
Supplementary materials of
Contrastive Learning with Adversarial Examples

Chih-Hui Ho Nuno Vasconcelos
Department of Electrical and Computer Engineering

University of California, San Diego
{chh279, nvasconcelos}@ucsd.edu

1 Experiment details

All code are implemented with Pytorch [5] and ResNet18 [3] is used as default backbone unless
specified. CIFAR10 [4], CIFAR100 [4] and tinyImagenet [1] are used for all contrastive learning
baselines. Default α in Algorithm 1 is set to be 1. All codes are provided in the supplementary
material.

To train the encoder with Algorithm 1, we implement the AdvProp[6] on ResNet architecture. For all
batch norm layer in ResNet, an additional batch norm for adversarial example is created. While the
batch norm (BN) momentum for clean example is the default Pytorch BN momentum (i.e. 0.1), the
batch norm momentum for adversarial examples is set to be 0.01, indicating the update of running
mean of adversarial BN is slower. Clean examples are forwarded to default BN and adversarial
examples are forwarded to adversarial BN. Please refer to AdvProp[6] for more implementation
details.

Three contrastive learning baselines are evaluated. UEL is the implementation of [7]. The public
available code 1 is adopted. Plain is the implementation of (5). The hyperparameters and data
augmentation detail is identical to [7]. SimCLR is the implementation of [2] by adopting the public
available code2.

For evaluation, k nearest neighbor (kNN) and minibatch logistic regression (LR) are considered. For
kNN, the evaluation is identical to the protocol used in [7], while for LR, we train a single layer
logistic regression with Adam optimizer on the embedding extracted from the fixed encoder, as in [2].

2 Quantitative results of Ablation study

The quantitative results of the ablation study conducted with SimCLR in the main paper are provided
in section 2.1. In addition, the ablation study on tinyImagenet is provided in section 2.2. The
experiment setting for each ablation study is described in detail.

ε / Batch size 64 128 256
0 51.39±0.24 53.11±0.36 53.79±0.211

0.03 54±0.16 55.26±0.54 55.51±0.30
0.07 53.96±0.39 55.04±0.29 54.96±0.20

Table 1: Quantitative results of Fig. 5 (a) on studying effect of different batch size on CIFAR100.

2.1 Ablation study on CIFAR100

Quantitative results of the ablation study on CIFAR100 in the main paper are shown below.

1https://github.com/mangye16/Unsupervised_Embedding_Learning
2https://github.com/Spijkervet/SimCLR

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

https://github.com/mangye16/Unsupervised_Embedding_Learning
https://github.com/Spijkervet/SimCLR


Batch size experiments are conducted on ResNet18 with embedding size 64. α = 1 is used in
Algorithm 1. Qualitative results are presented in Table 1.

Embedding size experiments are conducted on ResNet18 with batch size 256. α = 1 is used in
Algorithm 1. Qualitative results are presented in Table 2.

ε / Embedding size 32 64 128 256
0 53.62±0.41 53.79±0.21 53.67±0.10 53.84±0.29

0.03 55.23±0.65 55.51±0.30 55.16±0.29 55.29±0.36
0.07 55.4±0.21 54.96±0.20 55.43±0.15 55.23±0.36

Table 2: Quantitative results of Fig. 5 (b) on studying effect of different embedding size on CIFAR100.

ResNet architecture experiments are conducted with batch size 64 and embedding size 64. α = 1 is
used in Algorithm 1. Qualitative results are presented in Table 3.

ε / Resnet 18 50 101
0 51.39±0.24 52.04±0.64 52.28±0.12

0.03 54±0.16 57.71±0.29 59.02±0.29
0.07 53.96±0.39 57.26±0.54 58.23±0.45

Table 3: Quantitative results of Fig. 5 (c) on different architectures on CIFAR100.

Hyperparameter α experiments are conducted on ResNet18 with ε = 0.03, batch size 256 and
embedding size 64. Qualitative results are presented in Table 4.

α 0 0.2 0.4 0.6
Accuracy 53.79 ±0.21 54.80 ±0.08 54.86 ±0.18 55.41 ±0.21

α 0.8 1.0 1.5 2.0
Accuracy 55.29 ±0.16 55.51 ±0.30 55.18 ±0.22 54.75 ±0.40

Table 4: Quantitative results of Fig. 6 (a) on different hyperparameter α on CIFAR100 .

Attack strength experiments are conducted on ResNet18, batch size 256 and embedding size 64.
α = 1 is used in Algorithm 1. Qualitative results are presented in Table 5.

