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A Additional Details on Estimation Procedure

A.1 Community Detection

The spectral clustering algorithm for directed networks that we consider in this paper is shown
in Algorithm A.1. It can be applied either to the weighted adjacency (count) matrix N or the
unweighted adjacency matrix A, where Aij = 1{Nij > 0} and 1{·} denotes the indicator function
of the argument. This algorithm is used for the community detection step in our proposed CHIP
estimation procedure. For undirected networks, which we use for the theoretical analysis in Section
4, spectral clustering is performed by running k-means clustering on the rows of the eigenvector
matrix of N or A, not the rows of the concatenated singular vector matrix.

A.2 Estimation of Hawkes process parameters

Ozaki (1979) derived the log-likelihood function for Hawkes processes with exponential kernels,
which takes the form:

logL = −µT +

l∑
q=1

α

β
{e−β(T−tq) − 1}+

l∑
q=1

log(µ+ αw(q)) (A.1)

where w(q) =
∑

q′:tq′<tq
e−β(tq−tq′ ). Moreover, w(q) can be computed recursively using w(q) =

e−β(tq−tq−1)(1 +w(q− 1)), with the added base case of w(1) = 0, which drops the double summation
in the last term and decreases the computational complexity of the log-likelihood from O(l2) to
O(l) (Laub et al., 2015). The three parameters µ, α, β can be estimated by maximizing (A.1) using
standard numerical methods for non-linear optimization (Nocedal & Wright, 2006).

In our CHIP model, we have separate (µ, α, β) parameters for each block pair (a, b). We provide
closed-form equations for estimating mab = αab/βab and µab in (2). To separately estimate the αab
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Algorithm A.1 Spectral clustering algorithm for community detection in directed networks

Input: Adjacency Matrix N , number of blocks k
Result: Estimated block assignments Ĉ

1: Compute singular value decomposition of N
2: Σ̂← diagonal matrix of k largest singular values of N
3: Û , V̂ ← left and right singular vectors of N corresponding to k largest singular values
4: Ẑ ← concatenate(Û , V̂ )
5: Normalize the magnitude of each row of Ẑ to 1
6: Ĉ ← k-means clustering on rows of Ẑ
7: return Ĉ

and βab parameters, we replace αab = βabmab in the exponential Hawkes log-likelihood (A.1) for
block pair (a, b) to obtain

logL(βab|C, [tij ]ni,j=1) =
∑

i,j:Cia=1,Cjb=1

{
− µabT

+

Nij∑
q=1

mab{e−βab(T−t
q
ij) − 1}+

Nij∑
q=1

log(µab + βabmabwij(q))

}
(A.2)

where wij(q) =
∑

q′:tq
′
ij<t

q
ij

e−βab(t
q
ij−t

q′
ij ) for q ≥ 2 and wij(1) = 0. We substitute in the estimates

for mab and µab from (2). Then the log-likelihood (A.2) is purely a function of βab and can be
maximized using a standard scalar optimization or line search method. In our experiments, we
perform the line search using SciPy’s function minimize scalar(method="bounded").

B Additional Theoretical Analysis of Estimators

We present additional results on estimation of community assignments in Section B.1 along with
proofs and discussions. We then provide proofs of our results for estimated Hawkes process
parameters in Section B.2 along with discussions on obtaining confidence intervals for the estimated
Hawkes process parameters.

B.1 Estimated Community Assignments

We define the notation Y ∼ CHIP(C, n, k, µ, α, β) to denote that relational event matrix Y is
generated from a CHIP model with n nodes, k blocks, community assignment matrix C and Hawkes
process parameter matrices (µ, α, β). To characterize the misclustering rate of a spectral clustering
algorithm applied to N , we define the following quantities. Let λmin(E[N ]) denote the minimum in
absolute value non-zero eigenvalue of the matrix E[N ]. Define

s =
√
T max

a

√∑
b

|b| µab
(1− αab/βab)3

, (B.1)

s1 =
√
T max

a,b

√
µab

(1− αab/βab)3
. (B.2)

Then we have the following upper bound on the misclustering error rate.
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Theorem B.1. Let Y ∼ CHIP(C, n, k, µ, α, β). Then, with probability at least 1 − 1/n, the
misclustering error rate for spectral clustering on the weighted adjacency matrix N at time T →∞
is

r ≤ 64(2 + ε1)|a|max k

{
(1 + ε)(2s+ 6

log(1+ε)s1
√

log n) + s1
√

log n
}2

n(λmin(E[N ])2
,

where 0 < ε < 1/2 and ε1 > 0 are constants.

Theorem B.1 provides an upper bound to the error rate of spectral clustering on the weighted
adjacency matrix N in the setting T →∞. Note that the assumption of T →∞ does not preclude
us from being able to analyze scenarios where the network is sparse since the expected number of
events between a pair of nodes νab can be made constant or even o(1) by setting µab

1−αab/βab = O(1/T )

and µab
1−αab/βab = o(1/T ) respectively.

