
A List of contributions

This paper makes several contributions, which we summarize here.

• RL+Search in two-player zero-sum imperfect-information games. Prior work has de-
veloped RL+Search for two-player zero-sum perfect-information games. There has also
been prior work on learning value functions in fully cooperative imperfect-information
games [19] and limited subsets of zero-sum imperfect-information games [29]. However,
we are not aware of any prior RL+Search algorithms for two-player zero-sum games in
general. We view this as the central contribution of this paper.

• Alternative to safe search techniques. Theorem 3 proves that, when doing search at test
time with an accurate PBS value function, one can empirically play according to a Nash
equilibrium by sampling a random iteration and passing down the beliefs produced by that
iteration’s policy. This result applies regardless of how the value function was trained and
therefore applies to earlier techniques that use a PBS value function, such as DeepStack [40].

• Subgame decomposition via CFR-AVG. We describe the CFR-AVG algorithm in Ap-
pendix I. CFR-D [16] is a way to conduct depth-limited solving of a subgame with CFR
when given a value function for PBSs. CFR-D is theoretically sound but has certain proper-
ties that may reduce performance in a self-play setting. CFR-AVG is a theoretically sound
alternative to CFR-D that does not have these weaknesses. However, in order to implement
CFR-AVG efficiently, in our experiments we modify the algorithm in a way that is not
theoretically sound but empirically performs well in poker. Whether or not this modified
form of CFR-AVG is theoretically sound remains an open question.

• Connection between PBS gradients and infostate values. Theorem 1 proves that all of
the algorithms described in this paper can in theory be conducted using only V1, not v̂ (that
is, a value function that outputs a single value for a PBS, rather than a vector of values
for the infostates in the PBS). While this connection does not have immediate practical
consequences, it does point toward a way of deploying the ideas in this paper to settings
with billions or more infostates per PBS.

• Fictitious Linear Optimistic Play (FLOP). Section H introduces FLOP, a novel variant
of Fictitious Play that is inspired by recent work on regret minimization algorithms [13].
We show that FLOP empirically achieves near-O( 1

T ) convergence in the limit in both poker
and Liar’s Dice, does far better than any previous variant of FP, and in some domains is a
reasonable alternative to CFR.

B Pseudocode for ReBeL

Algorithm 2 presents ReBeL in more detail.

We define the average of two policies to be the policy that is, in expectation, identical to picking one
of the two policies and playing that policy for the entire game. Formally, if π = απ1 + (1− α)π2,

then π(si) =
(xπ1i (si)α)π1(si)+(xπ2i (si)(1−α))π2(si)

x
π1
i (si)α+x

π2
i (si)(1−α)

where xπ1
i (si) is the product of the probabilities

for all agent i actions leading to si. Formally, xπi (si) of infostate si = (O0
i , a

0
i , O

1
i , a

1
i , ..., O

t
i) is

xπi (si) = Πt(a
t
i).

C Description of Games used for Evaluation

C.1 Heads-up no-limit Texas hold’em poker (HUNL)

HUNL is the two-player version of no-limit Texas hold’em poker, which is the most popular variant
of poker in the world. For each “hand” (game) of poker, each player has some number of chips (the
stack) in front of them. In our experiments, stack size varies during training between $5,000 and
$25,000 but during testing is always $20,000, as is standard in the AI research community. Before
play begins, Player 1 commits a small blind of $50 to the pot and Player 2 commits a big blind of
$100 to the pot.
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Algorithm 2 ReBeL

function REBEL-LINEAR-CFR-D(βr, θv, θπ, Dv, Dπ) . βr is the current PBS
while !ISTERMINAL(βr) do

G← CONSTRUCTSUBGAME(βr)
π̄, πtwarm ← INITIALIZEPOLICY(G, θπ) . twarm = 0 and π0 is uniform if no warm start
G← SETLEAFVALUES(βr, πtwarm , θv)
v(βr)← COMPUTEEV(G, πtwarm )
tsample ∼ linear{twarm + 1, T} . Probability of sampling iteration t is proportional to t
for t = (twarm + 1)..T do

if t = tsample then
β′r ← SAMPLELEAF(G, πt−1) . Sample one or multiple leaf PBSs

πt ← UPDATEPOLICY(G, πt−1)
π̄ ← t

t+2 π̄ + 2
t+2π

t

G← SETLEAFVALUES(βr, πt, θv)
v(βr)← t

t+2v(βr) + 2
t+2 COMPUTEEV(G, πt)

Add {βr, v(βr)} to Dv . Add to value net training data
for β ∈ G do . Loop over the PBS at every public state in G

