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Notations. For two vectors a,b € R", (a,b) denotes the usual Euclidean product and | a|| the
associated norm. By convention, vectors are column vectors. For a vector x with components
(x1,...,2,), z;; denotes the sub-vector with components (x;, Ziy1,...,T;—-1,%;).

For two matrices A € R™*"2 and B € R"™*"™_ A ® B denotes the Kronecker product. I, is the
r x r identity matrix. A7 is the transpose of A.

6 Complexity of incremental EM-based methods for smooth non-convex
finite sum optimization

We first compare the complexities of the incremental EM based methods using the following table
which summarizes the state-of-the-art results.

algorithm 0% Kopt Kcg Optimal Kcg
EM [10] - T+ Fmax N+ Nkmax N/A
online-EM [6] | decaying; O(L~'k~1/?) 1+ Emax n + bkmax e ?

iEM [21] 1 1+ Emax 7 + bkmax e ln
SEM-vr [7, 18] O(L™'n=%/3) 1+ kinkout | (1 4 kout) + (bkin + n)kout e 1n¥/3
FIEM [18] O(L~'n=2/3) 1+ Emax n + 2bkmax e In?/3
FIEM[12] O(Lilnfl/?’k;;)/(g) 1 4 Emax 1+ 2bkmax 6—3/2\/5
SPIDER-EM oL 1+ kinkout N + koutn + 2bkinkout e 'Vn

Table 1: Comparison between different EM-based algorithms for smooth non convex finite sum
optimization. Except sEM-vr and SPIDER-EM which have nested loops (ko is the maximal number
of outer loops and k;,, is the number of inner loops per outer loop), kmax is the maximal number of
iterations. The last column is the optimal complexity to reach an e-approximate stationary point.

Next, we provide the psuedo-codes of several existing incremental EM-based algorithms, following
the notations defined in the main paper.
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Data: kmax S N*, Sinit S R/q\
Result: The EM sequence: Si,k =0, ..., knax
So =50 T(Sinit) 3

2fork=0,...,kpnax — 1do

w

| St — 50 T3

Algorithm 2: The EM algorithm in the expectation space.

~

Data: kmax € Ny, Sinit € R%, v € (0,00) fork =1,. .., knax

Result: The SA sequence: §k, k=0,..., knax

So =50 T(Simit) :

for k=0,...,knax — 1 do

L Sample a mini-batch By in {1,...,n} of size b, with replacement ;

§k+1 = §k + Ve+1 (55k+1 o T(§k) — S\k)

Algorithm 3: The Online EM algorithm.

—
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Data: kuax € N, Sinie € R, v € (0,00) fork = 1,. .., kmax
Result: The iEM sequence: Sk, k =0, ..., kpax

5071‘ = 5; 0 T(Sinit) forall - = 1,...,n;
So =S80 =n"" 3" Sois
fork=0,...,kpax — 1 do
Sample a mini-batch By in {1,...,n} of size b, with replacement ;
Sk+1,s = Sk, fori & Bii1;
Sk+1,i =35; 0 T(Sk) fori € Bk+1;
Skr1 =Sk +n7" Yicp, ., (St — Ski) 5
Sk+1 = Sk + Yer1(Sk1 — S*)

Algorithm 4: The Incremental EM (iEM) algorithm.

[
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Data: kpax € N, Sinie € R, v € (0,00) fork = 1,. .., kmax

Result: The FIEM sequence: §k, k=0,..., knax

SO,i =35;0 T(§init) foralli=1,...,n;

So=Sy=n"1 i1 So,is

for k=0,...,knax — 1 do

Sample a mini-batch By in {1,...,n} of size b, with replacement ;
Sk+1,s = Sk, fori & Bii1;

Sk+1,i =35;0 T(S\k) fori € Biy1;

Skr1 =Sk +n7 Yicp, ., (Se1,i — Sky)

Sample a mini-batch Bj, 41 in {1,...,n} of size b, with replacement ;
Vig1 = Sk+1 — b7t Ziel’ﬁ’jc+l Skt1,i

Ser1 =Sk + Ve+1(55;,, © T(Sk) = Sk + Vit1)

Algorithm 5: The Fast Incremental EM (FIEM) algorithm.
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Data: ki, € N, koue € Ny, Sinie € R%, 1, € (0,00) fort > 1,k > 1
Result: The sEM-vr sequence: S; ,t =1,...,koysand k =0,..., ki — 1
S1,0 =50 T(Sinit)
51,0 = Sinit 3
fort=1,...,kou do
for k=0,...,k,—2do
Sample a mini-batch By ;41 in {1,...,n} of size b, with replacement ;
Vik+1 = St,0 = 88, 400 © T(St—1,km—1)
Sth+1 = Stk + Ve k1 (EBMH o T(Stk) — St + Vt,k+1)
St41,0 =50 T(Sp k1) ;

St4+1,0 = Stkim—1 + Ve kin (5t+1’0 - St,kirl)

7

Algorithm 6: The sEM-vr algorithm.

An equivalent definition of the SPIDER-EM algorithm

Using Lemma 3 below this page, we deduce that SPIDER-EM can be equivalently described by the
following algorithm 7.

10

11

Data: ki, € Ny, kous € Ny, §init € RY, a positive sequence {7y x,t,k > 1}.
Result: The SPIDER-EM sequence: St ., t =1,...,kout, E=0,..., ki — 1
S1,-1 = Sinit 3

S1.0="50T(Sinit) 5
fort=1,..., kou do
Vio=0;
fork=0,...,ky—2do
Sample a mini-batch B; ;41 in {1, ..., n} of size b, with or without replacement ;

Vikt1 = Vir + Stk — 88,50 © T(Sep—1) 3
St,k+1 = gBt,k+1 © T(Sfyk) >
Sth+1 = Stk + Ve k1 (St,k+1 — Sk + Vt,k+1>
Stt10=50T(Stk-1);
St4+1,0 = St k-1 T Ve kim (5t+1,0 - St,k:;rl)

Algorithm 7: The SPIDER-EM algorithm (equivalent description)

Lemma 3. Let {7y, k > 1} be a positive deterministic sequence and {By,t,k > 1} be a family of
mini-batches sampled from {1,... ,n}. Fix S_1,Sg and Sq. Define for k =0, - - - | ki, — 2

Set

def _ 4 _ S
Sk}-‘rl = Sk} + 88k+1 o T(Sk) - 88k+1 o T<SI€—1) 9
S def & 5
Sk+1 = Sk + Ve+1 (Sk-H - Sk)

S %G 1 S XS, Vo X0 and define for k = 0,. .. ki — 2,

de =

Vk+1 déf Vie + 5By © T(gkfl) - §Bk+1 o T(gkfl) )
Sk+1 S+ V41 (§Bk+1 o T(Sk) — Sk + Vk+1) ;

by convention, set 55, 0 T(S_1) = So.