It is also possible to obtain an expression for the mean as a function of T without the assumption
of T →∞ using stochastic differential equations (Laub et al., 2015; Da Fonseca & Zaatour, 2014).
In particular, if we substitute the starting intensity λ0 = µ, i.e., the process starts with baseline
intensity as we have assumed throughout, and the starting number of events N0 = 0, then from the
result of Da Fonseca & Zaatour (2014) and Daw & Pender (2018),

E[Nij ] =
µabT

1− αab/βab
−
µabαab

[
1− e−(βab−αab)T

]
(βab − αab)2

.

We note that there is a small negative correction term to the asymptotic mean, since µab, αab, βab, T
are all non-negative. The effect of this term is negligible as T →∞, so we ignore it.

We now present an upper bound on the error rate for communities (analogous to Theorem
B.1) estimated from the unweighted adjacency matrix A. For a pair of nodes (i, j) such that
ci = a and cj = b, we have E[Aij ] = E[1{Nij > 0}] = P (Nij > 0) = 1 − e(−µabT ). Now A
is a n × n symmetric matrix whose elements Aij are independent Bernoulli random variables
with mean E[Aij ]. Let ∆ = max{nmaxi,j E[Aij ], c0 log n} for some constant c0, and note that
nmaxi,j E[Aij ] = nmax(1−exp(−µabT )) = n(1−exp(−µmaxT )), where µmax = maxa,b µab. Further,
let λmin(E[A]) denote the minimum in absolute value non-zero eigenvalue of the matrix E[A] and
|a|max denote the size of the largest community. Then we have the following upper bound on the
error rate of spectral clustering performed on A.

Theorem B.2. Let Y ∼ CHIP(C, n, k, µ, α, β). Then, with probability at least 1 − n−r, the
misclustering error rate for spectral clustering on the binary adjacency matrix A at time T is

r ≤ 64(2 + ε)
|a|maxkc∆

n(λmin(E[A]))2
,

where ε > 0 is a constant and c > 0 is a constant dependent on c0 and r.

B.1.1 Simplified Special Case

The upper bounds on the error rates in Theorems B.1 and B.2 are not very informative in terms of
their dependencies on key model parameters. In Section 4.1, we considered a simplified special case
that allowed us to simplify the constants in Theorem B.1, resulting in Theorem 1, which bounds
the misclustering error rate on the weighted adjacency matrix N . Similarly, we have the following
result for spectral clustering using the unweighted adjacency matrix A.

3



Theorem B.3. Let Y ∼ CHIP(C, n, k, µ1, α1, β1, µ2, α2, β2). The misclustering error rate for
spectral clustering on the binary adjacency matrix A at time T is

r .
k2

n

1− exp(−µ1T )

(exp(−µ2T )− exp(−µ1T ))2
. (B.3)

If further we assume µ1 � µ2 � o(1/T ), such that µ1T = o(1) and µ2T = o(1), then we have

r .
nTµ1

(n/k)2(µ1 − µ2)2T 2
� k2

nT

µ1

(µ1 − µ2)2
, (B.4)

whereas, for µ1 � µ2 � ω(1/T ), such that µ1T →∞ and µ2T →∞, then the upper bound for the
misclustering rate in Theorem B.2 goes to 1.

We note that if the parameters are kept constant as a function of T , then µ1T → ∞ and
µ2T → ∞. Consequently, without k and n changing the upper bound on the error rate for the
unweighted adjacency matrix in Theorem B.2 explodes and becomes close to 1, making the upper
bound guarantee useless. While this result might be a drawback of the upper bound result itself,
we note that unbounded error makes sense because in this regime almost all node pairs have at
least one communication with high probability. Hence the unweighted adjacency matrix has a 1
in almost all entries, and the community structure cannot be detected from this matrix. In that
case, we predict that using the weighted adjacency matrix N can lead to smaller error. Theorem 1
provides the corresponding upper bound for error rate for N .

The density of the aggregate adjacency matrix is governed by the parameters of the CHIP model.
Hence, to further characterize the dependence of the µ parameters on the number of nodes n and
time T in the network, assume µ1 = c1

1
f(n)g(T ) and µ2 = c2

1
f(n)g(T ) , where c1 and c2 are constants

that do not depend on n or T . Also assume 1 − α1/β1 and 1 − α2/β2 do not depend on n and

T . Then the upper bound on the error rate becomes r . k2f(n)g(T )
nT (c1−c2)2

. Now we note that consistent

community detection is possible as long as k = o
(√

nT |c1−c2|
f(n)g(T )

)
. For example, if we set g(T ) � T and

f(n) = n
logn , such that µ1 � µ2 � logn

nT , then the expected number of events between a node pair is

O( logn
n ). In that case, r(T ) . k2

logn(c1−c2)2
, and consistent community detection is possible as long

as k = o(
√

log n|c1 − c2|).
A second example is where we set g(T ) � 1 and f(n) = n

logn , such that µ1 � µ2 � logn
n . The

expected number of events between a vertex pair is then O(T logn
n ) and total expected number of

events in the whole network is O(nT log n). In that case r . k2

T logn(c1−c2)2
, and consistent community

detection is possible as long as k = o(
√
T log n|c1 − c2|).

