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Abstract

Multi-scale neural networks have shown effectiveness in image restoration tasks,
which are usually designed and integrated in a handcrafted manner. Different from
the existing labor-intensive handcrafted architecture design paradigms, we present
a novel method, termed as multi-sCaLe nEural ARchitecture sEarch for image
Restoration (CLEARER), which is a specifically designed neural architecture
search (NAS) for image restoration. Our contributions are twofold. On one
hand, we design a multi-scale search space that consists of three task-flexible
modules. Namely, 1) Parallel module that connects multi-resolution neural blocks
in parallel, while preserving the channels and spatial-resolution in each neural block,
2) Transition module remains the existing multi-resolution features while extending
them to a lower resolution, 3) Fusion module integrates multi-resolution features
by passing the features of the parallel neural blocks to the current neural blocks.
On the other hand, we present novel losses which could 1) balance the tradeoff
between the model complexity and performance, which is highly expected to image
restoration; and 2) relax the discrete architecture parameters into a continuous
distribution which approximates to either 0 or 1. As a result, a differentiable
strategy could be employed to search when to fuse or extract multi-resolution
features, while the discretization issue faced by the gradient-based NAS could
be alleviated. The proposed CLEARER could search a promising architecture in
two GPU hours. Extensive experiments show the promising performance of our
method comparing with nine image denoising methods and eight image deraining
approaches in quantitative and qualitative evaluations. The codes are available at
https://github.com/limit-scu.

1 Introduction

Due to the complicated environments and the quality of digital image acquisition devices, the captured
images are often contaminated by various of signal-dependent or -independent noises. To recover the
clean image from the observed noisy image, a huge number of image restoration methods [30, 1, 5, 10]
have been proposed based on different handcrafted priors. However, once the prior is inconsistent
with the real data distribution, an unpleasant recovery will be achieved.
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Different from the prior-based methods, some deep learning based methods adopt a data-driven
fashion to remove the possible corruptions by mapping the degraded images to the latent clean
versions, which have achieved state-of-the-art performance. In other words, these so-called learning-
based methods substitute the explicit and handcrafted image priors with implicit and learning-based
priors which are captured by neural architectures [41, 11, 29]. Hence, it is considerably important to
seek an effective neural network architecture for facilitating image restoration. As a matter of fact,
the advances of image restoration in recent years are benefited from the developments of various
handcrafted neural network architectures [27, 14, 15, 19, 24, 40, 31, 34].

In these handcrafted models, multi-scale architectures [16, 37, 33, 35, 39, 42] have played a signif-
icant role in improving the performance, of which the basic idea is to fuse features with different
resolutions/scales. The success of multi-scale methods are attributed to different roles of low- and
high-resolution networks. In brief, the low-resolution networks could capture the global structure
of the given image, while losing the perception of details. In contrast, the high-resolution networks
could preserve the local details of images, while being with less semantics and robustness to noise.
As either using low- or high-scale information alone cannot guarantee encouraging recovery, it is
highly expected to use them together so that their merits are taken and the demerits are overcome.

Although it is well-known that multi-resolution fusion is helpful to boosting image recovery perfor-
mance [7, 12, 44, 23], it is difficult to obtain an effective architecture and almost all existing works
rely on human design. Such a handcrafted paradigm has suffered from the following limitations.
First, it is labor-intensive to seek an effective architecture, while the image recovery performance
is sensitive to neural architecture according to the advances in recent years. Especially, multi-scale
networks often consist of multiple subnetworks, which further increases the difficulty of handcrafted
design. Second, one more daunting task of multi-scale architecture design is unknown when to fuse
multi-scale features. Third, as multi-scale network is more complex than the single-scale one, it
is highly expected to find an elegant tradeoff between the model complexity and recovery quality.
Clearly, it is difficult to achieve the above goals through human design.