Then forany k = —1,... ki, — 1, §k = §k
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Proof. We prove by inductiogthat f~or any k > 1,V =S, —3p, © T(§k,1) and §k = §k We have
by definition of Vp, 55, 0 T(S_1), S_1 and Sy,
Vi=So—3p, 0T(5_1)=S0—58, 0T(S_1) =51 — 55, 0 T(S) .
In addition, by definition of §0, §1 and V7, we have
S1 =580 +m (581 0 T(S0) — 8o +S1 — 5, © T(§,0)) :

Assume that the property holds for any 0 < j < k. Then, by definition of Vj, the induction
assumption on V}, and the definition of Sg1, it holds

Virr = Vi + 35, 0 T(Sp_1) — 5Bj41 © T(Sk_1)
=S, — §3k+1 o T(Skfl) = Sk+1 — 531@4—1 o T(Sk) .
This concludes the induction for the property on {Vj, k > 0}. In addition, by the induction assump-

tion on §k, the definition of Vjy4, the induction assumption on V}, and the definition of Si1, we
have

Sk+1 =Sk + Vb1 (§Bk+1 0 T(Sk) — Sy + Vi + 55, 0 T(Sp—1) — 8Bt © T(gk—1)>
= Sk + Yt (Esw o T(Sk) — Sk + Sk — 55,4, © T(§k,1))

= S + Vst (Sk+1 - §k) = Skt1 -

This concludes the proof. O

8 General convergence results

The purpose of this section is to show the general convergence results of a SPIDER-EM like algo-
rithm, and these results will be specialized in section 9. For all ¢ = 1,...,n, 5; o T is a function

from R? to RY; for a selection of b indices B in {1,...,n} with or without replacement, we set

_ def i, o def _
50T = b~ 'Y, 55 0 T. More generally, 50 T = n=' 3" | 5; o T. For some results below,

specific assumptions may be introduced on 5, o T.

Let {vx, k > 1} be a positive deterministic sequence. Let {8y, k > 1} be a family of independent
random mini batches sampled in {1,...,n} of size b, (either with replacement or without replace-
ment). Finally, let U_1, Uy be random variables. Assume that (U_1,Up) are independent from the
sequences {By, k > 1} and set

Uo @ 50T(U_1) =E |55, o T(U_1)|U_1] . (16)

Consider the recursive definition for k£ > 0,
Ups1 = Ui + 55,4, 0 T(Uk) = 35,,, 0 T(Up-1)
Uk+1 = Uk + Y41 (ﬁkJrl - Uk) :

Finally, define the filtration

Go = o(U-1,U0), for k>0, g1 = o (G UBkya) |
and define the sequence of random variables
def def 7~ -
Ay = W(U-), fork >0, App1 = Upgr — Uk = v (Uka — Uk) -

Lemma 4. Forany k > 0, By1 and Gy, are independent. For any u € RY,
E[58,., 0 T(u)] =50 T(u).

?Rflsume that 5; o T is globally Lipschitz with constant L;; set L? def -1 Z?:l L2. Forany u,u’ €

E [||§Bk+1 © T(’U,) - §Bk+1 © T(u/) —S5o T(u) +so0 T(u/)HQ]

1 _ _
< 5 (L2Hu — 1/||2 — |50 T(u) — soT(u’)HQ) .
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Proof. By assumption, By and (Uy, U_1) are independent, and therefore By and Gy are also.
In addition, By is independent of B, for any ¢ < k so By is independent of Gj.

e Case: sampling with replacement. We write By1 = {I1,- - , I} where the random variables are
independent, and uniformly distributed on {1,--- ,n}. Then

E [5,., 0 Tw)] = £ SO B[51, 0 T(w)] = Efsy, o T(w)] = 50 Tw)

In addition, since the variance of the sum is the sum of the variance for independent r.v.
E [HEBHI oT(u)— 5Byyy © T(u')—50T(u)+50 T(u/)||2]

b
:éZE[H@ZoT(u)—§1£oT(u’)—§oT( )+ 50 T(W)|]

Then we have
E[||87, o T(u) — 57, 0 T(w') — 50 T(u) + 50 T(u)|?]

= =S B [0 Tw) =50 T(W)IP] = 50 T(w) + 50 T(w)

1 n

<|lu—u|P=> L?—|50T 50T(u)|? 17

<P T 3L Fe T + 50 Tw)) (a7
which concludes the proof.
e Case: sampling with no replacement. [ is a uniform random variable on {1,--- ,n} so that
E [57, o T(u)] = 50T (u). Conditionally to Iy, I3 is a uniform random variable on {1, - - - ,n}\{I1}.
Therefore

_ 1 °L B n o _ 1

E[5, o T(uw)] = —] ;sj oT(u) —E[s, o T(w)] | = p— 1soT(u) e 150T(u)

By induction, for any ¢ > 2,

n -1
_ 1 _ _
E[s7, o T(u)] = P > 5i0T(u) =Y E[sr,0T(u)]
7j=1 q=1
n o _ (-1 _
B SR Oy ey LI

As a conclusion, b~! 22:1 E[5, 0 T(u)] =50 T(u). Letu,u’ € R set (1) ef Sr,0T(u)—50
T(u)+57,0T(uw)—50T(u). Then E [¢(I,)] = 0. We first prove by induction that E [[|¢(I,)||*] =
E [||¢(11)]|?]. Upon noting that I; is a uniform random variable on {1,--- ,n},

E [l¢(f0)]*] = - eH(Zqu DI —E [lle(z)]* + -+||¢<I“>||2]>

n

1 -1
e eI - mgm [l6(1)1?]

which concludes the induction. Second, let us prove that for any ¢ > 0,

{41
[HZ@S ||2] (¢+1DE [[|¢(1)]%] - (18)
Since n=' Y1 | ¢(i) = E[p(I1)] =0,

(] - (S 0 F)] -—

||Z<z> H



so that

||”Zl¢ ||2] (1-:%)® [|Z¢ 15

The proof follows from (18) and (17) since here again, I; is uniformly distributed on {1,--- ,n}.