B.1.2 Comparison Between Weighted and Unweighted Adjacency Matrices

We compare the bounds on the error rates in unweighted and weighted adjacency matrices in
Theorems B.3 and 1 in the sparse regime where µ1T and µ2T are small such that we can apply
the Taylor series approximation. From Theorem B.3, we have the error rate using the unweighted
adjacency matrix is upper bounded by k2

nT
µ1

(µ1−µ2)2
, while the error rate for the weighted adjacency

matrix is upper bounded by

k2

nT

µ1
(1−m1)3

+ µ2
(1−m2)3

( µ1
(1−m1) −

µ2
(1−m2))2

.

We can make the following comparison comments on the basis of these upper bounds.
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1. If m1 = m2 = m such that the community structure is expressed only through µ1 and µ2,
then the error for the weighted adjacency matrix is bounded by k2

nT
µ1+µ2

(µ1−µ2)2
1

1−m . This upper

bound is higher than the corresponding upper bound for spectral clustering in unweighted
adjacency matrix indicating a possible advantage of using the unweighted adjacency matrix.

2. If µ1 = µ2 such that the community structure is expressed purely through α, β, then the error
for the unweighted case is unbounded. However, the error for the weighted case can still be
bounded, indicating a possible advantage of the weighted adjacency matrix.

B.1.3 Proofs

We begin with the proofs of Theorems B.1 and B.2 for spectral clustering applied to the weighted
and unweighted adjacency matrices, respectively, in the general CHIP model. We then present the
proofs of Theorems 1 and B.3 for the simplified special case.

Proof of Theorem B.1

Proof. We start with the following result.

Lemma B.1. Let Y ∼ CHIP(C, n, k, µ, α, β). Let N denote the weighted adjacency matrix obtained
by aggregating Y at time T →∞. Then, with probability at least 1− 1/n, we have

‖N − E[N ]‖2 ≤ (1 + ε)

{
2s+

6

log(1 + ε)
s1

√
log n

}
+ 2s1

√
log n, (B.5)

where 0 < ε < 1/2 is a constant, and the terms s and s1 are as defined in (B.1) and (B.2),
respectively.

We present the proof of this lemma following the proof of this theorem.
Since E[N ] can also be written in the form of a stochastic block model as E[N ] = CνCT ,

we can use the same arguments as in the proof of the previous result. Using the Davis-Kahan
Theorem (Davis & Kahan, 1970; Stewart & Sun, 1990), we have the following bound:

r ≤ 1

n
|a|max8(2 + ε1)‖Û − C(CTC)−1/2O‖2F

≤ 64(2 + ε1)
|a|maxk‖N − E[N ]‖22
n(λmin(E[N ])2

, (B.6)

Combining (B.5) and (B.6), we arrive at the desired result.

Proof of Lemma B.1

Proof. We note that Nij is asymptotically normal (Theorem 4 of Hawkes & Oakes (1974)) as
T →∞, i.e.

Nij |(Cia = 1, Cjb = 1) ∼ N (νab, σ
2
ab).

Then (N −E[N ]) is a n×n symmetric matrix with elements (N −E[N ])ij = gijσij , where gij ; i ≥ j
are i.i.d N (0, 1) and σij is the standard deviation of Nij given before.

We will use Corollary 3.9 in Bandeira & van Handel (2016). In the notation of Bandeira & van
Handel (2016), we set σ = s, σ∗ = s1 and let t = 2s1

√
log n. Then for any 0 < ε < 1/2, we have

P

(
‖N − E[N ]‖2 ≥ (1 + ε){2s+

6

log(1 + ε)
s1

√
log n}+ 2s1

√
log n

)
≤ exp(− log n).
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Since exp(− log n) = 1/n, one can then take the probability of the complement, which completes
the proof.

Proof of Theorem B.2

Proof. We note that the matrix A is an adjacency matrix with independent entries. Further
nmaxij E[Aij ] ≤ ∆ and ∆ ≥ c0 log n by definition. Then by Theorem 5.2 of Lei & Rinaldo (2015),
we have with probability at least 1− n−r,

‖A− E[A]‖2 ≤ c
√

∆, (B.7)

where c is a constant dependent on c0 and r.
Since E[A] can be written in the form of a stochastic block model as E[A] = C(1− exp(µT ))CT ,

we can use known results in the SBM literature. Let Ûn×k denote the n× k matrix whose columns
are the top k eigenvectors of the matrix A. By Lemma 3.1 of Rohe et al. (2011), the matrix of
eigenvectors corresponding to the largest k non-zero eigenvalues of the matrix E[A] is C(CTC)−1/2O
for some k × k orthogonal matrix O. Then we have the following relationship for the difference
between matrices of population eigenvectors (those of E[A]) and sample eigenvectors (those of A)
and the misclustering error rate of community detection by applying (1 + ε) approximate k-means
algorithm to those matrices (Pensky & Zhang, 2019):

r ≤ 1

n
|a|max8(2 + ε)‖Û − C(CTC)−1/2O‖2F . (B.8)

Next we use the Davis-Kahan Theorem (Davis & Kahan, 1970; Stewart & Sun, 1990) that relates
perturbation of matrices to perturbation of eigenspaces of those matrices. Then we have the following
bound on the misclustering rate (also see Lemma 5.1 of Lei & Rinaldo (2015)):

r ≤ 64(2 + ε)
|a|maxk‖A− E[A]‖22
n(λmin(E[A])2

. (B.9)

Combining (B.7) and (B.9), we arrive at the desired result.

