergence rates are in Fig. 1b
with the histograms of parameter search in Fig. 2b. Again, there is a preference towards @ — 1,
evidencing benefits in being conformal symplectic.

Rosenbrock For a challenging problem in higher dimensions, consider the nonconvex Rosenbrock
function f(z) = 327" (100(zi11 —2)2 + (1 —;)?) with n = 100 [35,36]; this case was already

studied in detail [37]. Its landscape is zquite involved, e.g. there are two minimizers, one global at
z* = (1,...,1)T with f(2*) = 0 and one local near z ~ (—1,1,...,1)7 with f ~ 3.99. There
are also—exponentially—many saddle points [37], however only two of these are actually hard to
escape. These four stationary points account for 99.9% of the solutions found by Newton’s method
[37]. We note that both minimizers lie on a flat, deep, and narrow valley, making optimization
challenging. In Fig. 1c we have the convergence of each method initialized at xo; = £2 for ¢
odd/even. Fig. 2c shows histograms for parameter selection. Again, we see the favorable symplectic
tendency, & — 1. Here relativistic effects, 6 # 0, played a predominant role in the improved
convergence of RGD.

Matrix completion Consider an n X n matrix M of rank r < n with observed entries in the
support (i,5) € Q, where Po(M);; = M;; if (i,7) € Q and Po(M);; = 0 projects onto this
support. The goal is to recover M from the knowledge of Po(M). We assume that the rank 7 is
known. In this case, if the number of observed entries is O(rn) it is possible to recover M with high
probability [38]. We do this by solving the nonconvex problem ming v || Po(M — UVT)||%, where
U,V € R™ ", by alternating minimization: for each iteration we apply the previous algorithms first
on U with V held fixed, followed by similar updates for V' with the new U fixed. This is a know



technique for gradient descent (GD), which we additionally include as a baseline. We generate
M = RST where R,S € Rn x r have i.i.d. entries from the normal distribution NV'(1,2). We
initialize U and V' sampled from the standard normal. The support is chosen uniformly at random
with sampling ratio s = 0.3, yielding p = sn? observed entries. We set n = 100 and » = 5. This
gives a number of effective degrees of freedom d = r(2n — r) and the “hardness” of the problem
can be quantified via d/p =~ 0.325. Fig. 1d shows the convergence rate, and Fig. 2d the parameter
search.

7 Discussion and Outlook

This paper introduces a new perspective on a recent line of research connecting accelerated opti-
mization methods to continuous dynamical systems. We brought conformal symplectic techniques
for dissipative systems into this context, besides proposing a new method called Relativistic Gra-
dient Descent (RGD) which is based on a dissipative relativistic system; see Algorithm 1. RGD
generalizes both the well-know classical momentum (CM), given by (1), as well as Nesterov’s ac-
celerated gradient (NAG), given by (2); each of these methods are recovered as particular cases from
RGD which has no additional computational cost compared to CM and NAG. Moreover, RGD has
more flexibility, can interpolate between a conformal symplectic behaviour or introduce some Hes-
sian dependent damping in the spirit of NAG, and has potential to control instabilities due to large
gradients by normalizing the momentum. In our experiments, RGD significantly outperformed CM
and NAG, specially in settings with large gradients or functions with a fast growth; besides Section 6
we report additional numerical results in Appendix D.

We also elucidated what is the symplectic structure behind CM and NAG. We found that the former
turns out to be a conformal symplectic integrator (Corollary 5), thus being “dissipative-preserving,”
while the latter introduces a spurious contraction of the symplectic form by a Hessian driven damp-
ing (Theorem 6). This is an effect of second order in the step size but may affect convergence and
stability. We pointed out that there is a tradeoff between this extra contraction and the stability of a
conformal symplectic method; these ideas are explored in more detail in the Appendix C. We also
derived modified or perturbed equations for CM and NAG, describing these methods to a higher
degree of resolution; this analysis provides several new insights into these methods that were not
previously considered in the literature.

On a higher level, this paper shows how structure-preserving discretizations of classical dissipative
systems can be useful for studying existing optimization algorithms in machine learning, as well
as introduce new methods inspired by real physical systems. A thorough justification for the use
of structure-preserving—or “dissipative symplectic”’—discretizations in this context was recently
provided in [18] under great generality.

A more refined analysis of RGD is certainly an interesting future problem, though considerably chal-
lenging due to the nonlinearity introduced by the /1 + d||v||? term in the updates of Algorithm 1.
To give an example, even if one assumes a simple quadratic function f(x) = (\/2)x?, the differen-
tial equation (22) is nonlinear and does not admit a closed form solution, contrary to the differential
equation associated to CM and NAG which is linear and can be readily integrated. Thus, even in
continuous-time, the analysis for RGD is likely to be involved. Finally, it would be interesting to
consider RGD in a stochastic setting, namely investigate its diffusive properties in a random media,
which may bring benefits to nonconvex optimization and sampling.

Broader Impact

The techniques introduced in this paper significantly broaden the applicability of existing results in
dynamical systems theory, classical Lagrangian/Hamiltonian mechanics, and numerical analysis of
differential equation to optimization, which have widespread applications in several areas of statisti-
cal machine learning. This work also lead to cross-fertilization between dynamical systems theory,
physics, machine learning and optimization, which can impact emerging work at the intersection of
learning and control. We do not see any disadvantages or implications due to failure of this research
at this point.
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