+E [lloe+)IP] < (¢+DE [llo(I)]*] -

Lemma 5. Forany k > 0,
E[Ap41|Gr] — h(Ur) = Ag — W(Ug—-1) -

Proof. Let k > 0. Since conditionally to Gi, Br+1 = {I1,. .., I,} where the random variables I}’s
are independent and uniformly distributed on {1,...,n}, we have

E {ﬁkﬂ\gk} = U +50T(Uy) —50T(U_y) .
In the case k = 0, we have by using (16)
E[A1 = h(Uo)|Go] = E [[71|go} —50T(Up) =0=2¢ —h(U-1);
the last equality explains the convention for Ag. In the case k& > 0,
E [Ag11]Gk] = E [ffm-l - Uk|gk} = Uy + h(Ux) — 50 T(Ug-1)
= A+ Up—1 + h(Uy) — 3T (Ug—1) = h(Uy) + Ay — h(Ug—1) .
O

Proposition 6. Assume that foralli = 1,--- ,n, 5; o T is globally Lipschitz, with constant L;; set
L2 =1 L2 Then Ao — E [Ao|Go] = 0,

E[|A1 — E[A1]Go] [1*1Go] = E[||Ar — k(Uo)|1?|Go]
1 L?
< —l5oT(Wo) =50 TW-)II* + LU0 — U

and for any k > 1,

1 12
E[||Ars1 — E[Ax41]Gr]|1?(Gk] < _BH TU) — 50 T(Us_1)|2 + ?71% TV
k
1
E[[|As1 — B(UR)[*[Go] < N ZE [||§o T(U;) — §oT(Uj71)||2|g0]
j=0
L2 [&
Ty > W E A 1%1G0] + 1T — U1 |?
j=1

Proof. The statement on A is trivial since Ag = h(U_1) € Gy. By definition of Ay, by Lemma 4
and by (16)

E [A1|Go] = E [T1[Go] — Uo = T + 50 T(Uo) = 50 T(U-1) = Uo = h(U) -
The equation
Ay —E[A1]|Go) =58, 0 T(Ug) — 5, 0o T(U=-1) = (50 T(Uy) —50T(U-1))
and Lemma 4 provides the upper bound for A;. Let & > 1. By definition of Ay ; and by Lemma 4,

Apt1 —E[Ap1|Gh] = Upyr — E {ﬁkﬂ\gk]
= 58k+1 o T(Uk) — §Bk+1 o T(Uk_l) 4+ so T(Uk) — So T(Uk_l)
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and we then conclude by Lemma 4 again. For the second statement, since we have E [||U ||2] =
E [|U — E[U|V]||?] +E [|[E[U|V]||?] for any random variables U, V, it holds for any k > 0,
E [1Ak+1 = h(UR)I*1Gk] = E [[|Ak+1 — E[Ars1]Gi] I71G5] + IE [Awr1]Gr] = (U
=E [ Acs1 = E[Dur1lGr] 121Gk] + 1Ak = A(Us-1)I?

where we used Lemma 5 in the last equality. By induction, this yields

E [[|Ak+1 — h(U)I1*|G0] ZE (18711 —E[A;111G5] 1171G5] 1G0]

where we have used that Ag—h(U_1) =0 (by definition). We then conclude with the first statement.
O

Lemma 7. Forany h,s, S € RY and any q X q symmetric matrix B, it holds
—2(Bh,S) = —(BS,S) — (Bh,h) + (B{h— S},h— S) .
Proposition 8. Assume HI, H2, H3 and H4 and H5. It holds for any K > 2,

K-1 K-2

Z(S@E [||Ug — Ue-1||2|go] + Ur;in Z Ve+1E [Hh(Uk)||2|g0]

=1 =

< W(Up) — E[W(Uxk-1)|Go] + L%ma" (Z %) 1Uo = U-?,

where (by convention, Zf:_;?_l =0)
K-
5 dﬁf Umin N LVW _ Umax £ Z
¢ 2, 5 2> b 2 Vk+1

Proof. Letk € {0,--- , K —2}. By Proposition 1 and H5-Item (c), W is continuously differentiable
with globally Lipschitz gradient, which implies

W(Ups1) = W(U) < (VW(U), Uiy s — U) + 25V

By Proposition 1, we have VW (Uy,) = —B(Uy)h(Uy); hence,

(VW(Uy), Ups1 — Ug) = = (B(Ur)R(Uy), U1 — Ug) -
We apply Lemma 7 with B < B(Uy), h < h(Uy) and S < Agi1 = (Ugy1 — Ur)/Yk+1. This
yields by H5-Item (a),

Yk Umin UminVk UmaxVk
(VW (UR), Urr = Ur) < =020 | A [P = =55 [ A(UR) P4+ =25 5 (k) = A |

and since Agy1 = (Ug+1 — Ug)/Yk+1, we obtain

Umin Umin Umax
(VWU Ues = Uk) € = ||Unn = Uil = D TR (U [12 + P22 Ay — (U2 -

- Ul)?

2 2
Therefore, we established
(2 = 55 10hss = O0JP + 2 i | < 2 Ay — ()
+ W(Uxk) = W(Ug+1) -
Applying the conditional expectation and using Proposition 6 (and again %2 1412 = 1U; —Uj—4|?
for j > 1), this yields
( Umin  Lyw

E [[|Uss1 — Ul Dmin Tt L 11 () |2
e~ LSV B ([0 - UulP10] + (CAIRE

2

UIII&X L
L ZE 10 = U1 1P1Go] + E[W(UL) = W(Ut1)(Go] -

| /\
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We now sum from £ = 0 to & = K — 2 and obtain by using Lemma 9 with Aj —
E [|U; = Uj-11%|0].