Next, we present the proofs of the theorems for the simplified special case with k equivalent
communities.

Proof of Theorem 1

Proof. Under the simplified model we have

E[N ] = C
(
(ν1 − ν2)TIk + ν2T1k1

T
k

)
CT .

As before all communities have the same number of nodes, i.e., |a| = n
k for all a, and |a|max = n

k .
Then by Rohe et al. (2011), 1k is an eigenvector corresponding to the eigenvalue n

k (ν1−ν2)T +nν2T,
and the remaining non-zero eigenvalues are of the form n

k (ν1 − ν2)T . Since nν2 > 0, the smallest
non-zero eigenvalue

λmin(E[N ]) =
n

k
(ν1 − ν2)T.

The upper bound from Theorem B.1 can also be simplified further under this model. We have

s =
√
T

√
n

k
σ2

1 +
(k − 1)n

k
σ2

2 �
√
nT

k

√
σ2

1 + (k − 1)σ2
2 �
√
nTσ1,
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and
s1 =

√
Tσ1,

and consequently,

(1 + ε)

(
2s+

6

log(1 + ε)
s1

√
log n

)
+ 2s1

√
log n �

√
Tσ1

(√
n+

√
log n

)
.
√
Tσ1

√
n.

Substituting these quantities into Theorem B.1 completes the proof.

Proof of Theorem B.3

Proof. Under the simplified model all communities have the same number of nodes, i.e., |a| = n
k for

all a, and consequently |a|max = n
k . Further, we can write

E[A] = C
(
(exp(−µ2T )− exp(−µ1T ))Ik + (1− exp(−µ2T )1k1

T
k

)
CT ,

where Ik is the k-dimensional identity matrix, and 1k is the k-dimensional vector of all 1’s. Then by
Rohe et al. (2011), 1k is an eigenvector corresponding to the eigenvalue n

k (exp(−µ2T )−exp(−µ1T ))+
n(1 − exp(−µ2T )), and the remaining non-zero eigenvalues are of the form n

k (exp(−µ2T ) −
exp(−µ1T )). Since n(1 − exp(−µ2T )) > 0, the smallest in absolute value non-zero eigenvalue
of E[A] is then,

λmin(E[A]) =
n

k
(exp(−µ2T )− exp(−µ1T )).

Also, under this setting, the numerator in the upper bound from Theorem B.2 becomes

∆ = n(1− exp(−µ1T )).

Substituting these quantities into Theorem B.2, we arrive at (B.3), the first statement of the
theorem.

If we further assume that µT is small then we can make some further simplifications using the
Taylor series expansion of exp(−x) near x = 0. In this case,

λmin �
n

k
(µ1 − µ2)T,

and
∆ � nµ1T.

Substituting these quantities into Theorem B.2, we arrive at (B.4), the second statement of the
theorem, which completes the proof.

B.2 Estimated Hawkes Process Parameters

B.2.1 Confidence Intervals

We derive confidence intervals for m using Theorem 2 and the following result readily obtained
using the Law of Large numbers: N̄ab

p→ µab. A (1− θ) ∗ 100% Bonferroni-corrected (due to multiple
comparisons) simultaneous confidence interval for all k2 parameters mab is

m̂ab ± z(1− θ
2k2

)

√
1

4nabN̄ab
. (B.10)
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The confidence intervals on mab are particularly appealing to detect the “burstiness” of the network
dynamics by testing the hypothesis mab > 0 for a block pair (a, b).

For the µ parameters, we are more interested in confidence intervals for pairwise differences
between block pairs to identify whether the block pairs differ in their baseline event rates. Therefore,
we build the following pairwise confidence intervals for all 2k(k − 1) pairwise differences:

(µ̂ab − µ̂ac)± z(1− θ
4(k−1)k

)

1

T

√
9

4

(
N̄ab

nab
+
N̄ac

nac

)
. (B.11)

Note even though the random variables m̂ab and µ̂ab are dependent across block pairs due to
the spectral clustering step, the Bonferroni correction is still going to give a conservative (wide)
interval with a simultaneous confidence coverage at least 1− θ.

B.2.2 Proofs

Proof of Theorem 2

Proof. First, using the Central Limit Theorem and Law of Large Numbers, we have

N̄ab
d→ N

(
νab,

σ2
ab

nab

)
and S2

ab
p→ σ2

ab, as nab →∞.

Then by Slutsky’s theorem (Lehmann, 2004) we have,

N̄ab

S2
ab

d→ N
(
νab
σ2
ab

,
1

σ2
abnab

)
⇔
√
nab

(
N̄ab

S2
ab

− νab
σ2
ab

)
d→ N

(
0,

1

σ2
ab

)
.