Add {β, π̄(β)} to Dπ . Add to policy net training data (optional)
βr ← β′r

function SETLEAFVALUES(β, π, θv)
if ISLEAF(β) then

for si ∈ β do . For each infostate si corresponding to β
v(si) = v̂(si|β, θv)

else
for a ∈ A(β) do

SETLEAFVALUES(T (β, π, a), π, θv)

function SAMPLELEAF(G, π)
i∗ ∼ unif{1, N}, h ∼ βr . Sample a history randomly from the root PBS and a random player
while !ISLEAF(h) do

c ∼ unif[0, 1]
for i = 1..N do

if i == i∗ and c < ε then . we set ε = 0.25 during training, ε = 0 at test time
sample an action ai uniform random

else
sample an action ai according to πi(si(h))

h ∼ τ(h, a)

return βh . Return the PBS corresponding to leaf node h
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Once players commit their blinds, they receive two private cards from a standard 52-card deck. The
first of four rounds of betting then occurs. On each round of betting, players take turns deciding
whether to fold, call, or raise. If a player folds, the other player receives the money in the pot and the
hand immediately ends. If a player calls, that player matches the opponent’s number of chips in the
pot. If a player raises, that player adds more chips to the pot than the opponent. The initial raise of
the round must be at least $100, and every subsequent raise on the round must be at least as large as
the previous raise. A player cannot raise more than either player’s stack size. A round ends when
both players have acted in the round and the most recent player to act has called. Player 1 acts first on
the first round. On every subsequent round, player 2 acts first.

Upon completion of the first round of betting, three community cards are publicly revealed. Upon
completion of the second betting round, another community card is revealed, and upon completion of
the third betting round a final fifth community card is revealed. After the fourth betting round, if no
player has folded, then the player with the best five-card poker hand, formed from the player’s two
private cards and the five community cards, is the winner and takes the money in the pot. In case of a
tie, the money is split.

C.2 Turn endgame hold’em (TEH)

TEH is identical to HUNL except both players automatically call for the first two betting rounds, and
there is an initial $1,000 per player in the pot at the start of the third betting round. We randomize the
stack sizes during training to be between $5,000 and $50,000 per player. The action space of TEH is
reduced to at most three raise sizes (0.5× pot, 1× pot, or all-in for the first raise in a round, and 0.75×
pot or all-in for subsequent raises), but the raise sizes for non-all-in raises are randomly perturbed by
up to ±0.1× pot each game during training. Although we train on randomized stack sizes, bet sizes,
and board cards, we measure exploitability on the case of both players having $20,000, unperturbed
bet sizes, and the first four board cards being 3♠7♥T♦K♠. In this way we can train on a massive
game while still measuring NashConv tractably. Even without the randomized stack and bet sizes,
TEH has roughly 2 · 1011 infostates.

C.3 Liar’s Dice

Liar’s Dice is a two-player zero-sum game in our experiments, though in general it can be played
with more than two players. At the beginning of a game each player privately rolls d dice with f
faces each. After that a betting stage starts where players take turns trying to predict how many dice
of a specific kind there are among all the players, e.g., 4 dice with face 5. A player’s bid must either
be for more dice than the previous player’s bid, or the same number of dice but a higher face. The
round ends when a player challenges the previous bid (a call of liar). If all players together have at
least as many dice of the specified face as was predicted by the last bid, then the player who made the
bid wins. Otherwise the player who challenged the bid wins. We use the highest face as a wild face,
i.e., dice with this face count towards a bid for any face.

D Domain Knowledge Leveraged in our Poker AI Agent

The most prominent form of domain knowledge in our ReBeL poker agent is the simplification of the
action space during self play so that there are at most 8 actions at each decision point. The bet sizes
are hand-chosen based on conventional poker wisdom and are fixed fractions of the pot, though each
bet size is perturbed by ±0.1× pot during training to ensure diversity in the training data.

We specifically chose not to leverage domain knowledge that has been widely used in previous poker
AI agents:

• All prior top poker agents, including DeepStack [40], Libratus [12], and Pluribus [14], have
used information abstraction to bucket similar infostates together based on domain-specific
features [30, 21, 6]. Even when computing an exact policy, such as during search or when
solving a poker game in its entirety [24, 4], past agents have used lossless abstraction in
which strategically identical infostates are bucketed together. For example, a flush of spades
may be strategically identical to a flush of hearts.
Our agent does not use any information abstraction, whether lossy or lossless. The agent
computes a unique policy for each infostate. The agent’s input to its value and policy
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network is a probability distribution over pairs of cards for each player, as well as all public
board cards, the amount of money in the pot relative to the stacks of the players, and a flag
for whether a bet has occurred on this betting round yet.

• DeepStack trained its value network on random PBSs. In addition to reducing the dimension-
ality of its value network input by using information abstraction, DeepStack also sampled
PBSs according to a handcrafted algorithm that would sample more realistic PBSs compared
to sampling uniform random. We show in Section 8 that training on PBSs sampled uniformly
randomly without information abstraction results in extremely poor performance in a value
network.
Our agent collects training data purely from self play without any additional heuristics
guiding which PBSs are sampled, other than an exploration hyperparameter that was set to
ε = 0.25 in all experiments.

