A Proof of ReLU Balancing Rule

We present the proof of Lemma 3.1 here.

Proof. We seek to optimize the number of trainable parameters, i.e.:

$$\max \sum_{i \in [0,D-1]} F^2 C_i^2$$

subject to a constraint on the total number of ReLUs, which we can write as:

$$\sum_{i \in [0,D-1]} \frac{W_0^2}{\alpha^{2i}} C_i \le R_{bdg}.$$

To solve this problem, we maximize its Lagrangian:

$$\max \sum_{i \in [0, D-1]} F^2 C_i^2 - \lambda \left(\sum_{i \in [0, D-1]} \frac{W_0^2}{\alpha^{2i}} C_i - R_{bdg} \right)$$

Setting derivatives with respect to C_i to zero, we get $C_i = \frac{\lambda W_0^2}{2F^2\alpha^{2i}}$ and hence, $C_{i+1} = \alpha^2 C_i$.

B CryptoNAS Generalized to Other Networks

Table 4 explores ReLU balanced channel scaling for original wide residual networks, as well as models scaled to lower ReLU budgets (WRN-16-4 and WRN-16-2). We observe that ReLU balanced models have more parameters and improve accuracy compared to FLOP balanced models for the same ReLU budget.

Table 4: Exploring ReLU ballancing in Wide ResNet architectures.

Model	ReLU Budget	FLOP Balanced		ReLU Balanced	
		Params	Acc	Params	Acc
WRN-16-2	245K	703K	94.06%	2.6M	94.89%
WRN-16-4	475K	2.8M	95.39%	10.4M	95.6%
WRN-16-8	933K	11.0M	95.73%	42M	96.01%
WRN-40-4	1392K	8.9M	95.47%	36M	96.28%
WRN-28-10	2310K	36.5M	96.00%	144M	96.28%