Finally, we will apply the delta method (See Theorem 2.5.2 of Lehmann (2004)) on the random

variable X = N̄ab
S2
ab

with the function g(x) = 1−
√
x. Note that g′(x) = 1

2
√
x
. Then we can compute

g′
(
νab
σ2
ab

)
= σab

2
√
νab

. Then we have

√
nab

(
m̂ab −

(
1−

√
νab
σ2
ab

))
d→ N

(
0,

1

4νab

)
.

Next we derive the asymptotic distribution for µ̂ab. We first apply the delta method to the
random variable N̄ab with the function g(x) = x3/2. Clearly, g′(x) = 3

2

√
x, such that g′(νab) = 3

2

√
νab.

Then we have
√
nab((N̄ab)

3/2 − (νab)
3/2)

d→ N
(

0,
9

4
νabσ

2
ab

)
.

Applying Slutsky’s theorem, we then have

√
nab

(
(N̄ab)

3/2

Sab
− (νab)

3/2)

σab

)
d→ N

(
0,

9

4
νab

)
.
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Proof of Theorem 3

Let C̄ and Ĉ denote the true and estimated community assignment matrices respectively. Define
H̄ = C̄(C̄T C̄)−1/2 and Ĥ = Ĉ(ĈT Ĉ)−1/2, such that H̄T H̄ = ĤT Ĥ = I.

We have
E[N ] = C̄νC̄T

Then
(C̄T C̄)1/2ν(C̄T C̄)1/2 = (C̄T C̄)−1/2C̄TE[N ]C̄(C̄T C̄)−1/2 = H̄TE[N ]H̄.

Instead, the estimate for ν we get using estimated community assignment matrix Ĉ applied to N is

(ĈT Ĉ)1/2ν̂(ĈT Ĉ)1/2 = ĤTNĤ

Note that (ĈT Ĉ) and (C̄T C̄) are k× k diagonal matrices whose qth diagonal element represents
the number of vertices that are part of the qth community. Next we make a key assumption—the
sizes of the communities from the estimated community partition are similar to the true community
sizes. In particular, we assume that the size of each of the k communities in the true and estimated
partition is O(nk ). Therefore, the difference

(ĈT Ĉ)1/2ν̂(ĈT Ĉ)1/2 − (C̄T C̄)1/2ν(C̄T C̄)1/2 � n

k
(ν̂ − ν̄).

Now we have

n

k
(ν̂ − ν) = ĤTNĤ − H̄TE[N ]H̄

= ĤTNĤ − ĤTE[N ]Ĥ + ĤTE[N ]Ĥ − H̄TE[N ]H̄

= ĤT (N − E[N ])Ĥ + {ĤTE[N ](Ĥ − H̄) + (Ĥ − H̄)TE[N ]H̄}

We also note that

‖H̄‖2 ≤
√
λmax(H̄T H̄) = 1,

Note by assumption,
√
nab � n

k . Now,∑
ab

nab(ν̂ − ν)2
ab �

(n
k

)2
‖ν̂ − ν‖2F

≤ (‖ĤT (N − E[N ])Ĥ‖F + 2‖ĤTE[N ](Ĥ − H̄)‖F )2

≤ 2k

(
‖N − E[N ]‖22 + 4‖E[N ]‖22

‖N − E[N ]‖22
λ2
min(N)

)
In the notation of Theorem 1,

λmin(N) =
n

k
(ν1 − ν2)T.

Also, using the upper bound in terms of expectation (instead of the in probability upper bound)
from Theorem 1 we have

E[‖N − E[N ]‖2] .
√
nTσ1, ‖E[N ]‖2 . nν1T.

Therefore,

E

[∑
ab

nab(ν̂ − ν)2
ab

]
. knTσ2

1 + k
n2ν2

1T
2nTσ2

1k
2

n2(ν1 − ν2)2T 2
. knTσ2

1 +
k3nTσ2

1ν
2
1

(ν1 − ν2)2
.
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And consequently the sum of the weighted mean squared errors is,∑
ab

nabE[(ν̂ − ν)2
ab] . knT max

{
σ2

1,
k2σ2

1ν
2
1

(ν1 − ν2)2

}
Noting that

∑
ab nab � n2, the average MSE of estimating νab is then asymptotically

kT

n
max

{
σ2

1,
k2σ2

1ν
2
1

(ν1 − ν2)2

}
or

T
√
nab

max

{
σ2

1,
k2σ2

1ν
2
1

(ν1 − ν2)2

}
For comparison, the weighted sum of MSEs in estimating νab, using the estimator N̄ab when the

community structure is known (from Theorem 2) is∑
ab

nabE[(N̄ab − νab)2] =
∑
ab

σ2
ab = k2Tσ2

1,

and average MSE is asymptotically
k2Tσ2

1

n2
or

Tσ2
1

nab
.

C Additional Experiments

We present two additional simulation experiments to analyze the effects of various parameters of
the CHIP model on the accuracy of spectral clustering and to compare spectral clustering using
weighted and unweighted adjacency matrices in detecting the ground truth community structure in
simulated networks. We then present additional details and analyses for our real network dataset
experiments.

C.1 Simulation Experiments

C.1.1 Community Detection with Varying n

We simulate networks from the simplified CHIP model described in Section B.1.1 with k = 4
communities, duration T = 400, and a growing number of nodes n. We estimate community
assignments of nodes using both the weighted adjacency (count) matrix N and unweighted adjacency
matrix A.

