
Directional convergence and alignment
in deep learning

Ziwei Ji Matus Telgarsky
{ziweiji2,mjt}@illinois.edu

University of Illinois, Urbana-Champaign

Abstract

In this paper, we show that although the minimizers of cross-entropy and related
classification losses are off at infinity, network weights learned by gradient flow con-
verge in direction, with an immediate corollary that network predictions, training
errors, and the margin distribution also converge. This proof holds for deep homo-
geneous networks — a broad class of networks allowing for ReLU, max-pooling,
linear, and convolutional layers — and we additionally provide empirical support
not just close to the theory (e.g., the AlexNet), but also on non-homogeneous
networks (e.g., the DenseNet). If the network further has locally Lipschitz gradi-
ents, we show that these gradients also converge in direction, and asymptotically
align with the gradient flow path, with consequences on margin maximization,
convergence of saliency maps, and a few other settings. Our analysis complements
and is distinct from the well-known neural tangent and mean-field theories, and
in particular makes no requirements on network width and initialization, instead
merely requiring perfect classification accuracy. The proof proceeds by developing
a theory of unbounded nonsmooth Kurdyka-Łojasiewicz inequalities for functions
definable in an o-minimal structure, and is also applicable outside deep learning.

1 Introduction

Recent efforts to rigorously analyze the optimization of deep networks have yielded many exciting
developments, for instance the neural tangent [Jacot et al., 2018, Du et al., 2018, Allen-Zhu et al.,
2018, Zou et al., 2018] and mean-field perspectives [Mei et al., 2019, Chizat and Bach, 2018]. In
these works, it is shown that small training or even testing error are possible for wide networks.

The above theories, with finite width networks, usually require the weights to stay close to initial-
ization in certain norms. By contrast, practitioners run their optimization methods as long as their
computational budget allows [Shallue et al., 2018], and if the data can be perfectly classified, the
parameters are guaranteed to diverge in norm to infinity [Lyu and Li, 2019]. This raises a worry that
the prediction surface can continually change during training; indeed, even on simple data, as in
Figure 1, the prediction surface continues to change after perfect classification is achieved, and even
with large width is not close to the maximum margin predictor from the neural tangent regime. If the
prediction surface never stops changing, then the generalization behavior, adversarial stability, and
other crucial properties of the predictor could also be unstable.

In this paper, we resolve this worry by guaranteeing stable convergence behavior of deep networks as
training proceeds, despite this growth of weight vectors to infinity. Concretely:

1. Directional convergence: the parameters converge in direction, which suffices to guarantee
convergence of many other relevant quantities, such as the prediction margins.

2. Alignment: when gradients exist, they converge in direction to the parameters, which
implies various margin maximization results and saliency map convergence, to name a few.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

mailto:ziweiji2@illinois.edu
mailto:mjt@illinois.edu


0.
00

0

0.
00

0

(a) Shallow NTK max margin.
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(b) Shallow net, early training.

0.
00

0

0.
00

0

(c) Shallow net, late training.

Figure 1: Prediction surface of a shallow network on simple synthetic data with blue negative
examples (“−”) and red positive examples (“+”), trained via gradient descent. Figure 1a shows
the prediction surface reached by freezing activations, which is also the prediction surface of the
corresponding Neural Tangent Kernel (NTK) maximum margin predictor [Soudry et al., 2017].
Figure 1b shows the same network, but now without frozen activations, at the first moment with
perfect classification. Training this network much longer converges to Figure 1c.

1.1 First result: directional convergence

We show that the network parameters Wt converge in direction, meaning the normalized iterates
Wt/‖Wt‖ converge. Details are deferred to Section 3, but here is a brief overview.

Our networks are L-positively homogeneous in the parameters, meaning scaling the parameters by
c > 0 scales the predictions by cL, and definable in some o-minimal structure, a mild technical
assumption which we will describe momentarily. Our networks can be arbitrarily deep with many
common types of layers (e.g., linear, convolution, ReLU, and max-pooling layers), but homogeneity
rules out some components such as skip connections and biases, which all satisfy definability.