• In cases where both players bet all their chips before all board cards are revealed, past poker
AIs compute the exact expected value of all possible remaining board card outcomes. This
is expensive to do in real time on earlier rounds, so past agents pre-compute this expected
value and look it up during training and testing. Using the exact expected value reduces
variance and makes learning easier.
Our agent does not use this shortcut. Instead, the agent learns these “all-in” expected values
on its own. When both agents have bet all their chips, the game proceeds as normal except
neither player is allowed to bet.

• The search space in DeepStack [40] extends to the start of the next betting round, except
for the third betting round (out of four) where it instead extends to the end of the game.
Searching to the end of the game on the third betting round was made tractable by using
information abstraction on the fourth betting round (see above). Similarly, Libratus [11],
Modicum [15], and Pluribus [14] all search to the end of the game when on the third betting
round. Searching to the end of the game has the major benefit of not requiring the value
network to learn values for the end of the third betting round. Thus, instead of the game being
three “levels” deep, it is only two levels deep. This reduces the potential for propogation of
errors.
Our agent always solves to the end of the current betting round, regardless of which round it
is on.

• The depth-limited subgames in DeepStack extended to the start of the next betting round on
the second betting round. On the first betting round, it extended to the end of the first betting
round for most of training and to the start of the next betting round for the last several CFR
iterations. Searching to the start of the next betting round was only tractable due to the
abstractions mentioned previously and due to careful optimizations, such as implementing
CFR on a GPU.
Our agent always solves to the end of the current betting round regardless of which round it
is on. We implement CFR only on a single-thread CPU and avoid any abstractions. Since a
subgame starts at the beginning of a betting round and ends at the start of the next betting
round, our agent must learn six “layers” of values (end of first round, start of second round,
end of second round, start of third round, end of third round, start of fourth round) compared
to three for DeepStack (end of first round, start of second round, start of third round).

• DeepStack used a separate value network for each of the three “layers” of values (end of first
round, start of second round, start of third round). Our agent uses a single value network for
all situations.

E Hyper parameters

In this section we provide details of the value and policy networks and the training procedures.

We approximate the value and policy functions using artificial neural networks. The input to the value
network consists of three components for both games: agent index, representation of the public state,
and a probability distribution over infostates for both agents. For poker, the public state representation
consists of the board cards and the common pot size divided by stack size; for Liar’s Dice it is the last
bid and the acting agent. The output of the network is a vector of values for each possible infostate of
the indexed agent, e.g., each possible poker hand she can hold.
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We trained a policy network only for poker. The policy network state representation additionally
contains pot size fractions for both agents separately as well as a flag for whether there have been
any bets so far in the round. The output is a probability distribution over the legal actions for each
infostate.

As explained in section 7 we use Multilayer perceptron with GeLU [27] activation functions and
LayerNorm [3] for both value and policy networks.

For poker we represent the public state as a concatenation of a vector of indices of the board cards,
current pot size relative to the stack sizes, and binary flag for the acting player. The size of the full
input is

1(agent index) + 1(acting agent) + 1(pot) + 5(board) + 2× 1326(infostate beliefs)

We use card embedding for the board cards similar to [7] and then apply MLP. Both the value and
the policy networks contain 6 hidden layers with 1536 layers each. For all experiments we set the
probability to explore a random action to ε = 25% (see Section 5.2). To store the training data we
use a simple circular buffer of size 12M and sample uniformly. Since our action abstraction contains
at most 9 legal actions, the size of the target vector for the policy network is 9 times bigger than one
used for the value network. In order to make it manageable, we apply linear quantization to the policy
values. As initial data is produced with a random value network, we remove half of the data from the
replay buffer after 20 epochs.

For the full game we train the network with Adam optimizer with learning rate 3× 10−4 and halved
the learning rate every 800 epochs. One epoch is 2,560,000 examples and the batch size 1024. We
used 90 DGX-1 machines, each with 8 × 32GB Nvidia V100 GPUs for data generation. We report
results after 1,750 epochs. For TEH experiments we use higher initial learning rate 4× 10−4, but
halve it every 100 epochs. We report results after 300 epochs.

For Liar’s Dice we represent the state as a concatenation of a one hot vector for the last bid and binary
flag for the acting player. The size of the full input is

1(agent index) + 1(acting agent) + ndicenfaces(last bid) + 2nfaces
ndice(infostate beliefs).

The value network contains 2 hidden layers with 256 layers each. We train the network with Adam
optimizer with learning rate 3 × 10−4 and halved the learning rate every 400 epochs. One epoch
is 25,600 examples and the batch size 512. During both training and evaluation we run the search
algorithm for 1024 iterations. We use single GPU for training and 60 CPU threads for data generation.
We trained the network for 1000 epochs. To reduce the variance in RL+Search results, we evaluated
the three last checkpoints and reported averages in table 2.