First, we choose parameters µ1 = 0.002, µ2 = 0.001, α1 = α2 = 7, and β1 = β2 = 8 so that
only µ is informative. The upper bound on the misclustering error rate using N is worse by a
factor of (1 −m)−1 = 8 compared to using A as discussed in Section B.1.2. The adjusted Rand
scores for spectral clustering on both A and N over 100 simulated networks for varying n are shown
in Figure C.1(a). The accuracy on A approaches 1 for growing n, as expected. The accuracy on
N is significantly worse, as predicted by the comparison of the respective upper bounds on the
misclustering error rates, and no better than a random community assignment until n = 512 nodes.

Next, we choose parameters µ1 = µ2 = 0.001, α1 = 0.006, α2 = 0.001, and β1 = β2 = 0.008. so
that only α is informative. The error for A is unbounded, while the error for N still follows the
upper bound in Corollary 1. As shown in Figure C.1(b), the accuracy on N approaches 1 as n
increases, while the accuracy on A is no better than random even for growing n, as expected.
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Figure C.1: Mean adjusted Rand scores of spectral clustering on weighted and unweighted adjacency
matrices over 100 simulated networks (± 2 standard errors). β1 = β2 in both cases. Both sets of
results agree with upper bounds from Section B.1.2.

C.1.2 Effects of Diagonal and Off-diagonal µ’s on Community Detection

In Section C.1.1 we observed that community detection will be easier if µ is informative (µ1 6= µ2).
In this experiment, we will explore two different ways of encoding community information into
simulated networks by

1. Scaling up both µ1 and µ2, while keeping a fixed µ1 : µ2 ratio.

2. Only scaling up µ1, allowing for µ1 : µ2 ratio to increase.

Both settings share the same base parameters of µ1 = 0.075 and µ2 = 0.065, with k = 4
communities and n = 128 nodes, a duration of T = 50, where α1 = α2 = 0.05 and β1 = β2 = 0.08.
These parameters are chosen to create a base network that is nearly impossible for spectral clustering
to accurately detect communities. The objective is similar to that of Section C.1.1, where in both
settings we perform community detection using spectral clustering on the weighted adjacency of
simulated networks, while increasing µ1 and µ2 or their ratio. Lastly, we average over the adjusted
Rand score of 100 simulations.

As shown in Figure C.2, community detection accuracy increases in both settings as the scalars
increase; however, we find that the increase in accuracy occurs for different reasons. In the first
setting, Figure C.2(a), where both µ’s are scaled up with a fixed ratio, community detection becomes
easier simply because the networks are becoming denser, as shown in the numbers above the bars
in Figure C.3, and more information is available. Furthermore, although we keep the µ1 : µ2 ratio
fixed, as the scalars increase the difference between the two starts to magnify. On the other hand,
as networks become denser and most node pairs start to have at least one interaction, it is only the
number of interactions among node pairs that becomes informative. Therefore, spectral clustering on
the weighted adjacency matrix continues to result in a high adjusted Rand score, while the adjusted
Rand score of spectral clustering on the unweighted adjacency matrix decreases with increasing
density, as it is illustrated in Figure C.3. This observation confirms the theoretical prediction
made in Theorem B.3. The opposite also holds to some degree. For really sparse networks spectral
clustering is more accurate on the unweighted adjacency matrix; however, in Figure C.3 we observe
that it loses its advantage as the proportion of node pairs with at least one interaction approaches
0.5 and starts impairing community detection as it passed 0.8.
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(b) Scaling µ1 up only, keeping µ2 fixed

Figure C.2: Adjusted Rand score of spectral clustering on weighted adjacency matrix, averaged
over 100 simulated networks (± 2 standard errors), while multiplying µ1 and µ2 or their ratio by
scalars. C.2(a) Scaling up both µ1 and µ2, keeping their ratio fixed. C.2(b) Only scaling up µ1,
while keeping µ2 fixed.

In the second setting, Figure C.2(b), by only scaling up µ1, the difference between the baseline
rate of occurrence of an event between the diagonal and the off-diagonal blocks increases. This
increases the signal-to-noise ratio and is a more effective way of encoding community information
into a network. This can be observed by comparing the scalars of Figures C.2(a) and C.2(b).
Starting from the same base network, a perfect adjusted Rand score is achieved when only µ1 is
scaled up by a factor of 1.4, compared to scaling both µ’s up by a factor of 30.

C.2 Real Data

C.2.1 Dataset Descriptions

We consider three real network datasets consisting of timestamped relational events. For each
dataset, we normalize the event times to the range [0, 1,000].

• MIT Reality Mining (Eagle et al., 2009): Consists of 2,161 phone calls where the start time of
each call was used as the event timestamp. This dataset has a “core-periphery” structure,
where there is a core group for whom we have all of their communication data and a much
larger group of people in the periphery who had contact with the core. We consider calls
between pairs of the core 70 callers and recipients. We use the last 661 phone calls as the test
set1.

• Enron (Klimt & Yang, 2004): Consists of 4,000 emails exchanged among 142 individuals. We
use the last 1,000 emails as the test set.