We consider binary classification with either the logistic loss `log(z) := ln(1 + e−z) (binary cross-
entropy) or the exponential loss `exp(z) := e−z , and a standard gradient flow (infinitesimal gradient
descent) for non-differentiable non-convex functions via the Clarke subdifferential. We start from an
initial risk smaller than 1/n, where n denotes the number of data samples; in this way, our analysis
handles the late phase of training, and can be applied after some other analysis guarantees risk 1/n.

Under these conditions, we prove the following result, without any other assumptions about the
distribution of the parameters or the width of the network (cf. Theorem 3.1):

The curve swept by Wt/‖Wt‖ has finite length, and thus Wt/‖Wt‖ converges.

Our main corollary is that prediction margins converge (cf. Corollary 3.2), meaning convergence
of the normalized per-example values yiΦ(xi;Wt)/‖Wt‖L, where yi is the label and Φ(xi;Wt) is the
prediction on example xi. These quantities are central in the study of generalization of deep networks,
and their stability also implies stability of many other useful quantities [Bartlett et al., 2017, Jiang
et al., 2019, 2020]. As an illustration of directional convergence and margin convergence, we plot the
margin values for all examples in the standard cifar data against training iterations in Figure 2; these
trajectories exhibit strong convergence behavior, both within our theory (a modified homogeneous
AlexNet, as in Figure 2a), and outside of it (DenseNet, as in Figure 2b).

Directional convergence is often assumed throughout the literature [Gunasekar et al., 2018a, Chizat
and Bach, 2020], but has only been established for linear predictors [Soudry et al., 2017]. It is tricky
to prove because it may still be false for highly smooth functions: for instance, the homogeneous
Mexican Hat function satisfies all our assumptions except definability, and can be adjusted to have
arbitrary order of continuous derivatives, but its gradient flow does not converge in direction, instead
it spirals [Lyu and Li, 2019]. To deal with similar pathologies in many branches of mathematics, the
notion of functions definable in some o-minimal structure was developed: these are rich classes of
functions built up to limit oscillations and other bad behavior. Using techniques from this literature,
we build general tools, in particular unbounded nonsmooth Kurdyka-Łojasiewicz inequalities, which
allows us to prove directional convergence, and may also be useful outside deep learning. More
discussion on the o-minimal literature is given in Section 1.3, technical preliminaries are introduced
in Section 2, and a proof overview is given in Section 3, with full details in the appendices.
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(a) Margins while training H-AlexNet. (b) Margins while training DenseNet.

Figure 2: The margins of all examples in cifar, plotted against time, or rather optimization accuracy
ln(n/L(Wt)) to remove the effect of step size and other implementation coincidences. Figure 2a
shows “H-AlexNet”, a homogeneous version of AlexNet as described in the main text [Krizhevsky
et al., 2012], which is handled by our theory. Figure 2b shows a standard DenseNet [Huang et al.,
2017], which does not fit the theory in this work due to skip connections and biases, but still exhibits
convergence of margins, thus suggesting a tantalizing open problem.

1.2 Second result: gradient alignment

Our second contribution, in Section 4, is that if the network has locally Lipschitz gradients, then these
gradients also converge, and are aligned to the gradient flow path (cf. Theorem 4.1).

The gradient flow path, and the gradient of the risk along the path, converge to the same direction.

As a practical consequence of this, recall the use of gradients within the interpretability literature,
specifically in saliency maps [Adebayo et al., 2018]: if gradients do not converge in direction then
saliency maps can change regardless of the number of iterations used to produce them. As a theoretical
consequence, directional convergence and alignment imply margin maximization in a variety of
situations: this holds in the deep linear case, strengthening prior work [Gunasekar et al., 2018b, Ji
and Telgarsky, 2018a], and in the 2-homogeneous network case, with an assumption taken from the
infinite width setting [Chizat and Bach, 2020], but presented here with finite width.

1.3 Further related work

Our analysis is heavily inspired and influenced by the work of Lyu and Li [2019], who studied margin
maximization of homogeneous networks, establishing monotonicity of a smoothed margin, a quantity
we also use. However, they did not prove directional convergence but instead must use subsequences.
Their work also left open alignment and global margin maximization.

Directional convergence. A standard approach to resolve directional convergence and similar
questions is to establish that the objective function in question is definable in some o-minimal
structure, which as mentioned before, limits oscillations and other complicated behavior. This
literature cannot be directly applied to our setting, owing to a combination of nonsmooth layers like
the ReLU and max-pooling, and the exponential function used in the cross entropy loss, and as a
result, our proofs need to rebuild many o-minimal results from the ground up.