E.1 Human Experiments for HUNL

We evaluated our HUNL agent against Dong Kim, a top human professional specializing in HUNL.
Kim was one of four humans that played against Libratus [12] in the man-machine competition which
Libratus won. Kim lost the least to Libratus. However, due to high variance, it is impossible to
statistically compare the performance of the individual humans that participated in the competition.

A total of 7,500 hands were played between Kim and the bot. Kim was able to play from home at
his own pace on any schedule he wanted. He was also able to play up to four games simultaneously
against the bot. To incentivize strong play, Kim was offered a base compensation of $1 ± $0.05x
for each hand played, where x signifies his average win/loss rate in terms of big blinds per hundred
hands played. Kim was guaranteed a minimum of $0.75 per hand and could earn no more than $2 per
hand. Since final compensation was based on the variance-reduced score rather than the raw score,
Kim was not aware of his precise performance during the experiment.

The bot played at an extremely fast pace. No decision required more than 5 seconds, and the bot
on average plays faster than 2 seconds per hand in self play. To speed up play even further, the bot
cached subgames it encountered on the preflop. When the same subgame was encountered again, it
would simply reuse the solution it had already computed previously.

Kim’s variance-reduced score, which we report in Section 8, was a loss of 165 ± 69 where the ±
indicates one standard error. His raw score was a loss of 358± 188.
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F Proof Related to Value Functions (Theorem 1)

We start by proving some preliminary Lemmas. For simplicity, we will sometimes prove results for
only one player, but the results hold WLOG for both players.

For some policy profile π = (π1, π2), let vπi (β) : B → R|Si| be a function that takes as input a PBS
and outputs infostate values for player i.
Lemma 1. Let V π2

1 (β) be player 1’s value at β assuming that player 2 plays π2 in a 2p0s game.
V π2

1 (β) is linear in β1.

Proof. This follows directly from the definition of vπi (si|β) along with the definition of V1,

V π2
1 (β) =

∑
s1∈S1(spub)

β1(s1)v1(s1|β, (BR(π2), π2))

Lemma 2. V1(β) = minπ2
V π2

1 (β), and the set of π2 that attain V1(β) at β0 are precisely the Nash
equilibrium policies at β0. This also implies that V1(β) is concave.

Proof. By definition, the Nash equilibrium at β is the minimum among all choices of π2 of the value
to player 1 of her best response to π2. Any π2 that achieves this Nash equilibrium value when playing
a best response is a Nash equilibrium policy.

From Lemma 1, we know that each V π2
1 (β) is linear, which implies that V1(β) is concave since any

function that is the minimum of linear functions is concave.

Figure 3: Illustration of Lemma 2. In this simple example, the subgame begins with some probability β(heads)
of a coin being heads-up, which player 1 observes. Player 2 then guesses if the coin is heads or tails, and wins if
he guesses correctly. The payoffs for Player 2’s pure strategies are shown as the lines marked πheads

2 and πtails
2 .

The payoffs for a mixed strategy is a linear combination of the pure strategies. The value for player 1 is the
minimum among all the lines corresponding to player 2 strategies, denoted by the solid lines.

Now we can turn to proving the Theorem.

Consider a function Ṽ1 that is an extension of V1 to unnormalized probability distributions over
S1 and S2; i.e. Ṽi((spub, b1, b2)) = Vi((spub, b1/|b1|1, b2/|b2|1)). Ṽi = Vi on the simplex of valid
beliefs, but we extend it in this way to R|s1|≥0 \~0 so that we can consider gradients w.r.t. p(s1).

We will use the term ‘supergradient’ to be the equivalent of the subgradient for concave functions.
Formally, g is a supergradient of concave function F at x0 iff for any x in the domain of F ,

F (x)− F (x0) ≤ g · (x− x0).

Also, superg(F ) = −subg(−F ).
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Theorem (Restatement of Theorem 1). For any belief β = (β1, β2) (for the beliefs over player 1 and
2 infostates respectively) and any policy π∗ that is a Nash equilibrium of the subgame rooted at β,

vπ
∗

1 (s1|β) = V1(β) + ḡ · ŝ1 (3)
for some supergradient ḡ of Ṽ1(β) with respect to β1, where ŝ1 is the unit vector in direction s1.

Proof. Lemma 2 shows that V1(β) is a concave function in β1, and its extension Ṽ off the simplex is
constant perpendicular to the simplex, so Ṽ is concave as well. Therefore the notion of a supergradient
is well-defined.