• Facebook Wall Posts (Viswanath et al., 2009): Consists of a total of 876,993 wall posts from
46,952 users from September 2004 to January 2009. We consider only posts from a user to

1We found some inconsistencies between the actual dataset used and its description in DuBois et al. (2013).
For a fair comparison, we loaded and preprocessed this dataset using their code available on GitHub: https:

//github.com/doobwa/blockrem/blob/master/process/reality.r.
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Figure C.3: Adjusted Rand score of spectral clustering on weighted vs. unweighted adjacency
matrices, averaged over 100 simulations (± 2 standard errors), while multiplying both µ1 and µ2

by scalars. The numbers above each bar indicate the average density of simulated networks as the
proportion of non-zero entries to the total number of elements in the adjacency matrix. Base model
parameters are: µ1 = 7.5 × 10−4, µ2 = 3.5 × 10−4, k = 4, T = 50, n = 256, α1 = α2 = 0.05, and
β1 = β2 = 0.08.

another user’s wall so that there are no self-edges. We analyze the largest connected component
of the network excluding self loops: 43,953 nodes and 852,833 events. We divide the dataset
into train and test sets using a 80%/20% split on the number of events.

C.2.2 Comparison with Other Models

We find that our proposed CHIP model achieves higher test log-likelihood than the relational event
model (REM) (DuBois et al., 2013), block Hawkes model (BHM) (Junuthula et al., 2019), and the
spectral clustering with homogeneous Poisson process baseline on the Reality Mining and Enron
datasets as shown in Table 1. CHIP and the Poisson baseline were able to scale to the Facebook
network, which was two orders of magnitude larger. The local search procedure in the BHM does
not scale to such a large network, so we provide fits using only the faster but less accurate spectral
clustering procedure. We did not implement the REM so we compare against the reported results
in DuBois et al. (2013), which did not include the Facebook data. We note that since all the three
models assume the same Poisson process for arrival of events with different rates (which are governed
by different set of parameters), the joint distribution of event times has the same form for all three
models. Hence the likelihood function of the models are directly comparable. Therefore, the test
log-likelihood is a reasonable metric for comparing the fits of the models to the data.

To compute the test log-likelihood for CHIP and BHM, we use the following process. First,
we use the estimation procedure explained in Section 3.2 to estimate all CHIP’s Hawkes process
parameters using the training set (the entire dataset excluding the test set). Next, we calculate the
model log-likelihood on the entire dataset and subtract the training log-likelihood from it. The result
is then divided by the total number of events in the test set to evaluate the mean log-likelihood per
test event, which is the metric used in DuBois et al. (2013). Lastly, if a node in the test set did not
appear in the training data, it was automatically assigned to the largest block.

We implemented the BHM by using spectral clustering followed by local search (Junuthula et al.,
2019), which they found to achieve the highest adjusted Rand score in simulations compared to just
spectral clustering and variational EM. We allowed the local search to converge to a local maximum
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Figure C.4: 15 largest singular values of spectral clustering on the weighted adjacency matrix of the
Enron dataset. The gap between the 2nd and the 3rd largest singular values led us to select k = 2
blocks.

Table C.1: Number of node pairs and events in each block pair of the CHIP model with k = 2 in
the Enron dataset.

Block Pair (a, b) (1, 1) (1, 2) (2, 1) (2, 2)

Node Pair Count 5700 5016 5016 4290
Event Count 965 572 1038 1425

for all values of k.

C.2.3 Exploratory Analysis of Enron Network

Next, we perform model-based exploratory analysis of the Enron network using CHIP. We find a
large gap between the 2nd and the 3rd largest singular values of the weighted adjacency matrix as
shown in Figure C.4 so we choose a fit with k = 2 blocks. The number of node pairs and events in
each block pair are shown in Table C.1.

Figure C.5(a) shows the estimated baseline intensity of each block pair. This can be thought
of as the rate at which email conversations get started. We observe that µ̂11 is much larger than
µ̂22; however block pair (1, 1) only accounts for 965 emails as opposed to 1,425 for block pair (2, 2).
Thus, the community structure is not evident only from the differences in the baseline rates µ.

It is only after we consider how bursty interactions are in each block pair, as shown in Figure
C.5(b), that we can explain the dynamics of this network. In particular, m̂22 is much higher than
m̂11. In other words, once an email conversation is started in block-pair (2, 2) we can expect more
emails to follow, as opposed to more frequent conversations starting in (1, 1), but with less follow-ups.
Hence, the combination of µ and m allows us to observe the community structure, with more edges
within block pairs than between, as shown by the values of µ̂/(1− m̂) in Figure C.5(c).

Table C.2 shows the numerical values for m̂ along with their 95% confidence intervals obtained
using (B.10), indicating that all block pairs exhibit highly bursty behavior. As previously mentioned,
the baseline rates µ̂ are not by themselves indicative of the community structure due to the burstiness
of events in all of the blocks. Indeed, when we examine the 95% confidence intervals for pairwise
differences between the µ values for different block pairs using (B.11) shown in Table C.3, all of the
confidence intervals include 0.
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Figure C.5: Estimated CHIP parameters on Enron data, where axis labels of each heatmap denote
block index. Each tile corresponds to a block pair where (a, b) denotes row a and column b.