In more detail, an important problem in the o-minimal literature is the gradient conjecture of René
Thom: it asks when the existence of limt→∞Wt = z further implies limt→∞ (Wt−z)/‖Wt−z‖ exists,
and was established in various definable scenarios by Kurdyka et al. [2000a, 2006] via related
Kurdyka-Łojasiewicz inequalities [Kurdyka, 1998]. The underlying proof ideas can also be used
to analyze limt→∞Wt/‖Wt‖ when the weights go to infinity [Grandjean, 2007]. However, the prior
results require the objective function to be either real analytic, or definable in a “polynomially-
bounded” o-minimal structure. The first case causes the aforementioned nonsmoothness issue, and
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excludes many common layers in deep learning such as the ReLU and max-pooling. The second
case excludes the exponential function, and means the logistic and cross-entropy losses cannot be
handled. To resolve these issues, we had to redo large portions of the o-minimality theory, such as
the nonsmooth unbounded Kurdyka-Łojasiewicz inequalities that can handle the exponential/logistic
loss, as presented in Section 3.

Alignment. As discussed in Section 4, alignment implies the gradient flow reaches a stationary
point of the limiting margin maximization objective, and therefore is related to various statements
and results throughout the literature on implicit bias and margin maximization [Soudry et al., 2017,
Ji and Telgarsky, 2018b]. This stationary point perspective also appears in some nonlinear works,
for instance in the aforementioned work on margins by Lyu and Li [2019], which showed that
subsequences of the gradient flow converge to such stationary points; in addition to fully handling the
gradient flow, the present work also differs in that alignment is in general a stronger notion, in that it
is unclear how to prove alignment as a consequence of convergence to KKT points. Additionally,
alignment can still hold when the objective function is not definable and directional convergence
is false, for example on the homogeneous Mexican hat function, which cannot be handled by the
approach in [Lyu and Li, 2019, Appendix J]. As a final pointer to the literature, many implicit bias
works explicitly assume directional convergence and some version of alignment [Gunasekar et al.,
2018b, Chizat and Bach, 2020], but neither do these works indicate a possible proof, nor do they
provide conclusive evidence.

1.4 Experimental overview

The experiments in Figures 1 and 2 are performed in as standard a way as possible to highlight that
directional convergence is a reliable property; full details are in Appendix A. Briefly, Figure 1 uses
synthetic data and vanilla gradient descent (no momentum, no weight decay, etc.) on a 10,000 node
wide 2-layer squared ReLU network and its Neural Tangent Kernel classifier; by using the squared
ReLU, both our directional convergence and our alignment results apply. Figure 2 uses standard
cifar firstly with a modified homogeneous AlexNet and secondly with an unmodified DenseNet,
respectively inside and outside our assumptions. SGD was used on cifar due to training set size,
and seeing how directional convergence still seems to occur, suggests another open problem.

2 Preliminaries and assumptions

In this section, we first introduce the notions of Clarke subdifferentials and o-minimal structures, and
then use these notions to describe the network model, gradient flow, and Assumptions 2.1 and 2.2.
Throughout this paper, ‖ · ‖ denotes the `2 (Frobenius) norm, and ‖ · ‖σ denotes the spectral norm.

Locally Lipschitz functions and Clarke subdifferentials. Consider a function f : D → R with
D open. We say that f is locally Lipschitz if for any x ∈ D, there exists a neighborhood U of x such
that f |U is Lipschitz continuous. We say that f is C1 if f is continuously differentiable on D.

If f is locally Lipschitz, it holds that f is differentiable a.e. [Borwein and Lewis, 2000, Theorem
9.1.2]. The Clarke subdifferential of f at x ∈ D is defined as

∂f(x) := conv
{

lim
i→∞

∇f(xi)

∣∣∣∣xi ∈ D,∇f(xi) exists, lim
i→∞

xi = x

}
,

which is nonempty convex compact [Clarke, 1975], and if f is continuously differentiable at x, then
∂f(x) = {∇f(x)}. Vectors in ∂f(x) are called subgradients, and we let ∂̄f(x) denote the unique
minimum-norm subgradient:

∂̄f(x) := arg min
x∗∈∂f(x)

‖x∗‖.

