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Abstract

Many approaches have been proposed for time series forecasting, in light of its
significance in wide applications including business demand prediction. However,
the existing methods suffer from two key limitations. Firstly, most point prediction
models only predict an exact value of each time step without flexibility, which
can hardly capture the stochasticity of data. Even probabilistic prediction using
the likelihood estimation suffers these problems in the same way. Besides, most
of them use the auto-regressive generative mode, where ground-truth is provided
during training and replaced by the network’s own one-step ahead output during
inference, causing the error accumulation in inference. Thus they may fail to
forecast time series for long time horizon due to the error accumulation. To solve
these issues, in this paper, we propose a new time series forecasting model –
Adversarial Sparse Transformer (AST), based on Generative Adversarial Networks
(GANs). Specifically, AST adopts a Sparse Transformer as the generator to learn
a sparse attention map for time series forecasting, and uses a discriminator to
improve the prediction performance at a sequence level. Extensive experiments on
several real-world datasets show the effectiveness and efficiency of our method.

1 Introduction

Time series forecasting has demonstrated its wide applications in business and industrial decision-
making. For example, demand forecasting of energy consumption helps optimize the resource
allocation and dispatch the power generation. There are many classical approaches to solve time
series forecasting problems, such as Auto Regressive Integrated Moving Average(ARIMA) [3] models
or exponential smoothing [7]. They incorporate prior knowledge about time series structures such as
trend, seasonality and so on, and can achieve good performance for single linear time series prediction.
But they are ineffective in predicting complex time series data, partly because of their inability to
utilize the time-related features.
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Recent years, to solve the modern large-scale multiple time series forecasting problems, deep neural
networks [11, 20, 24, 25, 30, 14] have been applied to model complicated sequential data. Naturally,
Recurrent Neural Network(RNN)-based [11, 24] and attention-based [14, 30] models are utilized to
mine complex patterns for time series trends. However, all these models only optimize one specific
objective such as the likelihood loss, MSE loss or other losses, while the real-world time series
datasets have some tend of stochasticity which can hardly be modeled with a specific non-flexible
objective. Therefore, it is inappropriate to only optimize a single forecasting objective for time series
forecasting models.

Another key issue of existing methods is the error accumulation. Most auto-regressive generator
models adopt the teacher forcing strategy [12], where the previous target values are known during
training. While during inference, real previous target values are replaced by previously generated
values, which causes discrepancy between training and inference. The discrepancy leads to error
accumulation, since the model can hardly handle the errors which never occur in the training process.
Recently, some non-autoregressive forecasting models have been proposed to resolve the error
accumulation. However these models neglect the position information between steps, which is
essential for time series forecasting, causing an inferior performance. Therefore, it has become one of
the most important issues to alleviate the error accumulation and meanwhile improve the performance
via training the time series forecasting model appropriately.

Generative adversarial networks (GANs) [6] use an adversarial training procedure to directly shape
the output distribution of the network via back-propagation. Motivated by GANs, in this paper,
we propose Adversarial Sparse Transformer (AST) for multiple time series forecasting, which is a
framework that combines a modified Transformer and Generative Adversarial Networks (GANs).
The discriminator can regularize the modified Transformer at the sequence level and make it learn
a better representation for time series, thereby eliminating the error accumulation and remedying
the shortcomings of single forecasting objective. Specifically, the Vanilla Transformer is based on
the multi-head attention mechanism where the representation of each time step is represented by
multiple different weighted average of samples of its relevant time steps. The attention distribution
of each head is typically computed by the softmax normalizing transformation, allocating non-zero
attention weights to all samples. Considering only a few historical steps have strong correlations with
the forecasting time step, we use sparse normalizing transforms like α-entmax [21], which can yield
exactly zero probability for irrelevant time steps.

The main contributions of our paper are as follows:

• We propose an effective time series forecasting model – Adversarial Sparse Transformer
based on sparse Transformer and Generative Adversarial Networks. Extensive experiments
on different real-world time series datasets show the effectiveness of our model.