To overcome the aforementioned limitations, we propose a novel method, termed as multi-sCaLe
nEural ARchitecture sEarch for image Restoration (CLEARER), which could be one of the first
attempts towards automatic integration and design of multi-resolution neural architectures. The
contributions and novelty could be summarized as follows:

• We propose a multi-resolution search space consisting of three task-flexible modules, i.e.,
parallel module, transition module, and fusion module. All these modules are specifically
designed to facilitate image restoration. With the increasing depth of our CLEARER, a
series of high-to-low resolution subnetworks (cells) are gradually added one by one.

• We propose employing a data-driven strategy to search when to fuse low- and high-resolution
features with the help of our novel loss function. The proposed method is time efficient,
which only takes two hours to search architectures using a single V100 GPU.

• We show a feasible solution to formulate the model complexity into our loss function in
a differentiable manner. In other words, our method could control the balance between
performance and model size, which is highly expected to a wide range of applications
including resource-constrained scenario. In addition, to avoid the trivial solution caused
by the continuous relaxation using softmax, an architecture loss is proposed which could
polarize the distribution of architecture parameters, i.e., approach to 0 or 1.

2 Related Works

This work is close to image restoration and neural architecture search (NAS) which are briefly
introduced in this section.

2.1 Image Restoration

To date, a number of image restoration algorithms have been proposed, which achieved remarkable
development in numerous practical applications [19, 40, 15, 21]. For instance, [19] proposed
incorporating non-local operations into a recurrent neural network for image restoration. [24]
proposed using two residual connections to exploit the potential of paired operations for image
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restoration. [40] recovered clean image by constructing a memory block using a recursive unit
and a gate unit. [33] introduced a multi-scale convolutional neural network for image dehazing
and achieved state-of-the-art performance. [23] fused the multi-scale information using a grid-like
network and employs attention mechanism to improve the dehazing performance. [47] proposed a
multi-stream densely connected network to efficiently leverages features from different scales for
image deraining. Besides these explicit multi-scale methods, the models with skip connections [9]
could also be regarded as using multi-scale information in an implicit way.

Different from these handcrafted architectures, our method could automatically construct a multi-
resolution network, which could remarkably alleviate the difficulty in architecture design while
providing a feasible way to balance model complexity and performance.

2.2 Neural Architecture Search

NAS aims to automatically discover desirable neural architectures [43, 3, 50, 49, 32] by using one
of the following search strategies, namely, evolutionary algorithm (EA), reinforcement learning
(RL), gradient-based methods, etc. In the early period, some works [3, 32] adopted EA to search
architectures, which obtained the best architecture via the iterative crossovers and mutations of
population. Different from EA, RL-based methods, such as Q-learning [49] and policy gradients [50],
trained a recurrent neural network which acts as a controller to generate architectures by traversing a
predefined search space. Despite the promising performance of these two families of methods, they
often face the explosion problem of architecture combination, which is computationally inefficient.
To alleviate this issue, recent focus has shifted to gradient-based methods, such as DARTS [20] and
BDA [22]. The basic idea of the gradient-based NAS is to relax the discrete and non-differentiable
architecture representation to a continuous and differentiable surrogate, thus allowing the efficient
search of architectures using gradient descent. Motivated by the competitive performance and search
efficiency of the gradient-based NAS, we also employ a differentiable manner to search our multi-
scale architecture representation but with a significant difference. In brief, we aim to search for a
super-network instead of a cell. Moreover, we alleviate the trivial solution issue caused by using
softmax to perform differentiable relaxation [20] via our architecture loss.