In the following analysis, we use ∂̄f in many places that seem to call on∇f .

O-minimal structures and definable functions. Formally, an o-minimal structure is a collection
S = {Sn}∞n=1, where Sn is a set of subsets of Rn which includes all algebraic sets and is closed
under finite union/intersection and complement, Cartesian product, and projection, and S1 consists
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of finite unions of open intervals and points. A set A ⊂ Rn is definable if A ∈ Sn, and a function
f : D → Rm withD ⊂ Rn is definable if its graph is in Sn+m. More details are given in Appendix B.

Many natural functions and operations are definable. First of all, definability of functions is stable
under algebraic operations, composition, inverse, maximum and minimum, etc. Moreover, Wilkie
[1996] proved that there exists an o-minimal structure where polynomials and the exponential function
are definable. Consequently, definability allows many common layer types in deep learning, such as
fully-connected/convolutional/ReLU/max-pooling layers, skip connections, the cross entropy loss,
etc.; moreover, they can be composed arbitrarily As will be discussed later, what is still missing is the
handling of the gradient flow on such functions.

The network model. Consider a dataset {(xi, yi)}ni=1, where xi ∈ Rd are features and yi ∈
{−1,+1} are binary labels, and a predictor Φ(·;W ) : Rd → R with parameters W ∈ Rk. We make
the following assumption on the predictor Φ.
Assumption 2.1. For any fixed x, the prediction W 7→ Φ(x;W ) as a function of W is locally
Lipschitz, L-positively homogeneous for some L > 0, and definable in some o-minimal structure
including the exponential function.

As mentioned before, homogeneity means that Φ(x; cW ) = cLΦ(x;W ) for any c ≥ 0. This means,
for instance, that linear, convolutional, ReLU, and max-pooling layers are permitted, but not skip
connections and biases. Homogeneity is used heavily throughout the theoretical study of deep
networks [Lyu and Li, 2019].

Given a decreasing loss function `, the total loss (or unnormalized empirical risk) is given by

L(W ) :=

n∑
i=1

`
(
yiΦ(xi;W )

)
=

n∑
i=1

`(pi(W )),

where pi(W ) := yiΦ(xi;W ) are also locally Lipschitz, L-positively homogeneous and definable
under Assumption 2.1. We consider the exponential loss `exp(z) := e−z and the logistic loss
`log(z) := ln(1 + e−z), in which case L is also locally Lipschitz and definable.

Gradient flow. As in [Davis et al., 2020, Lyu and Li, 2019], a curve z from an interval I to some
real space Rm is called an arc if it is absolutely continuous on any compact subinterval of I . It holds
that an arc is a.e. differentiable, and the composition of an arc and a locally Lipschitz function is still
an arc. We consider a gradient flow W : [0,∞)→ Rk that is an arc and satisfies

dWt

dt
∈ −∂L(Wt), for a.e. t ≥ 0. (1)

Our second assumption is on the initial risk, and appears in prior work [Lyu and Li, 2019].
Assumption 2.2. The initial iterate W0 satisfies L(W0) < `(0).

As mentioned before, this assumption encapsulates our focus on the “late training” phase; some other
analysis, for instance the neural tangent kernel, can be first applied to ensure L(W0) < `(0).

3 Directional convergence

We now turn to stating our main result on directional convergence and sketching its analysis. As
Assumptions 2.1 and 2.2 imply ‖Wt‖ → ∞ [Lyu and Li, 2019], we study the normalized flow
W̃t := Wt/‖Wt‖, whose convergence is a formal way of studying the directional convergence of Wt.
As mentioned before, directional convergence is false in general [Lyu and Li, 2019], but definability
suffices to ensure it. Throughout, for general nonzero W , we will use W̃ := W/‖W‖.

Theorem 3.1. Under Assumptions 2.1 and 2.2, for `exp and `log, the curve swept by W̃t has finite
length, and thus W̃t converges.

A direct consequence of Theorem 3.1 is the convergence of the margin distribution (i.e., normalized
outputs). Due to homogeneity, for any nonzero W , we have pi(W )/‖W‖L = pi(W̃ ), and thus the
next result follows from Theorem 3.1.
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Corollary 3.2. Under Assumptions 2.1 and 2.2, for `exp and `log, it holds that pi(Wt)/‖Wt‖L
converges for all 1 ≤ i ≤ n.

