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Appendix

A Proof of Lemma 1

Proof. This essentially follows from the definition of Fspwlin. In particular, we have:

fy(x) ≥ 0 ⇐⇒ min
y′ 6=y

{
(wy −wy′)

>x+ (by − by′)
}
≥ 0

⇐⇒ min
y′ 6=y

{
(w>y x+ by)− (w>y′x+ by′)

}
≥ 0

⇐⇒ (w>y x+ by) ≥ (w>y′x+ by′) ∀y′ 6= y

⇐⇒ y ∈ argmaxy′∈[n] w
>
y′x+ by′ .

B Proof of Theorem 2

Proof. LetD be aHlin-realizable distribution. Then ∃h∗ ∈ Hlin such that P(X,Y )∼D(Y = h∗(X)) =

1, and therefore er0-1
D [Hlin] = 0. Thus our goal is to show that ∃ a strictly increasing function

g : R+→R+ that is continuous at 0 with g(0) = 0 such that for all f ∈ Fspwlin,

er0-1
D [argmax ◦ f ] ≤ g

(
erOvA,log
D [f ]− erOvA,log

D [Fspwlin]
)
.

We will do this in two parts:

(1) We will show that erOvA,log
D [Fspwlin] = 0.

(2) We will show that for all f ∈ Fspwlin, er0-1
D [argmax ◦ f ] ≤ 1

ln(2) erOvA,log
D [f ].

Putting these together will then give that for all f ∈ Fspwlin,

er0-1
D [argmax ◦ f ] ≤ 1

ln(2)

(
erOvA,log
D [f ]− erOvA,log

D [Fspwlin]
)
.

Part 1. We will show that for any sufficiently small ε > 0, ∃f ε ∈ Fspwlin such that erOvA,log
D [f ε] < ε;

this will establish that erOvA,log
D [Fspwlin] = 0.

Let 0 < ε < 2n ln(2). Since h∗ ∈ Hlin, we have ∃{w∗y, b∗y}ny=1 such that

h∗(x) ∈ argmaxy∈[n] (w
∗
y)
>x+ b∗y ∀x .

Define f∗ ∈ Fspwlin as

f∗y (x) = min
y′ 6=y

{
(w∗y −w∗y′)

>x+ (b∗y − b∗y′)
}

= min
y′ 6=y

{
((w∗y)

>x+ b∗y)− ((w∗y′)
>x+ b∗y′)

}
.

Then we have
P(X,Y )∼D

(
f∗Y (X) > 0

)
= 1 .

Therefore ∃κ > 0 such that

P(X,Y )∼D
(
f∗Y (X) < κ

)
≤ ε

2n ln(2)
.
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Define f ε ∈ Fspwlin as

f εy(x) =
f∗y (x)

κ
ln
( 1

eε/2n − 1

)
.

Then it can be verified that

f∗y (x) > 0 =⇒ f εy(x) > 0 =⇒ ψOvA,log(y, f
ε(x)) ≤ n ln(2) ,

and moreover,

f∗y (x) ≥ κ =⇒ f εy(x) ≥ ln
( 1

eε/2n − 1

)
=⇒ ψOvA,log(y, f

ε(x)) ≤ ε

2
.

This gives

erOvA,log
D [f ε] = E(X,Y )∼D

[
ψOvA,log

(
Y, f ε(X)

)]
≤ P(X,Y )∼D

(
0 < f∗Y (X) < κ

)
·E
[
ψOvA,log

(
Y, f ε(X)

) ∣∣ 0 < f∗Y (X) < κ
]

+ P(X,Y )∼D
(
f∗Y (X) ≥ κ

)
·E
[
ψOvA,log

(
Y, f ε(X)

) ∣∣ f∗Y (X) ≥ κ
]

≤ ε

2n ln(2)
· n ln(2) + 1 · ε

2
= ε .

Part 2. Let f ∈ Fspwlin, and let {wy, by}ny=1 be such that

fy(x) = min
y′ 6=y

{
(wy −wy′)

>x+ (by − by′)
}
∀x .

Define h : X→Y such that
h(x) ∈ argmaxy∈[n]fy(x) ∀x .

Then we have

er0-1
D [h] = E(X,Y )∼D

[
`0-1(Y, h(X))

]
= E(X,Y )∼D

[
1
(
h(X) 6= Y

)]
= E(X,Y )∼D

∑
y 6=Y

1
(
h(X) = y

)
≤ E(X,Y )∼D

∑
y 6=Y

1
(
fy(X) ≥ 0

) (by definition of h and Lemma 1)

≤ 1

ln(2)
E(X,Y )∼D

∑
y 6=Y

ln
(
1 + efy(X)

)
≤ 1

ln(2)
E(X,Y )∼D

ln (1 + e−fY (X)
)
+
∑
y 6=Y

ln
(
1 + efy(X)

)
(since ln(1 + e−fy(x)) ≥ 0 ∀(x, y))

=
1

ln(2)
E(X,Y )∼D

[
`OvA,log

(
Y, f(X)

)]
=

1

ln(2)
erOvA,log
D [f ] .

C Proof of Theorem 3

Proof. Let w1, . . . ,wn ∈ Rd, b1, . . . , bn ∈ R, and let f ∈ Fspwlin be parametrized by {wy, by}ny=1,
so that

fy(x) = min
y′ 6=y

{
(wy −wy′)

>x+ (by − by′)
}
∀x .
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We will show that
argmaxy∈[n]fy(x) = argmaxy∈[n] w

>
y x+ by ;

this will establish the result.

To see that the above claim is true, notice that we can write

fy(x) = (w>y x+ by)−max
y′ 6=y

{
w>y′x+ by′

}
.

In other words, fy(x) is the difference between (w>y x+ by) and the largest value of (w>y′x+ by′)

among y′ 6= y. Clearly, this difference is largest when (w>y x + by) ≥ (w>y′x + by′) ∀y′ 6= y (in
particular, in this case the difference is non-negative; in all other cases, the difference is negative, and
therefore smaller). Thus

fy(x) ≥ fy′(x) ∀y′ 6= y ⇐⇒ (w>y x+ by) ≥ (w>y′x+ by′) ∀y′ 6= y .

This proves the claim.

D Proof of Corollary 4

This follows directly from the proof of Theorem 3.

E Details of Real Data Sets Used in Experiments in Section 5.2

Table 3: Multiclass classification data sets used in experiments in Section 5.2.
Data set # train # validation # test # classes # features

(n) (d)
Covertype (50K) 30000 10000 10000 7 54
Digits 5620 1874 3498 10 16
USPS 5468 1823 2007 10 256
MNIST (70K) 45000 15000 10000 10 780
CIFAR10 37500 12500 10000 10 3072
Sensorless 35105 11702 11702 11 48
Letter 10500 4500 5000 26 16

Notes:

Subsampling: For Covertype, we used a random subsample of the original data set containing 50,000
examples (the original data set has 581,012 examples).

Image data sets with pixel features: The versions of the USPS and MNIST datasets that we used
came with features scaled to the ranges [−1, 1] and [0, 1], respectively. For CIFAR10, we similarly
scaled the features to the range [0, 1] by dividing all features by 255.
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