• We design a Generative Adversarial Encoder-Decoder framework to regularize the forecast-
ing model which can improve the performance at the sequence level. The experiments show
that adversarial training improves the robustness and generalization of the model.

The rest of this paper is organized as follows. Section 2 reviews related works on time series
forecasting briefly. Section 3 proposes the background of this model. Section 4 describes the model
we propose. In Section 5, we demonstrate the effectiveness of AST empirically. Finally we conclude
in Section 6.

2 Related Work

Time series forecasting Early literature on time series forecasting mostly relies on statistical
models. The Box-Jenkins ARIMA [15] family of methods develop a model where the prediction
is a weighted linear sum of recent past observations or lags. Liu et al. [15] applied online learning
to ARIMA models for time series forecasting. Matrix factorization methods [8, 32] model related
series data as a matrix and attempt to learn information across time series. However, it is difficult
to predict the modern time series by traditional statistical models because of the complex structure
and interdependence between groups of series. Recent years, many researchers have also applied
neural networks solving time series forecasting [1, 13, 25]. Langkvist et al. [13] provided an
overview of the methods modeling time series forecasting by deep learning and unsupervised feature
learning. Bian et al. [1] compared five different architectures of recurrent neural networks for
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time series forecasting. DeepAR [25] presents an encoder-decoder structure by an auto-regression
RNNs modeling probabilistic distributions in the future. The dual-attention model in [22] can only
predict one step ahead, which is not suitable for mid-term and long-term time series forecasting.
For LSTNet [11], the model is based on RNN architecture and Auto-Regressive to catch long- and
short-term dependencies. However, RNN-based models have been proved to be inefficient in dealing
with long-term dependencies [27]. However, these models only optimize single objective such as the
likelihood loss function with auto-regressive generative mode, which suffer the discrepancy between
training and inference as well as the inflexible objective.

Generative Adversarial Networks Generative Adversarial Networks (GANs) have enjoyed great
success in computer vision and natural language processing. Several researches use GANs for the
generation of sequential data. C-RNN-GAN [19] applies the GAN architecture to generate sequential
melody data, using LSTM networks as the generator and the discriminator. The recent timeGAN [31]
first utilizes GANs to generate time series. However, this model aims to generate realistic-like time
series which can’t be classified with the true time series. The generated time series can only model
the history time series distribution rather than forecast the future steps. As a result, none of these
researches use GANs for time series forecasting problems. In contrast to all these models, we first
introduce the GANs into time series forecasting networks. Attached to a discriminator, we regularize
the basic Seq2Seq time series forecasting network to improve the prediction performance of models.

Attention Mechanism Researchers have also invited attention mechanisms into sequential
problems[4, 26, 28]. Especially, several recent works [5, 18] have developed sparse attention
mechanisms aiming to learn sparse mapping, mostly applied to NMT. Transformer [27] is a novel
encoder-decoder model based on the attention mechanism and totally removes recurrent neural
networks, which can compute the sequence effectively. [14] aims to solve time series forecasting by
a transformer [23] with a decoder only model based on convolutional attention. However, this model
only optimizes the step-level maximum likelihood and suffers from error accumulation.

In this work, we introduce adversarial training as a regularization for the sequence-level forecasting
of time series, which can help remedy the above issues of time series forecasting models.

(a) Vanilla Transformer prediction (b) Sparse Transformer prediction (c) AST prediction

Figure 1: (a) The exemplar of electricity time series prediction results of Vanilla Transformer
when conditioning range length (blue line) is 168 and prediction range(red line) length is 24, where
we can see the Vanilla Transfomer can hardly predict the shark peaks. (b) The prediction results of
Sparse Transformer of the same time series, where the Sparse Transformer improves the performance
of Vanilla Transformer but still struggles to predict the sharp peaks. (c) The prediction result of AST
of the same time series. AST enjoys the best performance in all shark peaks.