Next we give a proof sketch of Theorem 3.1; the full proofs of the Kurdyka-Łojasiewicz inequalities
(Lemmas 3.5 and 3.6) are given in Appendix B.3, while the other proofs are given in Appendix C.

3.1 A proof sketch of Theorem 3.1

The smoothed margin introduced in [Lyu and Li, 2019] is crucial in our analysis: given W 6= 0, let

α(W ) := `−1
(
L(W )

)
, and α̃(W ) :=

α(W )

‖W‖L
.

For simplicity, let α̃t denote α̃(Wt), and ζt denote the length of the path swept by W̃t = Wt/‖Wt‖
from time 0 to t. Lyu and Li [2019] proved that α̃t is nondecreasing with some limit a ∈ (0,∞), and
‖Wt‖ → ∞. We invoke a standard but sophisticated tool from the definability literature to aid in
proving ζt is finite: formally, a function Ψ : [0, ν) → R is called a desingularizing function when
Ψ is continuous on [0, ν) with Ψ(0) = 0, and continuously differentiable on (0, ν) with Ψ′ > 0; in
words, a desingularizing function is a witness to the fact that the flow is asymptotically well-behaved.
As we will sketch after stating the lemma, this immediately leads to a proof of Theorem 3.1.
Lemma 3.3. There exist R > 0, ν > 0 and a definable desingularizing function Ψ on [0, ν), such
that for a.e. large enough t with ‖Wt‖ > R and α̃t > a− ν, it holds that

dζt
dt
≤ −cdΨ (a− α̃t)

dt

for some constant c > 0.

To prove Theorem 3.1 from here, let t0 be large enough so that the conditions of Lemma 3.3 hold for
all t ≥ t0: then we have limt→∞ ζt ≤ ζt0 + cΨ (a− α̃t0) <∞, and thus the path length is finite.

Below we sketch the proof of Lemma 3.3, which is based on a careful comparison of dα̃t/ dt and
dζt/ dt. The proof might be hard to parse due to the extensive use of ∂̄, the minimum-norm Clarke
subgradient; at first reading, the condition of local Lipschitz continuity can just be replaced with
continuous differentiability, in which case the Clarke subgradient is just the normal gradient.

Given any function f which is locally Lipschitz around a nonzero W , let

∂̄rf(W ) :=
〈
∂̄f(W ), W̃

〉
W̃ and ∂̄⊥f(W ) := ∂̄f(W )− ∂̄rf(W )

denote the radial and spherical parts of ∂̄f(W ) respectively. First note the following technical
characterization of dα̃t/dt and dζt/dt using the radial and spherical components of relevant Clarke
subgradients.
Lemma 3.4. It holds for a.e. t ≥ 0 that

dα̃t
dt

=
∥∥∂̄rα̃(Wt)

∥∥∥∥∂̄rL(Wt)
∥∥+

∥∥∂̄⊥α̃(Wt)
∥∥∥∥∂̄⊥L(Wt)

∥∥ , and
dζt
dt

=

∥∥∂̄⊥L(Wt)
∥∥

‖Wt‖
.

For simplicity, in the discussion here we consider the case that all subgradients in Lemma 3.4 are
nonzero, with the general case handled in the full proofs in the appendices. Then Lemma 3.4 implies

dα̃t
dζt

=
dα̃t/dt

dζt/ dt
= ‖Wt‖

(∥∥∂̄rL(Wt)
∥∥∥∥∂̄⊥L(Wt)
∥∥∥∥∂̄rα̃(Wt)

∥∥+
∥∥∂̄⊥α̃(Wt)

∥∥) . (2)

As in [Kurdyka et al., 2006, Grandjean, 2007], to bound eq. (2), we further consider two cases
depending on the ratio

∥∥∂̄⊥α̃(Wt)
∥∥ /∥∥∂̄rα̃(Wt)

∥∥.