Now, consider some policy profile π∗ = (π∗1 , π
∗
2) that is a Nash equilibrium of G(β0). V π

∗
2

1 is a linear
function and tangent to V1 at β0; therefore, its gradient is a supergradient of V1 at β0. Its gradient is

∇β1
V
π∗2
1 (β) = ∇β1

∑
s1∈S1(spub)

β1(s1)v
π∗2
1 (s1|β) (4)

=
∑

s1∈S1(spub)

ŝ1v
π∗2
1 (s1|β) + β(s1)∇β1v

π∗2 (s1|β) (5)

=
∑

s1∈S1(spub)

ŝ1v
π∗2
1 (s1|β) (6)

Equation 6 follows from the fact that for a fixed opponent policy π∗2 , each player 1 infostate s1 is
an independent MDP whose value vπ

∗
2

1 (s1|β) doesn’t depend on the probabilities β1 of being in the
different infostates (although it might depend on β2 since player 1 doesn’t observe these).

Note also that the gradient of V π
∗
2

1 is correct even when some infostates s1 have probability 0, due
to the fact that we defined vπ2

1 (s1|β) as the value of player 1 playing a best response to π2 at each
infostate s1 (rather than just playing the equilibrium policy π∗1 , which may play arbitrarily at unvisited
infostates).

Finally, let’s compute g · ŝ1 at some β1 on the simplex (i.e. |β1|1 = 1).

g = ∇β1/|β1|1V
π∗

1 (spub, β1/|β1|, β2) · d

dβ1

(
β1

|β1|1

)
(chain rule) (7)

=

 ∑
s′1∈S1(spub)

ŝ′1v
π∗

1 (s′1|β)

 · (|β1|1 − β1)/(|β1|1)2 (Eq. 4) (8)

=

 ∑
s′1∈S1(spub)

ŝ′1v
π∗

1 (s′1|β)

 · (1− β1) (since |β1|1 = 1) (9)

=
∑

s′1∈S1(spub)

ŝ′1v
π∗

1 (s′1|β)−
∑

s′1∈S1(spub)

β1(s′1)vπ
∗

1 (s′1|β) (10)

=
∑

s′1∈S1(spub)

ŝ′1v
π∗

1 (s′1|β)− V1(β) (11)

g · ŝ1 = vπ
∗

1 (s1|β)− V1(β) (12)

And we’re done.

G Proofs Related to Subgame Solving (Theorems 2 and 3)

Lemma 3. Running Algorithm 1 for N → ∞ times in a depth-limited subgame rooted at PBS βr
will compute an infostate value vector vπ

∗

i (βr) corresponding to the values of the infostates when π∗
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is played in the (not depth-limited) subgame rooted at βr, where π∗ is a C√
T

-Nash equilibrium for
some constant C.

Proof. A key part of our proof is the insight that Algorithm 1 resembles the CFR-D algorithm
from [16] if Algorithm 1 were modified such that there was no random sampling and every call to the
value network was replaced with a recursive call to the CFR-D algorithm.

Suppose the subgame rooted at βr extends to the end of the game and therefore there are no calls to
the neural network. Then CFR is proven to compute a C√

T
-Nash equilibrium [61], which we will call

π∗, and Algorithm 1 will indeed learn a value vector vπ
∗

i (βr) for βr corresponding to the infostate
values of βr when π∗ is played in the subgame. Thus, the base case for the inductive proof holds.

Now suppose we have a depth-limited subgame rooted at βr. Assume that for every leaf PBS βπ
t

z for
iterations t ≤ T , where πt is the policy in the subgame on iteration t, that we have already computed
an infostate value vector vπ

∗

i (βπ
t

z ) corresponding to the values of the infostates in βπ
t

z when π∗

is played in the subgame rooted at βπ
t

z , where π∗ is a C√
T

-Nash equilibrium for some constant C.

Assume also that Lemma 3 holds for all leaf PBSs βπ
T+1

z .

First, for leaf PBSs that neither player reaches with positive probability, the values for the leaf PBS
have no affect on CFR or the values computed for the root infostates because CFR weights the values
by the probability the player reaches the PBS [61].

Now consider a leaf PBS βπ
T+1

z that some player reaches with positive probability. Since vπ
∗

i (βπ
t

z )

has already been computed for all βπ
t

z and since we are running a deterministic algorithm, so vπ
∗

i (βπ
t

z )

will not change with subsequent calls of Algorithm 1 on βπ
t

z for all t ≤ T . Thus, πt will be the same
for all t ≤ T . Since Algorithm 1 samples a random CFR iteration, and since the leaf PBS βπ

T+1

z is
sampled with positive probability for some player when iteration T + 1 is sampled, so the algorithm
will sample βπ

T+1

z N ′ times, where N ′ → ∞ as N → ∞. Since Lemma 3 holds for βπ
T+1

z , so
eventually vπ

∗

i (βπ
T+1

z ) will be computed for βπ
T+1

z . Therefore, due to CFR-D [16], Lemma 3 will
hold for βr and the inductive step is proven.