Evaluation / ε 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
kNN 34.94 38.89 38.35 38.89 38.99 39.03 38.65 38.41 38.76 38.47 38.57
LR 53.79 54.66 54.69 55.51 55.51 55.35 55.5 54.96 55.60 55.30 55.27

Table 5: Quantitative results of Fig. 6 (b) on different attack strength on CIFAR100.

2.2 Ablation study on tinyImagenet

In this section, the additional ablation study are conducted on tinyImagenet with SimCLR.

ε / Batch size 32 64 128
0 34.15±0.33 37.82±0.20 39.55±0.32

0.03 36.36±0.18 39.79±0.61 41.44±0.29
0.07 36.55±0.21 40±0.37 41.28±0.21

Table 6: Quantitative results on studying effect of different batch size on tinyImagenet.

Batch size experiments are conducted on ResNet18 with embedding size 64. α = 1 is used in
Algorithm 1. The proposed algorithm consistently beats the baseline (ε = 0) about 2% across
different batch sizes. Qualitative results are presented in Table 6.

Embedding size experiments are conducted on ResNet18 with batch size 128. α = 1 is used in
Algorithm 1. Similar to the observation in Cifar100 ablation study, different embedding size does not
affect the trend. Qualitative results are presented in Table 7.

2



ε / Embedding size 32 64 128 256
0 39.54±0.28 39.55±0.32 39.79±0.14 39.46±0.27

0.03 41.15±0.21 41.44±0.29 41.49±0.11 41.37±0.19
0.07 41.21±0.25 41.28±0.21 41.62±0.26 40.72±0.46

Table 7: Quantitative results on studying effect of different embedding size on tinyImagenet.

ResNet architecture experiments are conducted with batch size 32 and embedding size 64. α = 1
is used in Algorithm 1. While the gain is about 2.4% (36.55 vs 34.15) on ResNet18, the gain on
ResNet50 increases to 3.9% (40.11 vs 44.01), which is similar to the observation in CIFAR100.
Qualitative results are presented in Table 8.

ε / Resnet 18 50
0 34.15±0.33 40.11±0.64

0.03 36.36±0.18 44.01±0.31
0.07 36.55±0.22 43.68±0.24

Table 8: Quantitative results of the proposed method adopted to different architectures on tinyIma-
genet.

Hyperparameter α experiments are conducted on ResNet18 with ε = 0.03, batch size 128 and
embedding size 64. Again, the gain is stable for α > 0.2. When α = 2 is used, the contrastive
learning still benefits from adversarial examples. Qualitative results are presented in Table 9.

α 0 0.2 0.4 0.6
accuracy 39.55 ±0.32 41.00 ±0.46 40.79 ±0.32 41.30 ±0.39

α 0.8 1.0 1.5 2.0
accuracy 41.69 ±0.09 41.44 ±0.29 41.39 ±0.02 41.08 ±0.25

Table 9: Quantitative results of the proposed method adopted to different hyperparameter α on
tinyImagenet.

Attack strength experiments are conducted on ResNet18 with batch size 128 and embedding size
64. α = 1 is used in Algorithm 1. Different ε has little influence on the final performance of the
downstream task. Qualitative results are presented in Table 10.

ε 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
LR 39.55 41.17 41.42 41.44 41.41 41.45 41.25 41.28 41.37 41.26 41.34

Table 10: Quantitative results of the proposed method adopted to different attack strength on tinyIma-
genet.

Downstream task training epoch While the default training epoch of logistic regression for tinyIm-
agenet on SimCLR is 200, longer training epoch (i.e 1000) is studied. While longer training epoch
on downstream task boost all performances, the proposed method consistently beats the baseline, as
shown in Table 11.

Epoch /ε 0 0.03 0.07
200 39.55±0.32 41.44±0.29 41.28±0.21
1000 40.11±0.34 41.62±0.20 41.46±0.22

Table 11: Quantitative results of the proposed method adopted to different attack strength on tinyIma-
genet.

3



References
[1] Tiny imagenet visual recognition challenge. https://tiny-imagenet.herokuapp.com/.

[2] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. arXiv preprint arXiv:2002.05709, 2020.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
CoRR, abs/1512.03385, 2015.

[4] Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

[5] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. In NIPS-W, 2017.

[6] Cihang Xie, Mingxing Tan, Boqing Gong, Jiang Wang, Alan L. Yuille, and Quoc V. Le. Adversarial
examples improve image recognition. ArXiv, abs/1911.09665, 2019.

[7] Mang Ye, Xu Zhang, Pong C. Yuen, and Shih-Fu Chang. Unsupervised embedding learning via invariant
and spreading instance feature. CoRR, abs/1904.03436, 2019.

4

https://tiny-imagenet.herokuapp.com/

	Experiment details
	Quantitative results of Ablation study
	Ablation study on CIFAR100
	Ablation study on tinyImagenet