3 Background

Problem Definition Interval prediction is useful in many scenarios such as business decisions and
risk management. Quantile regression estimates the value of specific quantile, which is the most
direct method to predict intervals. Thus we perform quantile regression for our model (e.g. outputting
the 50th, 90th percentiles at each time step).

Specifically, let {yi,1:t0}Si=1 denote S related univariate time series, where yi,1:t0 =
[yi,1, yi,2, . . . , yi,t0 ] and yi,t ∈ R is the value of time series i at time t. Further, Xi,1:t0 ∈ Rt0×k are
k-dimensional time-independent (such as car line id) or dynamic time-dependent (such as month of
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the year, day of the week and so on) covariates. We aim to predict the values of the next τ time steps
of each quantile for all time series given the past:

Ŷρ,t0+1:t0+τ = fρ(Y1:t0 ,X1:t0+τ ; Φ) (1)

where Ŷρ,t
3 is the ρth quantile prediction value in the t time step. fρ is a prediction model for ρth

quantile. Φ ∈ R is the learnable parameters of the model learned jointly from all S time series.
For each time series , we refer to time series {Y1:t0} as target time series, time ranges [1, t0] as
conditioning range and [t0 + 1, t0 + τ ] as prediction range, as illustrated in Figure 1(a). The time
point t0 + 1 is the forecast start time and τ ∈ N is the forecast horizon. Then our model output
forecasts of different quantiles by the corresponding quantile objectives.

The Transformer Encoder-decoder based Transformer is a good candidate for time series fore-
casting, since the attention mechanisms in multi-head attention layers enable the transformer to
capture long-term dependencies of time series. Briefly, the encoder and decoder both consist
of N identical layers. Each layer includes two main components: the multi-head self-attention
layer and the feed-forward network. The multi-head self-attention sub-layer transforms the in-
put h4 ∈ Rn×d into m distinct query, key and value matrices through linear projections, i.e.,
Qm = hWQ

m,Km = hWK
m,Vm = hWV

m, where dk = d
m , WQ

m,W
K
m ∈ Rd×dk and

WV
h ∈ Rd×dv are learnable parameters. Then each head computes a sequence of scores αm

called scaled dot-product attention, and the output of m-th head Om is:

Om = αmVm = softmax(
QmKT

m√
dk

)Vm. (2)

The output of the multi-head attention layer is the linear projection of the concatenation of
O1,O2, . . . ,Om. The feed-forward layer is composed of two linear projections with a ReLU
activation function, i.e., FFN(O) = max(0,OW1 +b1)W2 +b2, here W1 and W2 are learnable
weight metrics and b1,b2 are biases. Similarly, the decoder is also composed of multi-head attention
layers and positional-wise feed-forward layers.

Generative Adversarial Networks The Generative Adversarial Networks (GANs) [6] framework
establishes a min-max adversarial game between two neural networks – a generative model G,
and a discriminative model D. The generator aims to generate fake samples. Concurrently, the
discriminator model, D(x), is a neural network to distinguish real samples (positive samples) from
samples generated by the generator model (negative samples).

4 Model

Generally speaking, our model is based on the encoder-decoder framework with an auxiliary dis-
criminator, as illustrated in Figure 2. The encoder encodes the input [Y1:t0 ,X1:t0 ] to latent variables
(h1, . . . ,ht0), which in the next are fed to the decoder together with the corresponding covariates
Xt0:t0+τ to generate the prediction range step by step.

4.1 Sparse Transformer

Considering that only a few historical steps are correlated with the forecasting time step, we should
pay no attention to those irrelevant steps. However, in the (multi-head) attention layers of Vanilla
Transformer, the attention scores are computed by the softmax mapping defined in Equation 2, which
is element-wise proportional to exponent and can never assign an attention score of exactly zero.
Since all the scores sum to one, this inevitably means less attention is assigned to the relevant steps,
potentially harming performance of the Transformer according to [9]. This has motivated a line of
researches on learning networks with sparse mappings [18, 5]. In our paper, we focus on a more
recent and flexible family of transformations, α-entmax, [2, 21], defined as,

α− entmax(h) = [(α− 1)h− τ1]
1/α−1
+ , (3)

3We omit the ID of time series i for simplicity since all time series would be predicted by the same model
4At each time step the same model is applied, so we simplify the formulation with some abuse of notation.