To the best of our knowledge, there are only two studies have been conducted towards developing NAS
for image restoration, i.e., E-CAE [38] and HiNAS [46]. However, our method is remarkably different
from them in the following aspects. First, these pioneers did not utilize specific characteristics of
image restoration, whereas our method is a task-specific NAS. More specifically, the proposed
CLEARER could automatically utilize and fuse the multi-resolution features that are highly expected
to image restoration. Second, the search space is different. In details, both E-CAE and HiNAS
design their search space using some basic operators such as conv3 × 3, whereas we design a
higher-level search space considering specific characteristics of multi-resolution fusion. Third, these
methods did not consider the resource-constrained scenario, whereas our CLEARER could control
the trade-off between model complexity and performance. Fourth, both HiNAS and our CLEARER
are differentiable. However, HiNAS aim at searching a cell which is further repeatedly stacked to
construct the whole network, whereas our CLEARER directly search a super-network consists of
different cells while keeping computational efficiency. As pointed out in [2], although cell-based
NAS could remarkably reduce the time and space cost, it will achieve inferior performance.

3 Multi-scale NAS for Image Restoration

The proposed CLEARER consists of five different components as shown in Figure 1.(c). In brief,
parallel module, transition module, fusion module, cell, and convolutional layer. In the super-network,
the used two parallel modules keep the original resolution, which are used to receive the input
noisy images. The fusion module is used to integrate the multi-resolution features, followed by a
convolutional layer. The high-to-low resolution network will be added after each transition module
and the nearby cell is with learnable structure. Note that, different from most of existing gradient-
based NAS [20, 46], the cells of CLEARER are probably with different rather than the same structure.
In other words, we directly search a super-network which consists of S learnable cells. In the
following, we will elaborate the proposed multi-resolution search space, the used differentiable search
strategy, and the loss functions.
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Figure 1: An illustration to our multi-scale search space. In brief, the proposed CLEARER uses
modules to build the cell, and then use cells to build the super-network. a) The proposed multi-scale
search space which consists of three types of modules, i.e., parallel module, transition module, and
fusion module. The colored blocks denote the features with different resolutions and we take three
scales of resolution as a showcase in this example. To be specific, the resolution reduced from 1x to
0.5x to 0.25x from top to bottom. b) The structure of cell which contains the Parallel or the Fusion
module at each column, and each cell consists Ni columns. At each column, our differentiable search
strategy will automatically seek the best module, i.e., our CLEARER will search when to fuse the
multi-resolution features through the fusion module. c) The whole structure of our super-network.
After each Transition module, the resolution will be reduced by 0.5.

3.1 Differentiable Multi-Scale Search Space

As shown in Figure 1.(a), our multi-scale search space mainly composes of three basic modules, i.e.,
parallel module, transition module, and fusion module. The parallel module connects multiple neural
blocks in parallel, and the resolution of features in each parallel line remains unchanged via the
convolution operation. The transition module will add a lower-scale resolution network via the strided
convolution and simultaneously keep the resolution in the horizontal direction via none operation.
The fusion module fuses multi-resolution features through the strided convolution, upsampling, and
none operator.

With the parallel module and the fusion module, we design a cell as illustrated in Figure 1.(b). In
details, each cell consists of Ni columns, and each column is a parallel module or fusion module,
where i = {1, 2, · · · , S} is the index of cell. By taking one cell as a showcase, we illustrate the
optimization process in Figure 2.

For a noisy input, the proposed CLEARER will directly pass it through two parallel modules, S pairs
of the transition module and cell, and a fusion module followed by a 1× 1 convolutional layer. Such
a progressive architecture will gradually add the high-to-low resolution networks into the super-net so
that the resolution will decrease and the final output could encapsulate multi-resolution information.
For each search, we need to determine the architectures of S cells and Ni columns, thus the size of
our search space is 2N1+N2+···+NS .

Let yj be the input to the j-th column of a cell and {fpj (·), f
f
j (·)} be the parallel module and the

fusion module at the j-th column. Hence, we have

yj+1 = αpjf
p
j (yj) + αfj f

f
j (yj), (1)

where αpj = 0, αfj = 1 or αpj = 1, αfj = 0, i.e., the search space is discrete. To efficiently search
a desirable architecture, we employ a continuous relaxation of {αpj , α

f
j }, i.e., the above binary

constraint is replaced by {αpj , α
f
j } ∈ (0, 1) and αpj + αfj = 1. Although our CLEARER adopts

the softmax to achieve the above relaxation like [20], we further constrain the distribution of the
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architecture parameter {αpj , α
f
j } to approximate the discrete distribution as elaborated in the next

section.

