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1 Experiments

In this material, we present more details of our CLEARER, including module configurations, search-
ing architectures, the distribution of architecture parameters. In addition, we also report additional
experimental comparisons in terms of the denoising and the deraining tasks.

1.1 Module Configurations

In the paper, we present a multi-scale search space which is casted into a differentiable supernet
consisting of three modules, i.e., parallel module, transition module, and fusion module. In this
subsection, we elaborate the architectures of these three modules. As shown in Figure 1.(a), there are
four operation sequences in the modules, namely, strided convolution (Strided conv.), Convolution
(Conv.), Upsample, and None. Except for the None operation, the others are the combination of some
basic operations as shown in Figure 1.(b)-(d).

1.2 Architecture Parameters

As mentioned in the main body of the paper, the super-network we build for restoration contains
three cells and each cell consists of four cascade modules. Namely, there are 12 cascade modules
in total. Each module could be either parallel module or fusion module, which is determined by
optimizing the architecture parameters αp and αf . To polarize the distribution of αp and αf , the
architecture loss LArch is proposed with the parameter λ1. Here, we show the influence of different
λ1 w.r.t. the distribution of architecture parameters. The numerical values of architecture parameters
with different λ1 are shown in Table 1 and the corresponding scatter plot is shown in Figure 2.

From the table and the figure, one could observe that both αp and αf are around 0.5 for all cascade
modules when λ1 = 0. Namely, there is no obvious gap between the best module and the other
module. When λ1 = 0.01, this gap is widened and a larger gap is achieved by λ1 = 0.1. Therefore,
with the increase of λ1, the distribution of architecture parameters tend to the polarization distribution,
i.e., αp approaches to 0 when αf approaches 1, and vice versa. Such a polarization distribution is
more consistent with the original discrete search space and in favor of distinguishing the best module,
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Figure 1: An illustration to the intra architecture of our search space. (a) The three types of
modules which form our multi-scale search space. Here, we take a three-scale resolutions with the
downsampling factor of 0.5 as a showcase. Note that the colored square in the modules denotes the
feature with different resolutions and the colored edge represents the sequence of operations. (b)
The strided convolution is used to down sample features. It is composed of R1 pairs of Convolution
and BatchNorm operations, followed by a ReLU operation. Here, R1 is automatically determined by
the ratio between the target resolution Tres and the source resolution Sres via R1 = log0.5

Tres

Sres
. (c)

The convolutional sequence is arranged in a residual manner for each parallel direction. In brief, it
is in order of Convolution, BatchNorm, ReLU, Convolution, BatchNorm, and ReLU. (d) Upsample
sequence transits the resolution of features from low to high, which consists of R2 sequences of
Convolution, BatchNorm, and Upsample. Similarly, R2 is also automatically determined by the ratio
between the target resolution Tres and the source resolution Sres via R2 = log2

Tres

Sres
. Note that, we

will change the number of channel with the resolution. Specifically, the number of channel will be
doubled if the resolution is halved, In our evaluations, we empirically set the number of channel to 32
in the highest resolution direction.

Table 1: Distribution of architecture parameters with different λ1. αp and αf are the architecture
parameters of parallel module and fusion module, respectively. {1, · · · , 12} is the index of modules.

λ1 Arch The index of module.
1 2 3 4 5 6 7 8 9 10 11 12

0.00
αp 0.4603 0.4474 0.4958 0.4873 0.5079 0.5020 0.5084 0.4934 0.5086 0.4969 0.5098 0.5113
αf 0.5397 0.5526 0.5042 0.5127 0.4921 0.4980 0.4916 0.5066 0.4914 0.5031 0.4902 0.4887

0.01
αp 0.3663 0.5411 0.4771 0.5144 0.4975 0.5123 0.4909 0.4090 0.5015 0.4971 0.4892 0.5299
αf 0.6337 0.4589 0.5229 0.4856 0.5025 0.4877 0.5091 0.5910 0.4985 0.5029 0.5108 0.4701

0.10
αp 0.1601 0.8286 0.8343 0.1650 0.1635 0.1638 0.1658 0.1658 0.8393 0.1665 0.1643 0.8378
αf 0.8399 0.1714 0.1657 0.8350 0.8365 0.8362 0.8342 0.8342 0.1607 0.8335 0.8357 0.1622
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Figure 2: An illustration to the distribution of the architecture parameters with different λ1. As
shown in the figure, the distribution of each {αp, αf} pair satisfies αp + αf = 1. When λ1 = 0, the
average gap between {αp, αf} pairs is about 0.0278, i.e., 1

12

∑12
j=1 |α

p
j − α

f
j | = 0.0278, where j is

the index of cascade modules. Such a gap is too small to well distinguish the best module from the
other candidates. However, this gap will be widened to 0.0620 when λ1 = 0.01 and 0.6709 when
λ1 = 0.1 which make the candidate modules more distinguishable.

thus alleviates the latent issues caused by the continuous relaxation and improves the performance of
learned architectures.

1.3 Searching Architectures

In this section, we present the detailed architectures learned for denoising and deraining. As shown
in Figure 3 and Figure 4, the obtained architectures achieve multi-resolution in a progressive manner.
In the vertical direction, there are at most four resolutions and each is denoted as a kind of colored
square. In the horizontal direction, after each transition module, there are four cascade modules
which need to be learned.

From the figures, one could find that there are more fusion modules than parallel modules in both the
denoising and the deraining architectures. Specifically, the learned two architectures both contain
eight fusion modules and four parallel modules, and the only one difference between them is the
position of the fusion and the parallel modules. From the observations, we could conclude that: 1)
the multi-scale information is remarkably important to image restoration. 2) different tasks require
fuse the multi-resolution at different positions, which indicates the importance of NAS.

Figure 3: The architecture learned for image denoising. The colored squares denote the features with
different resolutions and the colored edges represent the operation sequences which are illustrated in
the Figure 1.

1.4 Qualitative Comparisons

Besides the result presented in the main body of our submission, we show more qualitative compar-
isons on denoising and deraining here. Figure 5–6 demonstrate the denoising results on the BSD500
dataset, and Figure 7 illustrates the deraining results on the Rain800 dataset. According to the results,
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Figure 4: The architecture learned for image deraining.

one could find that our proposed CLEARER achieves pleasant visualization results both in denoising
and deraining.
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Figure 5: The qualitative comparisons on the denoising task using BSD500. From the top to the
bottom for each image, the noise levels are σ = 30, 50, 70. From the left to the right are Input,
BM3D [1], RED [9], WNNM [3], NLRN [6], DuRN-P [7], N3Net [10], CLEARER, and Ground
truth.
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Figure 6: The qualitative comparisons on denoising task using BSD500. The noise levels for each
image from the top to the bottom are σ = 30, 50, 70. From the left to the right are Input, BM3D [1],
RED [9], WNNM [3], NLRN [6], DuRN-P [7], N3Net [10], CLEARER, and Ground truth.
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Figure 7: The qualitative comparisons on deraining task using Rain800. From the left to the right are
Input, DSC [8], LP [5], DetailsNet [2], JORDER [11], SCAN [4], RESCAN [4], CLEARER, and
Ground truth.
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