< Umin LVW
2'71( 1 2

) E[[|[Uk-1— UK—2||2‘gO}

Ulnln UIII X
+Z (w ey ZWH) [1Ue = Ue-111%1G0]

O S B (IBUIPIGn] < BN () ~ W(Uk )G

L?Umax
+|Uo—U1||2<Z %) ax

This concludes the proof. O

Lemma 9. For any real numbers a;, b;, A; and K > 2,

K-1 k-1 K1 K2 K-1
Z <akAk — by ZA(Z> =ax-108Kk_1 — Ao Z by, + (ae - Z bk) Ay

k=1 £=0 k=1 £=1

Lemma 10. Forany k > (t — 1)k,

k q q
Yoo taenXen then Y Yitepn Y dX;
q=(t—1)kin j=(t=1kin J=(t=1)kin
k
:—ak+1Xk+1+d(t—1)km Z Cq+1 X(t kin
q=(t—1)kin
k k k k
D DR A0 ortes v BOREED Sl b o 1
j=(t—1)kin+1 q=j J={t=1kin \9=J

9 Proof of Main Results in section 3

Fort=1,--- ,kouand k =0, --- , ki, — 2, define the o-field F; .:

def def
Forkm1 = o(Sinit) ]:tO X r Kin—1 5 Fekr1 = 0 (Fep UBigyr) -

in

With these definitions, we have fort =1,--- ,kousand k =0, - - , ki, — 2,
St k+1 € Frh+1 St.h+1 € Frht1 Bii+1 € Fehti

and §t,0 € Fi0,St0 € Fro.Fort =1, [ koysand k =0, -+ , kin — 2 set

dcf _ ~ ~
Hipy1 = v, k+1 (St k+1 — St,k) =St kt+1 — Stk € Frk+1 3 (19)

. def , &
and choose the convention H = h(S1,-1), and

def

Hit10=Hyp, = %;klin(swl,o — Sthin—1) = St41,0 — St k-1 =D (St,k:;nfl) . (20)

9.1 Preliminary lemmas

The following results are consequences of the general analysis in section 8.
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Lemma 11. Assume HI, H2, H3. Let {§t’k,t =1, ,kout, k =0, -+, kin — 1} be the sequence
given by algorithm 1. Fort =1,--- [koywand k =0, -+ ki, — 2

E [Hy 1| Fer] — h(Sek) = Hig — h(Sip_1)
Ho— h(§t,—1) =0=Hyp, — h(gt,kin—l) .

Proof. Lett > 1: apply Lemma 5 with Uy §t,0, U_q §t’,1, Vi+1 Ve k41> Bey1 < Bekt1.

Then (70 < S; o satisfies the condition (16) and for any & > 0, we have U1 = St py1, U1 =
St,k+ls Ak+1 = Ht,kJrl and gk+1 = ft’kJ’»l. This yields the result. O

Corollary 12 (of Lemma 11). Fort =1, --- Jkouwwand k =0,--- , kin
E[Hy k — h(Spx—1)|Feo] =0

Proof. Lett > 1. If k = 0 then by Lemma 11, the property holds. Let k € {0,..., ki, — 2}. We
write by using Lemma 11

E[Hypy1 — h(Sei)|Frol = BIE[Hps1 — h(Sew)| Forl| Frol = E[Heg — h(Sex—1)|Fro] -

The proof is concluded by induction:
E[H, k1 — h(Sek)| Frol = E[Hy o — h(St,-1)|Fiol =0 .
O
Proposition 13. Assume HI, H2, H3, H5-(b) and set L? def -1 S L2 Foranyt =1, kout,
Ht’() — h(St’fl) = 0, and
2 1 ral _ a 2 L2 -~ P~ 2
EfllHea — E [Hea|Feol I Feol < =g 1150 T(Sto) =50 T(St—0)[I” + - [18t0 — St -l

In addition, fork =1,--- ki, — 2,

E[||Ht gv1 — (St )11 Feo] < —

o-\H

k
> E |50 T(S1) = 50 TSk [ Fro
7=0
k

L
Y Z E [|| H 4117 \ft0]+\|5t0—5t—1|| ,

~ ~ L?
EllHe jt1 — B[Hp o1 | Fe i) 171 Fe] < *B||5 o T(Sek) — 50 T(Sen—1)lI> + b —ir 1 Hewll?

Finally,
[ He ki — h(St k1) = [He g, — E[

JI=0.

Proof. Lett > 1. Apply Proposition 6 with 7y, < ¢ i, Bp1 < B p+1, U < §t,0, U_1 + §t7_1,
Gy < Fii- Since Sy o = 50 T(S¢,—1), then the condition (16) is satisfied with Uy = S; 9. Conclude
by observing that Uy, = S; j, and Ap1 = Hy pt1. O

9.2 Proof of Theorem 2

Proposition 14. Assume HI, H2, H3, H4 and H5. Set L? def -1 Dy L2. For any positive
numbers By i, setfort =1,--- [ koywandk =0,--- Jkin, — 1

2 Kin—2
A def 5t,k: LVW L? Umax YV, 041
tk = Vt,kVmin | 1 — — — Ttk Ve k 5

2rUmm 2rUmin 2rUmlnb I—k ﬁt,ngl
2 kin—2 [kin—2
def Umax Yt e4+1 .
Bt,k = % E /62 )
k=0 \ ¢=k "t+1

20



by convention Bt o = 0, ¥¢,0 = Vt—1,kin» Y0,k = 0 and By, —1 = 0.

Let {:S*\t,k,t =1, Jkout; k = 0, ,kin — 1} be the sequence given by algorithm 1. For any
t= 17 7k0ut;

W(S1.0) < W(5 1) = Vo1 5y, Umin (1 — Y1k > 1R(Se )17 ; 1)

in
2 mm

and

Eout Kin

~

(At WE[[ He kl|?] + BekE[[[5 0 T(Se) —§oT(§t7k_1)H2]> < E[W(Sinit)]—min W .

&

=1

~
Il

0
Proof. Lett > 1. By H5-(c), we have forany k = —1,--- | ki, — 1,

~ ~ ~ L
W(Ste+1) < W(Stk) + Ve k+1 <V W(St,k),Ht,k+1> + 92 k1o v

| Hy i) 5 (22)

by convention, we set Sy j,

in

(VW(Sttiu-1): Hin ) < ~tminllA(Seu= 1)l = ~vimin | Ho |2

def §t+1,0. By Proposition 1, H5-(a) and (20), we have

so that

. va
W(Stk) < W(Sttn—1) = Vet Venin | He oo, | + 725, \

(23)

This concludes the proof of (21) since §t7km = §t+170 and §t7kin_1 = Sk+17_1. Now, let us fix
ke {0, -, kin — 2}. We write

(TW(Sik), Hipsr ) = - <B(§t Wh(S0k), Hoprn )
= < (h (St.k) Ht7k+1) ;Ht,lc+1> - <B(§t7k)Ht,lc+1aHt,k+1>

< - < St k (h (St.k) Ht,k+1) ,Ht,k+1> - UminHHt,k+1H2 . (24)
Note that for a,b € R? and § > 0,

2
(@) < T lall + 5 101

By H5-(a), we have for any 5 ;41 > 0,

. 8 2 A
[(BGuw) (MBiw) = Hoprr) s Hugen )| < =255 | Ho g |2 4+ 52825 | Hy s — (S0l
2 267 k11
(25)

Combining (22), (24) and (25) yield

2

~ ~ Vihax
W(St k1) < W(Sek) = A st He s [I? + Yokt 5 5
/Bt k‘+1

[ Hypr — h(Sen)|?

where for ¢ = 1,..., ki — 1,

2
def Bie Lyw
At = Ve 0Vmin (1 -y ) .