Figure 2: An illustration to the optimization of one cell: (a) The modules in our cell are initially
unknown. (b) Continuous relaxation of the search space by placing a mixture of candidate modules.
(c) Iterative optimization of the mixing architecture parameters and the network weights. (d) Obtaining
the final architecture from the learned mixing probabilities. Note that, we directly search a super-
network which consists of S learnable cells. Here, we only take one cell as an example.

3.2 Loss Function

To search for a desirable architecture for image restoration, we propose the following loss function:

L = LRes + λ1LArch + λ2LComp, (2)

where LRes is the restoration loss between the ground-truth clean image and the recovered clean
image of CLEARER. LArch is the architecture regularization loss which is used to constrain the
distributions of architecture parameters to close 0 or 1. LComp is the differentiable loss for measuring
the model complexity. The nonnegative parameters λ1 and λ2 are used to balance the corresponding
items.

For a given noisy input x, LRes aims to minimize the mean squared error (MSE) between the
corresponding ground-truth x̂ and the recovered clean image f(x). Mathematically,

LRes =
1

T

T∑
i=1

(f(xi)− x̂i)2 (3)

where T is the number of x’s pixels.

Although the above continuous relaxation makes the search space differentiable, there exists a
problem caused by the relaxation using the softmax. To be specific, it will lead to that both αp and
αf are around 0.5, i.e., the different candidate modules are indistinguishable (see our supplementary
material), which is inconsistent with our original goal and formulation. To solve this problem, we
propose LArch which is enforced onto all architecture parameters with the following formulation,

LArch = − 1

N

∑
a∈{αp,αf}

(α logα+ (1− α) log(1− α)) (4)

where N = 2
∑S
i=1Ni is the number of architecture parameters. This regularization will enforce α

to distribute to approach either 0 or 1.

One major favorite of NAS to image restoration is controllable model complexity which is important
to a variety of resource-constrained scenarios such as mobile phone. However, this property has not
been touch in existing works [46, 38] due to the formulation in the model complexity, as well as the
non-differentiability. In this work, we formulate the model complexity of the cells into LComp as
below:

LComp =
1

N

∑
(αpCp + αfCf ) (5)

where Cp and Cf are the complexity of the parallel module and fusion module, respectively. The
complexity could be predefined using module size, time cost, FLOPs, and so on. In the following
experiments, we simply use the module size to measure the complexity.
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Like [20], we adopt a bilevel optimization paradigm to iteratively update architecture parameters via
L and network weights via LRes using two non-overlapping data partitions. Namely, LRes is used
both in the optimization of architecture parameters and network weights. LArch and LComp are the
architecture regularizations, which are only used to optimize the architecture parameters.

4 Experiments

To demonstrate the effectiveness of our method, we carry out experiments on two image restoration
tasks, i.e., image denoising and deraining2. In the following, we first introduce the experimental
settings and then show the qualitative and quantitative results on some public datasets. Finally, we
perform ablation study and parameter analysis to our model. Due to space limitation, we present
more experimental results and experimental details such as network architectures and parameter
settings in the supplementary material.

4.1 Experimental settings

In this section, we elaborate the experimental configurations for architecture search and model
training. For the evaluations, two popular metrics are used in quantitative comparisons, i.e., PSNR
and SSIM.

Architecture Search Settings: The super-network that we build for denoising contains three cell
and each cell consists of four cascade modules, i.e., S = 3 and Ni = 4(i = 1, ..., S) (see Fig. 1).
Namely, the size of our search space is 212. Following [19, 24, 27, 40, 46], we utilize the training
set and validation set from BSD500 to train and find the best neural architecture with the highest
performance. After that, we use the well-trained network to process the testing images and report the
corresponding results.