Here h is the intermediate feature vector in encoder or decoder before multi-head attention layers.
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Figure 2: Architecture of the Adversarial Sparse Transformer Model

where [·]+ is the ReLU function. 1 is the all-one vector, and τ is the Lagrange multiplier. In our
proposed sparse Transformer, we simply replace softmax with α-entmax in the attention heads, which
can lead to sparse attention weights. When α = 1, it equals to the softmax function. When α = 2,
it recovers sparsemax mapping [18]. Peters et al. [21] claimed that for all α > 1, it permits sparse
solutions, and α = 1.5 is a sensible point. Therefore in our paper, we set the parameter α = 1.5 (we
further compare the performance of different α in the experiments).

4.2 Adversarial training

Algorithm 1 Adversarial Training for Time Series Forecasting
for each training iteration do

for k steps do
• Randomly sample [X1:t0+τ ,Y1:t0+τ ] from training dataset. Yreal = Y1:t0+τ .
• Compute Yfake by the sparse Transformer G:

Yfake = Y1:t0 ◦ Ŷt0+1:t0+τ = Y1:t0 ◦ G(X1:t0+τ , Y1:t0).

• Update the Sparse Transformer by stochastic gradient:

5ΘG (Lρ(Yt0+1:t0+τ ,Yt0+1:t0+τ ) + λE[log(1−D(Yfake)]).

• Update the discriminator by stochastic gradient:

5ΘD (E[−logD(Yreal)− log(1−D(Yfake))]).

end for
end for

Most time series forecasting models optimize a specific objective such as minimizing likelihood loss
function or quantile loss function. However, such exact loss function enforcing step level accuracy
is incapable of dealing with the real-world stochasticity in time series, thereby leading to inferior
performance. Besides, the aforementioned (in Section 1) error accumulation hurts performance badly
when forecasting a long horizon of time series. To alleviate these problems, we propose an adversarial
training process to regularize the encoder-decoder network and improve the accuracy at the sequence
level. Through adversarial training, the encoder-decoder network learns a better representation of
time series and forecast multiple future steps of time series with more fidelity at the sequence level.

In order to do so, a discriminator network D is attached on top of the decoder to improve the
sequence-level accuracy as illustrated in Figure 2. Similar to [16], we use a network of three fully
connected linear layers with LeakReLu [29] as the activation function, to serve as our discriminator.
The discriminator then classifies the input series (Ŷ or Y) as either predicted or ground-truth by
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minimizing the cross-entropy loss function. Adversarially, the Transformer network, as our generator
G, attempts to minimize the quantile loss between prediction series and the ground-truth. In this way,
the quantile loss and adversarial loss can be complementary each other. On the one hand, the quantile
loss helps the generator to capture the overall pattern of time series and aligns the prediction with the
ground-truth, which can prevent the discriminator from converging quickly to local optimal. On the
other hand, the discriminator regularizes the prediction from a global perspective.

Formally, let ΘG and ΘD be the parameters of the generator G and the discriminator D, respectively.
The function G(X1:t0+τ ,Y1:t0 ; ΘG) output the prediction range sequences Ŷt0:t0+τ , which then be
input to G. Let D(Y) be the output of discriminator, which outputs ones if the input is a ground-truth
time series or zero otherwise. Consequently the AST solves the minmax optimization problem:

arg min
G

max
D

λLadv(ΘG ,ΘD) + Lρ(ΘG), (4)

Ladv(ΘG ,ΘD) = E[log(D(Yreal)] + E[log(1−D(Yfake))], (5)