2Umin ' 2'Umilﬂ

By Proposition 13,
WS k1) 10| B [W(Siw) 1 Fro| = AvsrE [ H s |21 Fio]

i 1 u
Ternggp =y DB (150 T(50s) =50 TS0y Fuo)
t,k+1 j=0

2 2 k
v L ~ ~
+ Ve k1509 (Z o B [I1H 5111 Feo] + 11St0 = Seall® | 5



by taking the expectation, this yields

E [W(Six:1)] <E[W(Sik)] = Aot [ Hoen 2]

,02

- E|ll50T 50T(S 1)
%7’“*12@“&2 (150 T(8:) ~ 50 T(Es-0)P]

k

> 2B (I1H ) +E [1800 - Secal?] |

j=1

2 2
Vi ax L
262 111

+ Ve, k+1

By summing from time £ = 0 to k = k;, — 2, we have (see Lemma 10)

E[W(Sii1,1)] =B [W(Bik-1)] <E[W(Si0)| = Av 1B [ Hipyy 1]

’UrgnaxLQ e l i ral
+ W) B (18,0 — Sp I
2b I3
(=0 "t4+1

1)2 kin_2 kin_2 ,y P) —~ -~
- o (Z ’;’“)E{H@onst,w@oﬂm—ﬂ”ﬂ

k=0 \ ¢=k /Btv”l

Kin L2 kin—2
n Z Umax 2 e+l — At,k: E [||Ht,k||2] :
2 < B

With (21) and using H; .

WSt 1) = h(St+17_1); 5170 = 511 = Sinit; and for t > 2,
St 0— St -1 = 7t-1 k,nh(St 1 kmfl) 'thl,katfl,km = 'thl,k;nHt,O:

E {W(§t+1,o)} —E [W(gto)}

2 /UI’QHaXLQ 2 e’ 7t,f+1 2
< At B [ 7] + 2502 (30 T E [ Hol?) 1o
e=0 ttH1
'U2 kme kir172 7t £+1 o~ _~
_ Umax S B E {HE o T(Stk) =50 T(St,k—l)HQ]
2b Bt
k=0 (=k tl+1
Mo 2 (12 rQDdx 2, N Vel 2 Low ’
L3 Z = Ao ) EQIHI] = Yo tmin (1= 200 5 ) B ]
=1 625 A+1
Kin—1 kin—2
B =N ~ ~ 9 L2 I2nax 2 Yt e4+1 2
< BLE [Hs o T(Gr) — 50 TS )l } I Z Vs 5 —MNei | E [HHtkH ]
2b Bix
k=1 t=k b
02 L k2 L
N 2 t 0+ E [[|Heoll?] Les1 — Yo,k Vmin (1 Vekingy ) E [|[Hig10l?] -
Bt i1 Umin

We now sum from ¢ = 1to t = kgyt. L]

Corollary 15 (of Proposition 14). Choose o > 0, 8 > 0 such that
Cla,) 41— 2 @ Lyw _ 0% Unay Fin

2vmin a 2rUmin L - 2BQUmin b

is positive, and set

def X def
Tt,k+1 = E’ /6t k+1 = B

Then, for uniform random variables T,€ on {1, -  kout } and {0, - - - , ki, — 1} respectively, inde-
pendent from Fi, k1

L 1 ~

B 1el] < o) R (W )] —min )
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Proof. We have

A L > QUpin 1— 62 o o LVW a2U12nax kin
bl = L 2'Umin 2fUmin L 25 Umin b ’
v2 o
B > max 7 kin ,
bR = Top Lp2
from which the conclusion follows. O]
Proof of Theorem 2 Let 7, be uniform random variables resp. on {1,- -+ ,kous} and
{0,--- — 1}. Since 5’1 = 51 o and for t > 2, St = St 1,kn—1- then S’tg 1 is well

deﬁned We write
E[I1(Sr.e-1)I12] < 2B [ Hrel?) + 2E || Hrg = h(Sr.e-1)II

For the second term, we have

out kin —1

E[||He i — h(Se—1)]1?] (26)

1 k
kin kout

t=1 k=

E[||Hye — h(Sre-1)|%] =

(e}

by Proposition 13, since §1’0 = §1,,1, the RHS of (26) is upper bounded by

2].

2

ko - 2
kin
e Z Z [l Hul?] < = (18-,

The proof is concluded by Corollary 15:

1 2 2L 1 ~
[Hh( 7,6~ 1)” ] (km + O:)) ma (E[W(Sinit)] —minW) . (27)

Let us choose 3 > 0 so that 5 +— C(a, ) is maximal: for A, B > 0, the function z — z/A + B/x
is minimal at x* = \/ AB. This yields

e kin
/82( ) d:f QUmax\/ 77— >
b
and
e kin L
Umin (OZ ﬁ( )) - Umln a,u* bl ,U/* d:f VUmax o + vW .

b 2L

The function @ — @ vy C(a, B(a)) is maximal when o, def Umin/(244+) thus yielding
Qs Umin O, B(aw)) = v2,. /(4p,). By replacing B < B(a) and a < v in (27), we have

kinU2~ 8L 1 ~
h . min E s . ) P
ElA(Sre-)IP) < (“ T ab >v b (EVG] —minW) . 28)

9.3 On the Batch Size b and Epoch Length £;,

Assume that b = O(n?) and ki, = O(n¢) for some a,c > 0. Let € > 0.

Case a > c. When n — 00, pii(kin,b) = O(1). Choose @ € (0, Umin/ptx(kin, b)) such that
a = O(n~9) for some d > 0.