We adopt the standard SGD optimizer with the momentum of 0.9 and the weight decay of 0.0003
to optimize the parametric model. The learning rate automatically decays from 0.025 to 0.001 via
the cosine annealing strategy [25]. To optimize the architecture parameters, we adopt Adam [13]
optimizer with the learning rate of 0.0003, and the weight decay of 0.001. In the search process,
we build a data batch with the size of 32 by randomly cropping patches of 64 × 64 from training
images, and feed the batch to the network with the maximal iteration of 10,000. To avoid trivial
solution, only the weight parameters are updated in the first 1,000 iterations. Namely, the weight
parameters and architecture parameters will be alternatively updated after the 1,000-th iteration. For
fair comparisons, we simply set λ1 = 0.01 and λ2 = 0 by ignoring the model complexity like the
compared approaches. In the ablation study, we will show the effectiveness of this parameter in
balancing the model complexity and recovery performance.

All two image recovery tasks adopt the same configurations and their only one difference lies on the
data distribution. Like the compared methods such as [19], we employ data augmentation techniques
including rotation and flip to augment the data during search, training and testing.

Model Training Settings: After finishing architecture search, we train the obtained network for
100,000 iterations with the batch size of 32 and patch size of 64. To optimize the network parameters,
we employ the Adam optimizer with the learning rate decays from 0.01 to 0 via the cosine annealing
strategy.

4.2 Comparisons on Image Denoising

Data Sets: We carry out denoising experiments on three datasets, i.e., BSD500 [28], BSD68 [48],
and Set12. In details, BSD500 consists of 500 natural images of which 200, 100, and 200 images
are used for training, validation, and testing, respectively. BSD68 includes 68 different natural
images and Set12 contains 12 different scenes, which are also used to test the model trained on the
BSD500 training set. By following [46, 4, 31, 24, 40], the noisy images are generated by adding
white Gaussian noises to the clean images with three corruption levels, i.e., σ = 30, 50, 70.

Compared Methods: For comprehensive comparisons, we compare the proposed CLEARER with
nine representative denoising methods. In details, BM3D [4], WNNM [8], RED [27], MemNet [40],

2Note that: rain streaks could be regarded as one signal-dependent noise.
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NLRN [19], DuRN-P [24], N3Net [31], HiNAS [46], and E-CAE [38]. Note that, the first seven
approaches are traditional handcrafted architectures and the last two are NAS-based models. For
a comprehensive study, we evaluate CLEARER on both the image patches and the whole images,
denoted by CLEARER-P and CLEARER.

Results: Tables 1–2 report the results on BSD500 comparing with seven handcrafted denoising
methods and two NAS based methods, respectively. In addition, Table 3 demonstrates the results
on BSD68 and Set12 with the noise level σ = 50 (See Table 3). Note that, we do not report the
performance of E-CAE and HiNAS on BSD68 and Set12 because the corresponding results are
unavailable. Figure 3 shows some denoising examples and more visual comparisons have been
presented in the supplementary material.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 3: A qualitative comparison on BSD500. The noise levels from the top to the bottom are
σ = 30, 50, 70, respectively. From the left to the right are Input, BM3D, RED, WNNM, NLRN,
DuRN-P, N3Net, CLEARER, and Ground truth. Note that, we did not obtain the encouraged visual
result of E-CAE in our experiments.

Table 1: Denoising comparisons with handcrafted methods on the BSD500.

Methods σ = 30
PSNR SSIM

σ = 50
PSNR SSIM

σ = 70
PSNR SSIM

BM3D 27.31 0.7755 25.06 0.6831 23.82 0.6240
RED 27.95 0.8056 25.75 0.7167 24.37 0.6551

WNNM 27.48 0.7807 25.26 0.6928 23.95 0.3460
MemNet 28.04 0.8053 25.86 0.7202 24.53 0.6608
N3Net 28.66 0.8220 26.50 0.7490 25.18 0.6960
NLRN 28.15 0.8423 25.93 0.7214 24.58 0.6614

DuRN-P 28.50 0.8156 26.36 0.7350 25.05 0.6755
CLEARER 28.54 0.8203 26.40 0.7465 25.06 0.6894

CLEARER-P 29.68 0.8439 27.49 0.7768 26.09 0.7267

Table 2: Denoising performance of three NAS-based methods on the BSD500. The time includes the
cost for architecture searching and model training.