Theorem (Restatement of Theorem 2). Consider an idealized value approximator that returns the
most recent sample of the value for sampled PBSs, and 0 otherwise. Running Algorithm 1 with T
iterations of CFR in each subgame will produce a value approximator that produces values that
correspond to a C√

T
-equilibrium policy for any PBS that could be encountered during play, where C

is a game-dependent constant.

Proof. Since we run Algorithm 1 for N → ∞ times at the root of the game, so by Lemma 3,
Theorem 2 is true.

Theorem (Restatement of Theorem 3). If Algorithm 1 is run at test time with no off-policy exploration,
a value network that has error at most δ for any leaf PBS, and with T iterations of CFR being used
to solve subgames, then the algorithm plays a (δC1 + δC2√

T
)-Nash equilibrium, where C1, C2 are

game-specific constants.

Proof. We prove the theorem inductively. Consider first a subgame near the end of the game that is
not depth-limited. I.e., it has no leaf nodes. Clearly, the policy π∗ that Algorithm 1 using CFR plays
in expectation is a k1√

T
-Nash equilibrium for game-specific constant k1 in this subgame.

Rather than play the average policy over all T iterations π̄T , one can equivalently pick a random
iteration t ∼ uniform{1, T} and play according to πt, the policy on iteration t. This algorithm is
also a k1√

T
-Nash equilibrium in expectation.

Next, consider a depth-limited subgame G such that for any leaf PBS βt on any CFR iteration t, the
policy that Algorithm 1 plays in the subgame rooted at βt is in expectation a δ-Nash equilibrium in
the subgame. If one computes a policy for G using tabular CFR-D [16] (or, as discussed in Section I,
using CFR-AVG), then by Theorem 2 in [16], the average policy over all iterations is k2δ+ k3√

T
-Nash

equilibrium.
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Just as before, rather than play according to this average policy π̄T , one can equivalently pick a
random iteration t ∼ uniform{1, T} and play according to πt. Doing so would also result in a
k2δ + k3√

T
-Nash equilibrium in expectation. This is exactly what Algorithm 1 does.

Since there are a finite number of “levels” in a game, which is a game-specific constant, Algorithm 1
plays according to a δC1 + δC2√

T
-Nash equilibrium.

H Fictitious Linear Optimistic Play

Fictitious Play (FP) [5] is an extremely simple iterative algorithm that is proven to converge to a Nash
equilibrium in two-player zero-sum games. However, in practice it does so at an extremely slow rate.
On the first iteration, all agents choose a uniform policy π0

i and the average policy π̄0
i is set identically.

On each subsequent iteration t, agents compute a best response to the other agents’ average policy
πti = argmaxπi vi(πi, π̄

t−1
−i ) and update their average policies to be π̄ti = t−1

t π̄
t−1
i + 1

tπ
t
i . As

t→∞, π̄t converges to a Nash equilibrium in two-player zero-sum games.

It has also been proven that a family of algorithms similar to FP known as generalized weak-
ened fictitious play (GWFP) also converge to a Nash equilibrium so long as they satisfy certain
properties [60, 38], mostly notably that in the limit the policies on each iteration converge to best
responses.

In this section we introduce a novel variant of FP we call Fictitious Linear Optimistic Play (FLOP)
which is a form of GWFP. FLOP is inspired by related variants in CFR, in particular Linear CFR [13].
FLOP converges to a Nash equilibrium much faster than FP while still being an extremely simple
algorithm. However, variants of CFR such as Linear CFR and Discounted CFR [13] still converge
much faster in most large-scale games.

In FLOP, the initial policy π0
i is uniform. On each subsequent iteration t, agents compute a best

response to an optimistic [18, 47, 58] form of the opponent’s average policy in which πt−1
−i is given

extra weight: πti = argmaxπi vi(πi,
t
t+2 π̄

t−1
−i + 2

t+2π
t−1
−i ). The average policy is updated to be

π̄ti = t−1
t+1 π̄

t−1
i + 2

t+1π
t
i . Theorem 4 proves that FLOP is a form of GWFP and therefore converges

to a Nash equilibrium as t→∞.
Theorem 4. FLOP is a form of Generalized Weakened Fictitious Play.

Proof. Assume that the range of payoffs in the game is M . Since πti = argmaxπi vi(πi,
t
t+2 π̄

t−1
−i +

2
t+2π

t−1
−i ), so πti is an εt-best response to π̄t−1

−i where εt < M 2
t+2 and εt → 0 as t → ∞. Thus,

FLOP is a form of GWFP with αt = 2
t .