The RHS in (15) is lower than e by choosing
kouwt = O (e 'n~c nd—l—il ;
out — nd+ta—c ’
this implies that

Kcg(n,e) =0 (n +(n+ na“)kout) , Kopt(n,€) =0 (14 (1 + nkous) -
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In order to make &, as small as possible, we choose d = 0 and c as large as possible (i.e. a = ¢).
Hence kout = O(e'n™2). This implies that Kopt(n,€) = O(e™1). For fixed a > 0, Kcg(n, €) is
optimized by choosing a < 1 — a, which implies a < 1/2. The largest value of a will provide the
best rate for k... Hence, the conclusion is

a=c=1/2, d=0,
which yields b = O(v/n), kin = O(v/1), kouws = O(e " 'n~1/?), Kcg(n,€) = O(n 4 ¢ *y/n) and
Kopt(n,e) = O(e™1).
Case a < c. When n — 00, pix(kin,b) = O(n(c_a)/2). Choose a € (0, Umin/fix (Kin, b)) such
that « = O(n~¢) for some d > (c —a)/2.
The RHS in (15) is lower than e by choosing

. 1
kout = O (e In=c (nd + oy E—— ac)) ;
we also have

Kcg(n,e) =0 (n +(n+ na+°)k0ut) , Kopt(n,e) =0 (1 4+ (1 + nkout) -

In order to make ko, as small as possible, we choose d = (c — a)/2 50 koys = O(e~tn~(a+)/2),
and then we choose c-+a as large as possible. Hence This implies that Ko (n, €) = O(e~1n(c2)/2)
and Kopi(n, €) is optimized by choosing ¢ — a as small as possible. Finally, Kcr(n, €) is optimized
with a + ¢ < 1. Hence, the conclusion is: choose § > 0 and set

a=(1-10)/2, c=(149)/2, d=14/2,
which yields b = O(n'/279/2), k;, = O(n'/219/2), kow = O(e7'n~1?), Kcg(n,e) = O(n +
e ty/n) and Kopi(n, €) = O(e"1nd/2).

Conclusion. The above discussion shows that the best complexity in terms of the number of com-
putations of per-sample conditional expectations and the one in terms of number of parameter up-
dates are both optimized in the case a = ¢ = 1/2.

10 Linear convergence rate of SPIDER-EM-PL

In this section, we establish a linear convergence rate of a slightly modified version of SPIDER-EM,
see algorithm 8, the main modification being in the initialization. The proof is adapted from [27,
Theorem 5].

Data: ki, € N,, kou € N, Siie € RY, {veps1,t =1, Jkouwand k =0, -+ , ki, — 1}
positive sequence.
Result: A SPIDER-EM-PL sequence: S; i, t =1, - ,kout, K =0,...,kin — 1
1 S10=250T(Shit), S1,0 = S1,-1 = Snit
2 fort=1,...,kou do

3 Sample &; a uniform random variable on {1, - , ki, — 1} ;
4 fork=0,---,& —1do
5 Sample a mini-batch B; ;41 in {1, ..., n} of size b, with or without replacement ;
6 Stkt1 =Stk + 58,441 © T(St.k) — 88,51 © T(Sek—1) 3
7 St1 = Stk + Veht1(Stes1 — Sek)
8 Si+1,0 = St+1,—/} =S¢,
| St+1,0=50T(Ste,)

Algorithm 8: The SPIDER-EM-PL algorithm.

By Proposition 8, we have
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Proposition 16. Assume HI, H2, H3 and H4 and H5. Set L? def -1 Z?:l L2. For any integers
t>1land K > 2

K-1 K-2

ral ra Umin i
> 00 E [IS1e = StemtlPFro] + 252 37 erriE [I0(S2) | Fuo]
(=1 k=0

<E [W(gt,o) - W(é\t,K—lﬂft,O} )

where (by convention, Zf:_Kz_l =0),

K-2
5 déf Umin . LVW _ Umaxﬁ Z ~
¥4 27t,£ D) D) b ra t,k+1 .

Corollary 17 (of Proposition 16). For any v > 0 such that

L b VUminb
2 vWw min
— 0
T UmaXLQ(K - 1)’}/ /UmaxLQ(K - 1) =
we have
Vonin Y K-1 R R N
20 S B [IRGIAF] < B [W(Sio) - W(E k) 1 Fro]
k=0
As a consequence of Corollary 17, if &; is a uniform random variable on {1, - - - , kj, —1} independent
of the other random variables, then
~ 2 ~
E[IA(Sie) 2] € —————F [W(8i0) —min W] .
[A(See )| < P — (St,0) — min
When the Polyak-Lojasiewicz inequality holds
37* > 0 such that Vs, W(s) —min W < 7% [V W(s)||?, (29)
this yields by H5-Item (a)
E[In(S:e)I?] < £ [W(Sh) ~ minW] < —22 s [|(5, 0|
e E—— — m .
b o Uminfy(kin - 1) b - 'Umin'y(kin - 1) b

The above discussion establishes the following result.

Theorem 18. Assume HI, H2, H3, H4 and H5 and set L> def nt Z?:l Lf. Assume also that

the Polyak-Lojasiewicz inequality (29) holds. Fix koyt, kin € Ny, b € Ny set ¢ 41 def ~ for any
t > 1,k > 0 for some v > 0 satisfying

LVW b Uminb

— <0.
UmaxLQ(kin - 1)7 UmaxLQ(kin - 1)

v+

Let {:S’\t’k, t=1,- ,kout,k =0, ,&} be the sequence given by algorithm 8. Then

E [11(Si1,017] = E [I0(S1e)I?] < ME [I1A(Seo) 2] -

11 Mixture of Gaussian distributions

In this section, we use the common notation {§g, ¢ > 0} for a path. For sEM-vr and SPIDER-EN,

§z stands for §tz,kz where tp > 1 and ky € {0,--- ,kj, — 1} are the unique integers such that
(= (tg — l)kin + ky.
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11.1 The model

Consider a mixture of Gaussian distributions on RP,

g
Yy Y N (e, D) [y 5 (30)

=1
N, (e, X) [y] denotes the density of a RP-valued Gaussian distribution with expectation /¢, covari-

ance matrix > and evaluated at y € RP. We consider a parametric statistical model indexed by

g (o1, Qg i1, .-, thg, 1) in © where

g
@dﬁf{agZO,ch:l}xRpgxM;; 31)

(=1
M;f denotes the set of positive definite p x p matrices.

Given n examples y1, . . ., y, modeled as independent realizations of a mixture of Gaussian distri-
butions as described by (30), the log-likelihood is

9»—>Zlog2aﬂ\/ e, ) [yil -
i=1

Proposition 19 shows that the minimization of the negative log-likelihood on © is covered by the
optimization problem addressed in the paper.