Table C.2: Estimated m̂ab ± 95% confidence interval from CHIP on the Enron dataset with k = 2.
All values of m̂ab are statistically significant at the 5% level for the test mab > 0. The high values of
m̂ab indicate that interactions in all block pairs are quite bursty.

Block Pair 1 2
1 0.7536 ± 0.0440 0.7855 ± 0.0572
2 0.8126 ± 0.0424 0.9237 ± 0.0362

Table C.3: Pairwise difference for unique pairs of diagonal vs. off-diagonal µ̂a,a−µ̂a,b±95% confidence
interval of the CHIP model fitted to the Enron dataset with k = 2. None of the differences are
statistically significant at the 5% level for the test µ̂a,a − µ̂a,b 6= 0, suggesting that the community
structure is not evident from differences in the baseline rates µ.

Pairwise Differences in µ̂

µ̂1,1 − µ̂1,2 1.724× 10−5 ± 2.970× 10−5

µ̂1,1 − µ̂2,1 2.929× 10−6 ± 3.455× 10−5

µ̂2,2 − µ̂1,2 8.650× 10−7 ± 4.105× 10−5

µ̂2,2 − µ̂2,1 −1.345× 10−5 ± 4.468× 10−5
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Figure C.6: Results of spectral clustering on the weighted adjacency matrix of the largest connected
component of the Facebook Wall Posts dataset. C.6(a) 100 largest singular values. There is a large
gap between the 10th and the 11th largest singular values that leads us to select k = 10 blocks.
C.6(b) Size of each formed block. Numbers on top of each bar indicate the actual number of nodes
in that block.

Figure C.7: Adjacency matrix for Facebook wall post network with rows and columns rearranged to
show block structure.

C.2.4 Exploratory Analysis of Facebook Wall Post Network

Fitting the CHIP model to the largest connected component of the network (excluding self loops)
consisting of 43,953 nodes and 852,833 edges required only 141.4 s. Considering the gap between
the 10th and the 11th largest singular values of the weighted adjacency matrix of the network as
shown in Figure C.6(a), we choose a model with k = 10 blocks, resulting in the block sizes depicted
in Figure C.6(b).

Figure C.8 shows heatmaps of the fitted CHIP parameters. Although diagonal block pairs have
a higher base intensity on average, indicating an underlying assortative community structure, there
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Figure C.8: Inferred CHIP parameters on the largest connected component of the Facebook Wall
Posts dataset with k = 10. Axis labels denote block numbers. Each tile corresponds to a block pair
where (a, b) denotes row a and column b. Boxed block pairs in the heatmap are discussed in the
body text.
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are some off-diagonal block pairs with a high µ such as (5, 8) and (8, 5), as shown in the red boxes
in Figure C.8. This illustrates that the CHIP model does not discourage inter-block events. These
patterns often occur in social networks, for instance, if there are communities with opposite views
on a particular subject.

While the structure of µ reveals insights on the baseline rates of events between block pairs,
the structure of α (Figure C.8(c)) and β (Figure C.8(d)) reveal insights on the burstiness of events
between block pairs. Note that the structure of the α to β ratio m (Figure 4(c)) affects the
asymptotic mean number of events in (3). For some block pairs, such as (3, 10), there are very low
values of α and β indicating the events are closely approximated by a homogeneous Poisson process.
There are some block pairs, such as (2, 8) that have a low baseline rate of events but are extremely
bursty, which relatively increases the mean number of events per node pair. Both of these block
pairs are shown in the blue dashed boxes in Figure C.8. The different levels of burstiness of block
pairs cannot be seen from aggregate statistics such as the total number of events (Figure C.8(e)) or
even the mean number of events per node pair (Figure C.8(f)).

Unlike the findings of Junuthula et al. (2019), who studied only a subset of the network containing
3, 582 nodes using k = 2 blocks, we find that α is not necessarily higher for diagonal blocks as
shown in Figure C.8(c). Additionally, even though we do not explicitly model reciprocity between
node pairs in our CHIP model, we can nevertheless empirically observe certain reciprocities through
the patterns of the estimated α and β parameters. We note that the high reciprocity present in
social networks is captured by CHIP through the symmetry in all Hawkes process parameters about
block pairs. This can be observed in block pairs (8, 5) and (5, 8). In the context of this dataset, a
symmetric α and β corresponds to the notion that wall posts posted by the people in block 5 on
the wall of the people in block 8 will urge people in block 8 to respond, which in turn promotes
more wall posts by people in block 5.

Lastly, it is worth noting that fitting the CHIP model to this data set using the unweighted
adjacency matrix resulted in a per event log-likelihood of −10.04 compared to −9.61 for the weighted
adjacency matrix on the test data set when using a 80%/20% train and test split on the events. Thus,
this was another reason to use the weighted adjacency matrix besides its aforementioned advantages
in previous sections. We note that running spectral clustering on the unweighted adjacency matrix,
compared to the weighted adjacency matrix, seemed to detect communities with larger number of
intra-block events, while inter-block events were a lot less common.
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