Lρ(ΘG) = 2

S∑
i=0

t0+τ∑
t=t0+1

Pρ(yi,t, ŷi,t), Pρ(yi,t, ŷi,t) = ∆yi,t(ρIŷi,t>yi,t − (1− ρ)Iŷi,t≤yi,t),

(6)

∆yi,t = (ŷi,t − yi,t),Yfake = (Y1:t0 ◦ Ŷt0+1:t0+τ ),Yreal = (Y1:t0+τ ), (7)

where λ is the trade-off hyper-parameter that balances Ladv and Lρ, and Ŷt0+1:t0+τ is the predicted
time series by the generator. The discriminator network D and the generator network G are trained
jointly with Adam [10]. The overall training algorithm is illustrated in Algorithm 1.

5 Experiments

5.1 Datasets And Evaluation Metrics

Table 1: Dataset Statistics,where F is the
frequency of time series, T is the length of
time series, D is number of variables

Datasets F T D

Electricity hourly 32,304 370
Traffic hourly 4,049 963
wind daily 10,957 28
solar hourly 4,832 137

M4-Hourly hourly 748/1,008 414

We use five public datasets: electricity5,
traffic6, wind7, solar8, M4-Hourly [17] for our
evaluation. The electricity dataset is an hourly time
series of electricity consumption of 370 customers. The
traffic dataset consists of 963 car lanes hourly oc-
cupancy rates (range [0, 1)) of San Francisco bay area
freeways. The wind contains hourly estimates of an
area’s energy potential for 1986-2015. The solar con-
tains solar power production records from January to
August in 2006. The M4-Hourly contains 414 hourly
time series from M4 competition [17], which aims to
forecast time series in the testing set. Following [25],
we generate multiple training windows by varying the
start point from the original time series with fixed history length t0 and forecasting horizon τ . Table 1
describes the statistics of these datasets. The input covariate x is a combination of time-dependent fea-
tures (e.g., a set of dummy variables like day-of-the-week, hour-of-the-day, etc) and time-independent
features (e.g., car lane id, station id, etc).

As is in the previous paper [25], we use normalized quantile loss (ρ-risk) to evaluate the quality of
the forecasting. For a given collection of time series y and the corresponding prediction ŷ, the ρ-risk
for ρ ∈ (0, 1) is defined as:

Qρ(y, ŷ) = 2

∑
i,t Pρ(yi,t, ŷi,t)∑

i,t |yi,t|
(8)

To be consistent with previous works [14, 25], we mainly report the results for ρ = 0.5 and 0.9 which
abbreviated as Q50 and Q90, respectively.

5https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams 20112014
6https://archive.ics.uci.edu/ml/datasets/PEMS-SF
7https://www.kaggle.com/sohier/30-years-of-european-wind-generation
8https://www.nrel.gov/grid/solar-power-data.html
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Table 2: Q50 loss results for the short-term (24-hour ahead, abbreviated as 1d) forecast and long-term
(7d ahead) forecast scenarios.

Dataset Reported Metrics From [14]
ARIMA ETS TRMF DeepAR DSSM ConvTrans T ST AST

elect1d 0.154± 0.039 0.101± 0.022 0.084± 0.008 0.075± 0.010 0.083± 0.009 0.059± 0.008 0.064± 0.007 0.055± 0.005 0.042± 0.007
elect7d 0.283± 0.056 0.121± 0.029 0.087± 0.011 0.082± 0.015 0.085± 0.013 0.070± 0.011 0.070± 0.011 0.058± 0.009 0.057± 0.010
traffic1d 0.223± 0.049 0.236± 0.036 0.186± 0.021 0.161± 0.031 0.167± 0.033 0.122± 0.025 0.120± 0.022 0.109± 0.019 0.093± 0.010
traffic7d 0.492± 0.079 0.509± 0.102 0.202± 0.041 0.179± 0.035 0.168± 0.035 0.139± 0.029 0.129± 0.021 0.127± 0.023 0.125± 0.019

Table 3: Q90 loss results for the short-term (24-hour ahead, abbreviated as 1d) forecast and long-term
(7d ahead) forecast scenarios.TRMF outputs points predictions, so we only report Q50 results.