Methods σ = 30
PSNR SSIM

σ = 50
PSNR SSIM

σ = 70
PSNR SSIM GPU Time cost

(hours) Search

HiNAS 29.14 0.8403 26.77 0.7635 25.48 0.7129 1 Tesla V100 16.50 (2.54x) gradient
E-CAE 28.23 0.8047 26.17 0.7255 24.83 0.6636 4 Tesla P100 96.00 (14.77x) EA

CLEARER 28.54 0.8203 26.40 0.7465 25.06 0.6894 1 Tesla V100 6.50 gradient
CLEARER-P 29.68 0.8439 27.49 0.7768 26.09 0.7267 1 Tesla V100 6.50 gradient

Table 3: Denoising performance (PSNR/SSIM) on Set12 and BSD68 with the noise level of σ = 50.

Datasets BM3D RED WNNM MemNet NLRN N3Net DuRN-P CLEARER CLEARER-P

Set12 26.55/0.7423 27.32/0.7748 27.05/0.7775 27.36/0.7791 27.64/0.7980 27.43/- 27.14/0.7829 27.43/0.8021 28.08/0.8129
BSD68 25.60/0.6866 26.29/0.7124 25.87/0.6982 26.34/0.7190 26.47/0.7298 26.39/- 26.31/0.7276 26.31/0.7352 27.25/0.7681

As shown in the tables, our method outperforms most manually-designed and NAS-based methods.
Specifically, our method is 0.31 and 0.0156 higher than E-CAE, 0.04 and 0.0047 higher than DuRN-P
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in terms of PSNR and SSIM when noise level σ = 30. Comparing with HiNAS, although relatively
inferior results are obtained, our method is remarkably efficient than E-CAE and HiNAS for searching
and training thanks to our multi-scale search space and gradient-based search strategy. To be specific,
our multi-scale search space consists of some modularized operators rather than basic operators,
which is specifically designed for image restoration. Therefore, although our CLEARER searches a
super-network instead of motifs, it is more efficient than E-CAE and HiNAS. Similar results could
also be observed when σ = 50 and σ = 70.

4.3 Comparisons on Image Deraining

Data Sets: To show the effectiveness of our method in image deraining, we carry out evaluations on
Rain800 [47] dataset which contains 700 synthesized training images and 100 synthesized test images.
For a fair comparison, we randomly sample 100 images from the training images for validation and
use the remaining 600 images for training. All the test images are used for testing.

Compared Methods: In experiments, we compare our CLEARER with eight state-of-the-art de-
raining models, including DSC [26], LP [18], DetailsNet [6], JORDER [45], JORDER-R [45],
SCAN [17], RESCAN [17], and HiNAS [46].

Results: From Table 4, one could observe that our method and HiNAS remarkably outperforms the
other tested methods. For example, CLEARER is 3.12 and 0.0275 higher than the best handcrafted
method in PSNR and SSIM, respectively. Although equally good result is obtained in SSIM,
CLEARER is 0.9 higher than HiNAS in PSNR. The results again show the effectiveness of our
method.

Table 4: Deraining results on Rain800.

Methods DSC LP DetailsNet JORDER JORDER-R SCAN RESCAN HiNAS CLEARER

PSNR 18.56 20.46 21.16 22.24 22.29 23.45 24.09 26.31 27.21
SSIM 0.5996 0.7297 0.7320 0.7763 0.7922 0.8112 0.8410 0.8685 0.8685

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 4: The qualitative comparisons on Rain800. From the left to the right are Input, DSC [26],
LP [18], DetailsNet [6], JORDER [45], SCAN [17], RESCAN [17], CLEARER, and Ground truth.