Proposition 19. Set T’ def Y71, and define fory € RP and z € {1, ..., g},
def [ 1 (1+p) qor | 151

A, = 9 | ¢ RIUFPIXY = ... |.
Yy {Ig ® y} p(z) 1

The negative normalized log-likelihood is of the form (2) with p(y, z) = 1, s(y, z) def A, p(z) and

Ina; — 0.5uT Ty

def |Inc —.()..%)[LTPM
0) = ! Al 32
4(0) o ()
Fug
def P 1
P(0) = 3 In(27) + Tr ( z:ylyz ) ~5 Indet(T) . (33)

Proof. The likelihood of a single observation y; is given by

> \/%p ; arz+/det(T) exp (—;(yi — ) T(y; — uz)>

v/det(T"
= \/ei(p)exp ( 5@/% Fyl> Zexp (Z 1, {lnag —0. 5:“@ D + 1y Fyl}>
2 z=1 =1

det(T
= JT(Z’)GXP <—Tr Tyyl > Zexp (Z L.—¢{lnay —0.5u7 Tpe} + Z (Tpe,yil= z>>
s

z=1

det(I" 1
= \/;r(p)ex (Tr Fyvyl >Z€Xp s(yi, ), #(0)))

where we used that Tr(Auu”) = u” Au. Since the observations are modeled as independent, the
log-likelihood of the n observations 1, . . ., Y, is

6~ 2 (log det(T') — plog(2m)) —fTrrZylyl +Zlog2exp 5(yi,2), 6(6))) -

This yields the expression of the negative normahzed log—hkehood. O
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The following statement gives the expression of the optimization map T. It relies on standard com-
putations; the proof is omitted.

Proposition 20. Let ¢,v and © resp. given by Proposition 19 and (31). For any s =
($15. -+ Sg4pg) € RITPI in the set

e 7 < T . .
(sl >0,...,5 >0, - E Yil; — E 8y Sg(b—1)p+1:g+Ep Sgt(0—1)p+1:g+ep POSIIVE definite
i— /=1

the minimizer of 0 — — (s, $(0)) + ¥(0) under the constraint that 0 € ©, exists and is unique and
is given by

S
O‘fd;fgie7 621,...,9,
u=1Su
det 1
He = gsg+(€—1)p+1:g+€p ) = L....9,
det 1 O d
2= Syl = sopeny -
i=1 =1
Proposition 21 provides the expression of the conditional probabilities z — p(z|y;;0) on {1,...,g};
as a corollary of this statement, we also have the expression of the per sample conditional expecta-
tions
_ def
i ; Z S\Yi, 2 |yl7 ) )
z=1
foralle=1,...,n

Proposition 21. Foranyy € R?, z € {1,...,g} and 0 € O where O is defined by (31), we have

et Ny(ps, B[y
p(z|y,9) - g —1 Oy Np(uuax)[y] 7 -
and
p(1]y; 0)
g )
;8(%2) p(zly;:0) = yngﬂgljysg) ’
p(gly: 0)

where s(y, z) is defined in Proposition 19.

As a corollary of this statement, we have

p(1]yi; 0)
) | P | [PEE)
: yi p(1]yi; 0) v (glyi; 6) ’
p(9lys; 0)
[t p(1ys; 0)
B n 1‘y“ )
1 1
(o) % | S p(glyi; 0) _ X 35
S() n*lz1 1y1 (1|y17 ’ﬂ,zl (gly“ ) ’ )
ln Y 1yz p(9ly; 0)

where the probability p(-|y; 0) is given by (34).
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11.2  On the Assumption H3

Let A, be the matrix defined in Proposition 19. It is proved in [12, Section 5] that T(s) € O if

def 1<
GSE{S:nZAyiPivpi:(pi,l,u'ang szz—l}
=1

The following statement shows that the SPIDER-EM sequence {§ ks k > 0} is at least in
S def .
€
Z vi P Pi = (it pig) EREY pig=17 .
=1

Proposition 22. Assume that §1nit € S. Then, foranyt € N, Sy o € S and for any k > 0, S\t,k €S
and St i, € S.

Proof. 1t is trivially seen from (35) that S; o € S for any ¢t € N. Define p(t 0 ¢ (Ry)9 and

[)Et 0 e € (R4 )9 such that

~ 1 & A
StO _ ZA% (,0) 7 St70 — - ZA% pgt,O) ;
i=1

note that by (35), >9_, pgfé ) — 1 and by assumption, )y plt ) —

From line 5 of algorithm 1, we have when k < ki, — 1,

Skt = ZAy, (P + T e, {pClyss T(S1)) = pClyss T(Si-1) })
where p(-|y; 0) is defined by (34), thus implying that

k k 5 5
pltAtD) = plek) 2 b LieBuri {p('|yi§T(St,k))_p("yi§T(St,k—1))} :

Hence by a trivial induction, >.7_, p(t k1)

algorithm 1, we have for any k > 0,

= 1forany ¢ = 1,...,n. From ?? and line 9 of

Sti1 = ZA% ( 1=yt )A"™ + yeprap” H))

thus implying that

A = (1= ) D+ oY
Here again, by a trivial induction, we have Ze 10 Etekﬂ) =1foranyi=1,...,n. [

11.3 Numerical Analysis
11.3.1 The data set

We consider n = 6 x 10 observations in R?, p = 20; modeled as independent observations from
a mixture of Gaussian distributions with ¢ = 12 components. These data are obtained from the
MNIST data training set available at http://yann.lecun.com/exdb/mnist.

The set contains n = 6 x 10* examples of size 28 x 28; among these pixels, 67 are constant over all
the images and are removed yielding to observations of length 717. A PCA is performed in order to
reduce the dimensionality to p = 20 features.
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11.3.2 The algorithms

We compare EM, iEM, Online EM, FIEM and sEM-vr implemented as described in algorithm 2 to
algorithm 6. The map T is given by Proposition 20.

The design parameters b, v .41 are fixed to

e b =100,
e for all the algorithms except iEM, the step size is constant and equal to 51073, In iEM,
Ye+1 = 1.

Initialization. For all the algorithms and all the paths, the same initial value §init is considered. It is
obtained as follows: we run the random initialization technique described in [19] in order to obtain

Oinit € ©, and then we set :S'\init def 5(binit ). Below, §imt is such that — W(:S'\mit) = —58.3097 (the
constant term p log(27)/2 is omitted in this evaluation, and in any evaluation of the log-likelihood
given below).