Dataset Reported Metrics From [14]
ARIMA ETS TRMF DeepAR DSSM ConvTrans T ST AST

elect1d 0.102± 0.019 0.077± 0.010 - 0.040± 0.007 0.056± 0.011 0.028± 0.005 0.036± 0.007 0.029± 0.005 0.025± 0.006
elect7d 0.109± 0.020 0.101± 0.019 - 0.053± 0.010 0.052± 0.012 0.044± 0.009 0.039± 0.007 0.041± 0.008 0.036± 0.006

traffic1d 0.137± 0.024 0.148± 0.028 - 0.099± 0.019 0.113± 0.023 0.081± 0.014 0.087± 0.015 0.084± 0.013 0.068± 0.010
traffic7d 0.280± 0.052 0.529± 0.14 - 0.105± 0.019 0.114± 0.023 0.094± 0.021 0.096± 0.009 0.088± 0.008 0.086± 0.007

Table 4: Performance summary (The reported results are in the format of Q50/Q90) of using different
α on electricity and traffic.

sparsemax 1.5-entmax softmax sparsemax 1.5-entmax softmax

elect1d 0.040/0.026 0.042/0.025 0.040/0.027 traffic1d 0.123/0.090 0.093/0.068 0.120/0.086

5.2 Accuracy Comparison

To assess the performance of our model, we compare our model on the electricity and traffic
datasets with two classical forecasting methods, i.e., ARIMA, ETS, which are effective time series
forecasting models, and several latest deep learning based models, including DeepAR[25], which
is a state-of-the-art RNN-based probability forecasting model, DSSM[24], which is an RNN-based
state space model, TRMF[32], which is a recent matrix factorization method, and ConvTrans[14],
which is a transformer-based model.

For the short-term forecasting, we evaluate rolling-day forecasts for seven days after training and the
length of conditioning range is set to one week of time series (168 observations per series). For the
long-term forecasting, we directly forecast for 7 days and the length of conditioning range is set to
two weeks of time series (336 observations per series). The experimental results for electricity
and traffic datasets are summarized in Table 2 and 3 respectively, where T and ST represent
Vanilla Transformer and sparse Transformer respectively, and AST is the abbreviation of Adversary
Sparse Transformer. Finally, our model archives the best results over all the datasets.

From the results, we can draw the following conclusions. ARIMA and ETS perform the worst
possibly because of inability to use the important covariates feature and model shared patterns across
time series. TRMF can only estimate the mean and outperform ARIMA and ETS. Besides, the other
four methods based on RNN or Transformer achieve better results than the first two. This indicates
deep neural networks can learn shared seasonal patterns from several series and the covariate feature
help to improve the performance. ST outperform Vanilla Transformer in most experiments (other than
the Q90 of long-term forecasting), indicating that the dependencies among the steps of time series
are sparse. AST outperforms ST in all experiments indicating that the sequence-level regularization
is essential for long-horizon time series forecasting. Specifically, from Figure 1, we can see that
AST have a better ability to model the sharp peaks of time series than Vanilla Transformer and
Sparse Transformer. Especially, compared with ConvTrans, AST improves the Q50 for 26.4% on
average and improves the Q90 for 15.6% on average, indicating that adversarial training and sparse
Transformer can better model time series. In a word, the results show that the AST can alleviate the
limitations of the above methods.

5.3 Ablation Study

The effect of α-entmax To validate the effect of different α of the attention map on the prediction
performance, we test AST on electricity with α ∈ {1, 1.5, 2} while fixing other settings, and
show the results in Figure 3. From the results, we can observe that AST with 1.5 − entmax can
allocate proper attention to the essential ones, thus helping the model to learn the patterns more easily.
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Table 6: Q50/Q90-loss of datasets with various granularities, where � denotes a result from [14].
Model wind solar M4-hourly

DeepAR 0.288�/0.113� 0.222�/0.093� 0.090�/0.030�

DeepState 0.392�/0.189� 1.126�/0.517� 0.044�/0.026�
TRMF 0.311�/− 0.241�/− -/-
Ours 0.272/0.124 0.155/0.054 0.042/0.028

Table 7: Performance summary (Q50/Q90) of encoder-decoder based Transformer vs auto-regressive
decoder-only based Transformer.