4.4 Ablation Study and Model Analysis

In this section, we carry out ablation study and model analysis to CLEARER in image denoising
task. Our method contains two parameters, i.e., λ1 and λ2. In brief, λ1 enforces the architecture
parameters α = {αf , αp} close to either 0 or 1. λ2 balances the model complexity and performance.
From Table 5, one could observe that a larger λ1 will lead to a smaller model, better performance, and
longer testing time. The possible reason for the smaller model and longer testing time is that a larger
λ1 will tend to choose the Fusion module which is with fewer parameters and more nonparametric
operations. The reason for the better performance is that the architecture regularization LArch could
widen the gap between the architecture parameters, i.e., |αf − αp|. As a result, it will increase
the distinction between different candidate modules. Comparing with λ1, λ2 is more significant in
control the model size. With the increasing λ2, the model size is becoming smaller and the worse
results are achieving.
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Besides the investigation on {λi}2i=1, we also evaluate the effectiveness of our differentiable search
strategy and multi-scale search space by randomly generating a network based on our search space.
The experimental configurations are the same as our CLEARER excepted the used search strategy.
The new baseline is termed as “CLEARER+Random” as shown in Table 5. From the result, one
could see that the PSNR and SSIM reduce to 28.29 and 0.8091, while the model is quite large. This
result again shows the effectiveness of our search space and search strategy.

Table 5: Ablation study and parameter analysis on BSD500.

Configurations PSNR SSIM Testing Time (s) Parameters (M)

λ1 = 0.00, λ2 = 0.00 28.51 0.8187 4.28 7.25
λ1 = 0.01, λ2 = 0.00 28.54 0.8203 5.28 6.31
λ1 = 0.10, λ2 = 0.00 28.53 0.8200 5.98 6.07
λ1 = 0.01, λ2 = 0.01 28.33 0.8100 6.70 4.59
λ1 = 0.10, λ2 = 0.10 28.16 0.8041 5.62 4.36
CLEARER + Random 28.29 0.8091 4.44 7.63

5 Conclusion

In this paper, we propose a novel NAS method which is specifically designed for image restoration in
a differentiable manner. In brief, we design a multi-resolution search space with three task-flexible
and interpretable modules that are favorite to the task. In addition, we propose a novel loss function
which shows a feasible solution to control the model complexity and performance that is highly
expected to the resource-constrained scenarios. The proposed CLEARER adopts a differentiable
way to directly search a super-network and only two Tesla V100 GPU hours are taken. Extensive
experiments on two image restoration tasks show the promising performance of our CLEARER
comparing with 17 state-of-the-art approaches. In the future, we will further improve our method and
explore its potential in more low-/high-level vision tasks.

Broader Impact

The proposed method is a specifically designed neural architecture search (NAS) method for image
restoration. Namely, two areas, NAS and image restoration, are involved. Image restoration is a
common topic in low-level vision tasks which aims to restore the clean image from the degraded
one and mainly used to improve the quality of digital images. NAS aims to automatically design the
high-performance neural architectures and has been applied to many vision tasks. Therefore, we will
discuss the impacts of our method from both aspects.

First, there is a risk of removing some necessary degradations during recoveries, such as watermark,
subtitle, and mosaic. Namely, such a technology has the potential of prejudicing the rights of others
with improper use. Second, NAS could help people to search for an effective neural architecture for
some specific tasks. This technology saves a lot of labors and greatly reduces the domain expertise
required in the manual design process. However, NAS would further intensify the black-box nature
of deep neural networks which brings tremendous security risks when applied to some critical fields
such as autopilot and medical. In addition, to search for a desirable architecture, a lot of energy will
be consumed, while causing massive CO2 emissions. For example, using NAS to find a specialized
neural network and train it from scratch for each case, which causes CO2 emission as much as five
cars’ lifetime [36].
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