Mini-batch. The mini-batches are independent, and sampled at random in {1, ..., n} with replace-
ment. For a fair comparison of the algorithms, they sharE the same seed; another seed is used for
FIEM which requires a second sequence of minibatches {Bj11,k > 0}.

An epoch. In the analyses below, an epoch is defined as the selection of n examples:

e For EM, an epoch is one iteration S, B — §k+1. It necessitates the computation of n condi-

-~

tional expectations §; and of a single optimization T(S).

e For iEM and Online EM, an epoch is n/b iterations §k — §k+1. It necessitates the com-

-~

putation of n conditional expectations 3; and of n/b optimizations T(S).

e For FIEM, an epoch is n/b iterations §k — §k+1. It necessitates the computation of 2n

-~

conditional expectations 5; and of n/b optimizations T(.5).

e For sEM-vr and SPIDER-EM, an epoch is either one iteration §t,—1 — §t,0 or n/b iterations
Stk — Sppt1 for k < ki, — 1. They resp. necessitate the computation of n and 2n /b

-~

conditional expectations §; and of 1 and n/b optimizations T(S5).

Hybrid methods. Since FIEM, sEM-vr and SPIDER-EM are variance reduction methods w.r.t.
Online EM, we advocate to combine them with few steps of Online EM. Here, we start with

kswitch = 2 epochs of Online EM and obtain §1, §2; before switching to FIEM, sEM-vr and
SPIDER-EM.

Value of k,,,,x. The number k. is fixed in order to compare the algorithms with the same number
of epochs equal to 150. For EM, kyax = 150; for Online EM and iEM, kpax = 150n/b; for FIEM,
kmax = (150 — kswitch) n/b; for sEM-vr, koyue = (150 — kswitch)/2 and ki, = 1 + n/b; and for
SPIDER-EM, koy = (150 — kswitch)/2 and ki, = 1 + n/b.

11.3.3 Experimental Results

We first analyze the behavior of the functional W along a path of the algorithm. We display on
Figure 4 a Monte Carlo approximation, computed from 40 independent runs, of the expectation
of the normalized log-likelihood as a function of the number of epochs. Different algorithms are
considered: EM remains trapped in a local extremum while the stochastic EM algorithms succeed
in exiting to a better limiting point. Online EM is far more variable than iEM, FIEM, sEM-vr and
SPIDER-EM. The convergence of iEM is longer, when compared to FIEM, sEM-vr and SPIDER-EM.

On Figure 5 and Figure 6, for each of the algorithms FIEM, sEM-vr and SPIDER-EN, four different
realizations of a path of the normalized likelihood are displayed as a function of the number of
epochs. These four sets of curves differ from the selection of the sequence of mini-batches. The
staircase behavior of the paths of sEM-vr and SPIDER-EM comes from the two successive kinds
of epoch: one corresponds to a single optimization and a full scan of the data set and the other
one corresponds to n/b optimizations and the use of n/b minibatches; the largest increase of W
corresponds to the second type of epoch. Based on this criterion, the three algorithms are equivalent.
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Figure 4: Monte Carlo approximation (computed over 40 independent runs) of —E[W(gg)] =
—E[F o T(S)] against the number of epochs. [left] Epochs 1 to 25; [right] epochs 25 to 150.
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Figure 5: The objective function — W(§¢) =—Fo T(,SAQ) against the number of epochs along two
(left, right) independent runs of FIEM, sEM-vr and SPIDER-EM. The first 25 epochs are discarded.

Figure 7 displays the evolution of the g = 12 iterates {c1, . .., oy} along a path of many algorithms.
Figure 8 display the evolution of the p = 20 eigenvalues of the covariance matrix 3 along a path of
many algorithms. Here again, we observe a strong variability of Online EM when compared to the
other algorithms.

Figure 9 and Figure 10 display 40 independent realizations of the squared norm of the mean field
h as a function of the number of epochs for different algorithms. It may be seen that Online EM
has a strong variability and FIEM, sEM-vr, SPIDER-EM succeed in reducing this variability. FIEM
converges more rapidly than iEM, and they achieve the same level of accuracy (here not better than
107%). sEM-vr and SPIDER-EM have the same level of accuracy, which is most often far smaller
than the one reached by FIEM (more than 75% of the paths reached an accuracy level of 10710 after
150 epochs). Based on this criterion, we will definitively advocate the use of sEM-vr or SPIDER-EM
when compared to iEM, Online EM and FIEM.

Figure 11 and Figure 12 display the boxplots of 40 independent realizations of ||2(S;)[|2 at time
in {20, 40, 60, 80, 110} epochs for different algorithms. In Figure 12, Online EM is not displayed
since it is too large (compare the third plot on Figure 11 and the first one on Figure 12). The quan-
tities {||(S¢)||2, £ > 0} are the key informations for deriving the complexity bounds in Theorem 2.
The plots below show again that for small, medium and large values of the number of epochs k,
sEM-vr and SPIDER-EM provide the best results.
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Figure 6: The objective function — W(S\g) =—-Fo T(S’\g) against the number of epochs along two
(left,right) independent runs of FIEM, sEM-vr and SPIDER-EM. The first 25 epochs are discarded.
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Figure 7: Evolution of the g = 12 iterates oy, = (a1, - ., (g, ¢) against the number of epochs, for
EM, iEM and Online EM on the top from left to right; FIEM, sEM-vr and SPIDER-EM on the bottom
from left ro right.
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Figure 8: Evolution of the p = 20 eigenvalues of the iterates {¥,, ¢ > 0} against the number of
epochs ¢, for EM, iEM and Online EM on the top from left to right; FIEM, sEM-vr and SPIDER-EM
on the bottom from left ro right.
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Figure 9: [left] We display 40 independent realizations of the squared norm of the mean field ¢ —
|R(S¢)||? as a function of the number of epochs, along a iEM path. [center] same analysis for Online

EM. [right] same analysis for FIEM.
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Figure 10: [left] We display 40 independent realizations of the squared norm of the mean field

l ||h(§g) | as a function of the number of epochs, along a sEM-vr path. [right] same analysis
for SPIDER-EM.
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Figure 11: Boxplots of 40 independent points of ||2(S)
40 epochs; [right] at time 60 epochs. The outliers are removed.
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Figure 12: Boxplots of 40 independent points of ||h(§g)
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[left] at time 60 epochs; [center] at time
80 epochs; [right] at time 110 epochs. The outliers are removed.
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