T ST AST T ST AST

enc-dec elect1d
0.064/0.036 0.055/0.029 0.042/0.025 traffic1d

0.120/0.087 0.109/0.084 0.093/0.068
dec-only 0.053/0.055 0.052/0.026 0.048/0.024 0.154/0.136 0.092/0.079 0.096/0.069

The test performance of different α on the electricity and traffic is shown in Ta-
ble 4, which shows that when α = 1.5, Q50 and Q90 achieve the minimal val-
ues for both datasets. The results indicate that allocating too sparse attention to
learn the underlying relationship will deteriorate the performance, and allocating too
dense attention wastes attention on irrelevant steps which cause a poor performance.

Figure 3: Illustration of perfor-
mance with different activation func-
tions in multi-head attention.

Attention Weight Density Analysis To visualize the impact
of sparse attention maps, we compare the empirical attention
weight density (the average number of tokens receiving non-
zero attention) within each module of Transformer. Figure 4
(in supplementary) shows that compared with softmax, entmax
tends to be sparse and allocate higher scores to important
items which contribute to the interpretability of the model.

DeepAR Equipped with Adversarial training To further
explore the effects of adversarial training to time series
forecasting networks, we attach the adversarial training to
the DeepAR [25] network, which is a state-of-the-art auto-
regressive LSTM-based time series forecasting network.

Similar to our Adversarial Sparse Transformer, we add a dis-
criminator on the top of the DeepAR network, and train the
DeepAR and the discriminator iteratively. The results in Ta-
ble 5 show that adversarial training improves the performance of DeepAR, proving that adversarial
training can alleviate the error accumulation and the shortcomings of using a specific loss function.

5.4 Further Exploration

Table 5: Performance of DeepAR compared with
DeepAR equipped with adversarial training

Model Q50 Q90

DeepAR elect1d 0.075 0.040
traffic1d 0.161 0.099

DeepAR+Adv elect1d 0.067 0.035
traffic1d 0.155 0.089

We further explore the performance of our
model on the wind, solar and M4-Hourlywith
various granularities(e.g. different frequencies
like daily). The prediction lengths are 8, 30, and
24 respectively. The Q50 and Q90 test losses
are reported in Table 6 for all the methods. AST
significantly outperforms other methods on 4/6
tasks except the Q90 of wind and M4-Hourly.

Furthermore, we compare the performance
of the auto-regressive decoder-only Trans-
former [23] and the vanilla encoder-decoder
Transformer in Table 7. The results indicate that the encoder-decoder based Transformer outperforms
the auto-regressive decoder-only Transformer.
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6 Conclusion

In this work, we present Adversarial Sparse Transformer(AST), a novel Transformer-based model
for time series forecasting. By adversarial learning, we improve the contiguous and fidelity at the
sequence level. We further propose Sparse Transformer to improve the ability to pay more attention
on relevant steps in time series. Extensive experiments on a series of real-world time series datasets
have demonstrated the effectiveness of AST for both short-term and long-term time series forecasting.
According to the experimental results, we argue that (1) adversarial training can improve the time
series forecasting from a global perspective, and (2) the dependencies among steps of time series
have some tend of sparsity.

Broader Impact

Our proposed new Time series forecasting model– AST improves the time series forecasting by
adversarial training and Sparse Transformer, and it achieves impressive performance. AST can better
model time series data and alleviate the error accumulation in inference. We believe our work will
inspire the related research of time series forecasting. Our work will benefit the application of time
series forecasting such as business and industrial decision-making. And we think there are no one
will be disadvantaged by our work. Our model does not take advantage of data bias, it is general and
scalable.
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