I CFR-AVG: CFR Decomposition using Average Strategy

On each iteration t of CFR-D, the value of every leaf node z is set to v̂(si(z)|βπ
t

z ). Other than
changing the values of leaf nodes every iteration, CFR-D is otherwise identical to CFR. If T iterations
of CFR-D are conducted with a value network that has error at most δ for each infostate value, then
π̄T has exploitability of at most k1δ + k2/

√
T where k1 and k2 are game-specific constants [40].

Since it is the average policy profile π̄t, not πt, that converges to a Nash equilibrium as t→∞, and
since the leaf PBSs are set based on πt, the input to the value network v̂ may span the entire domain
of inputs even as t→∞. For example, suppose in a Nash equilibrium π∗ the probability distribution
at βπ

∗

z was uniform. Then the probability distribution at βπ
t

z for any individual iteration t could be
anything, because regardless of what the probability distribution is, the average over all iterations
could still be uniform in the end. Thus, v̂ may need to be accurate over the entire domain of inputs
rather than just the subspace near βπ

∗

z .

In CFR-AVG, leaf values are instead set according to the average policy π̄t on iteration t. When a
leaf PBS is sampled, the leaf node is sampled with probability determined by πt, but the PBS itself is
defined using π̄t.
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Figure 4: Exploitability of different algorithms of 4 variants of Liar’s Dice: 1 die with 4, 5, or 6 faces and 2 dice
with 3 faces. For all games FLOP outperforms Linear FP, but does not match the convergence of Linear CFR.
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Figure 5: Exploitability of different algorithms for Turn Endgame Hold’em.

We first describe the tabular form of CFR-D [16]. Consider a game G′ and a depth-limited subgame
G, where both G′ and G share a root but G extends only a limited number of actions into the future.
Suppose that T iterations of a modified form of CFR are conducted in G′. On each iteration t ≤ T ,
the policy π(si) is set according to CFR for each si ∈ G. However, for every infostate s′i ∈ G′ \G,
the policy is set differently than what CFR would call for. At each leaf public state s′pub of G, we
solve a subgame rooted at βπ

t

s′pub
by running T ′ iterations of CFR. For each s′i in the subgame rooted

at βπ
t

s′pub
, we set πt(s′i) = π̄T (s′i) (where πt(s′i) is the policy for the infostate in G and π̄T (s′i) is

the policy for the infostate in the subgame rooted at βπ
t

s′pub
). It is proven that as T ′ → ∞, CFR-D

converges to a O( 1√
T

)-Nash equilibrium [16].

CFR-AVG is identical to CFR-D, except the subgames that are solved on each iteration t are rooted
at βπ̄

t

s′pub
rather than βπ

t

s′pub
. Theorem 5 proves that CFR-AVG achieves the same bound on convergence

to a Nash equilibrium as CFR-D.

Theorem 5. Suppose that T iterations of CFR-AVG are run in a depth-limited subgame, where on
each iteration t ≤ T the subgame rooted at each leaf PBS βπ̄

t

s′pub
is solved completely. Then π̄T is a

C√
T

-Nash equilibrium for a game-specific constant C.
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CFR-AVG has a number of potential benefits over CFR-D:

• Since π̄t converges to a Nash equilibrium as t→∞, CFR-AVG allows v̂ to focus on being
accurate over a more narrow subspace of inputs.

• When combined with a policy network (as introduced in Section 5.3), CFR-AVG may allow
v̂ to focus on an even more narrow subspace of inputs.

• Since π̄t+1 is much closer to π̄t than πt+1 is to πt, in practice as t becomes large one can
avoid querying the value network on every iteration and instead recycle the values from a
previous iteration. This may be particularly valuable for Monte Carlo versions of CFR.

While CFR-AVG is theoretically sound, we modify its implementation in our experiments to make it
more efficient in a way that has not been proven to be theoretically sound. The reason for this is that
while the input to the value network is βπ̄

t

s′pub
(i.e., the leaf PBS corresponding to π̄t being played in G,

the output needs to be the value of each infostate si given that πt is played in G. Thus, unlike CFR-D
and FP, in CFR-AVG there is a mismatch between the input policy and the output policy.

One way to cope with this is to have the input consist of both βπ̄
t

s′pub
and βπ

t

s′pub
. However, we found this

performed relatively poorly in preliminary experiments when trained through self play.

Instead, on iteration t − 1 we store the output from v̂(si|βπ̄
t−1

s′pub
) for each si and on iteration t we

set vt(si) to be tv̂(si|βπ̄
t

s′pub
) − (t − 1)v̂(si|βπ̄

t−1

s′pub
) (in vanilla CFR). The motivation for this is that

πt = tπ̄t− (t−1)π̄t−1. If vt(h) = vt−1(h) for each history h in the leaf PBS, then this modification
of CFR-AVG is sound. Since vt(h) = vt−1(h) when h is a full-game terminal node (i.e., it has no
actions), this modified form of CFR-AVG is identical to CFR in a non-depth-limited game. However,
that is not the case in a depth-limited subgame, and it remains an open question whether this modified
form of CFR-AVG is theoretically sound in depth-limited subgames. Empirically, however, we found
that it converges to a Nash equilibrium in turn endgame hold’em for every set of parameters (e.g., bet
sizes, stack sizes, and initial beliefs) that we tested.

Figure 6 shows the performance of CFR-D, CFR-AVG, our modified form of CFR-AVG, and FP
in TEH when using an oracle function for the value network. It also shows the performance of
CFR-D, our modified form of CFR-AVG, and FP in TEH when using a value network trained through
self-play. Surprisingly, the theoretically sound form of CFR-AVG does worse than CFR-D when
using an oracle function. However, the modified form of CFR-AVG does better than CFR-D when
using an oracle function and also when trained through self play.
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Figure 6: Left: comparison of CFR-D, CFR-AVG, modified CFR-AVG, and FP using an oracle value network
which returns exact values for leaf PBSs. Right: comparison of CFR-D, modified CFR-AVG, and FP using a
value network learned through 300 epochs of self play.

We also trained a model on HUNL with training parameters that were identical to the one reported in
Section 8, but using CFR-D rather than CFR-AVG. That model lost to BabyTartanian8 by 10 ± 3
whereas the CFR-AVG model won by 9± 4. The CFR-D model also beat Slumbot by 39± 6 whereas
the CFR-AVG model won by 45± 5.

I.1 Proof of Theorem 5

Our proof closely follows from [16] and [40].
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Proof. Let Rt(si) be the (cumulative) regret of infostates si on iteration t. We show that the regrets
of all infostates in G′ are bounded by O(

√
T ) and therefore the regret of the entire game is bounded

by O(
√
T ).

First, consider the infostates in G. Since their policies are chosen according to CFR each iteration,
their regrets are bounded by O(

√
T ) regardless of the policies played in descendant infostates.

Next consider an infostate si ∈ G′ \G. We prove inductively that Rt(si) ≤ 0. Let βπ
t

be the PBS
at the root of the subgame containing si in CFR-D, and βπ̄

t

be the PBS at the root of the subgame
containing si in CFR-AVG. On the first iteration, βπ

t

= βπ̄
t

. Since we assume CFR-AVG computes
an exact equilibrium in the subgame rooted at βπ̄

t

= βπ
t

, so Rt(si) = 0 on the first iteration.

Next, we prove Rt+1(si) ≤ Rt(si). We define a∗,t as

a∗,ti = argmax
ai

t∑
t′=0

vt
′
(si, ai) (13)

By definition of regret,

Rt+1(si) =

t+1∑
t′=0

(
vt
′
(si, a

∗,t+1
i )− vt

′
(si)
)

(14)

Separating iteration t+ 1 from the summation we get

Rt+1(si) =

t∑
t′=0

(
vt
′
(si, a

∗,t+1
i )− vt

′
(si)
)

+
(
vt+1(si, a

∗,t+1
i )− vt+1(si)

)
(15)

By definition of a∗,ti we know
∑t
t′=0 v

t′(si, a
∗,t+1
i ) ≤

∑t
t′=0 v

t′(si, a
∗,t
i ), so

Rt+1(si) ≤
t∑

t′=0

(
vt
′
(si, a

∗,t
i )− vt

′
(si)
)

+
(
vt+1(si, a

∗,t+1
i )− vt+1(si)

)
(16)

Since
∑t
t′=0

(
vt
′
(si, a

∗,t
i )− vt′(si)

)
is the definition of Rt(si) we get

Rt+1(si) ≤ Rt(si) +
(
vt+1(si, a

∗,t+1
i )− vt+1(si)

)
(17)

Since πt+1 = π∗,t+1 in the subgame where π∗,t+1 is an exact equilibrium of the subgame rooted at
βπ̄

t+1

, so πt+1 is a best response to π̄t+1 in the subgame and therefore vt+1(si, a
∗,t+1
i ) = vt+1(si).

Thus,
Rt+1(si) ≤ Rt(si) (18)

J CFR Warm Start Algorithm Used

Our warm start technique for CFR is based on [10], which requires only a policy profile to warm start
CFR soundly. That techniques computes a “soft” best response to the policy profile, which results in
instantaneous regrets for each infostate. Those instantaneous regrets are scaled up to be equivalent
to some number of CFR iterations. However, that technique requires careful parameter tuning to
achieve good performance in practice.

We instead use a simplified warm start technique in which an exact best response to the policy profile
is computed. That best response results in instantaneous regrets at each infostate. Those regrets are
scaled up by a factor of 15 to imitate 15 CFR iterations. Similarly, the average policy effectively
assumes that the warm start policy was played for the first 15 iterations of CFR. CFR then proceeds
as if 15 iterations have already occurred.
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