If
∥∥∂̄⊥α̃(Wt)

∥∥ /∥∥∂̄rα̃(Wt)
∥∥ ≥ c1‖Wt‖L/3 for some constant c1 > 0, then Lemma 3.3 follows from

dα̃t/dζt ≥ ‖Wt‖
∥∥∂̄⊥α̃(Wt)

∥∥ as given by eq. (2), and the following Kurdyka-Łojasiewicz inequality.
Its proof is based on the proof idea of [Kurdyka et al., 2006, Proposition 6.3], but further handles the
unbounded and nonsmooth setting.
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Lemma 3.5. Given a locally Lipschitz definable function f with an open domainD ⊂
{
x
∣∣ ‖x‖ > 1

}
,

for any c, η > 0, there exists ν > 0 and a definable desingularizing function Ψ on [0, ν) such that

Ψ′
(
f(x)

)
‖x‖
∥∥∂̄f(x)

∥∥ ≥ 1, if f(x) ∈ (0, ν) and
∥∥∂̄⊥f(x)

∥∥ ≥ c‖x‖η∥∥∂̄rf(x)
∥∥ .

On the other hand, if
∥∥∂̄⊥α̃(Wt)

∥∥ /∥∥∂̄rα̃(Wt)
∥∥ ≤ c1‖Wt‖L/3, then a careful calculation (using

Lemmas C.2 to C.4) can show that for some constants c2, c3 > 0,∥∥∂̄rL(Wt)
∥∥∥∥∂̄⊥L(Wt)
∥∥ ≥ c2‖Wt‖2L/3, and

∥∥∂̄rα̃(Wt)
∥∥∥∥∂̄α̃(Wt)
∥∥ ≥ c3‖Wt‖−L/3.

It then follows from eq. (2) that dα̃t/dζt ≥ c2c3‖Wt‖4L/3
∥∥∂̄α̃(Wt)

∥∥. In this case we give the
following Kurdyka-Łojasiewicz inequality, which implies Lemma 3.3.

Lemma 3.6. Given a locally Lipschitz definable function f with an open domainD ⊂
{
x
∣∣ ‖x‖ > 1

}
,

for any λ > 0, there exists ν > 0 and a definable desingularizing function Ψ on [0, ν) such that

max

{
1,

2

λ

}
Ψ′
(
f(x)

)
‖x‖1+λ

∥∥∂̄f(x)
∥∥ ≥ 1, if f(x) ∈ (0, ν).

4 Alignment between the gradient flow path and gradients

Theorem 3.1 gave our directional convergence result, namely that the normalized iterate Wt/‖Wt‖
converges to some direction. Next we show and discuss our alignment result, that if all pi have locally
Lipschitz gradients, then along the gradient flow path, −∇L(Wt) converges to the same direction as
Wt.

Theorem 4.1. Under Assumptions 2.1 and 2.2, if all pi further have locally Lipschitz gradients, then
−∇L(Wt) and Wt converge to the same direction, meaning the angle between Wt and −∇L(Wt)
converges to zero. If all pi are twice continuously differentiable, then the same result holds without
the definability condition (cf. Assumption 2.1).

Below we first sketch the proof of Theorem 4.1, with full details in Appendix D, and then in Section 4.2
present a few global margin maximization consequences, which are proved in Appendix E.

4.1 A proof sketch of Theorem 4.1

Recall that limt→∞ α(Wt)/‖Wt‖L = a. The first observation is that α(Wt), the smoothed margin
function, asymptotes to the exact margin min1≤i≤n pi(Wt) which is L-positively homogeneous.
Therefore α is asymptotically L-positively homogeneous, and formally we can show

lim
t→∞

〈
∇α(Wt)

‖Wt‖L−1
,
Wt

‖Wt‖

〉
= lim
t→∞

〈
∇α(Wt),Wt

〉
‖Wt‖L

= aL, (3)

which can be viewed as an asymptotic version of Euler’s homogeneous function theorem (cf.
Lemma C.1). Consequently, the inner product between∇α(Wt)/‖Wt‖L−1 and W̃t converges.

Let θt denote the angle betweenWt and−∇L(Wt), which is also the angle betweenWt and∇α(Wt),
since ∇L(Wt) and ∇α(Wt) point to opposite directions by the chain rule. By [Lyu and Li, 2019,
Corollary C.10], given any ε > 0, there exists a time tε such that θtε < ε. The question is whether such
a small angle can be maintained after tε. This is not obvious since, as mentioned above, the smoothed
margin α(Wt) asymptotes to the exact margin min1≤i≤n pi(Wt), which may be nondifferentiable
even with smooth pi, due to nondifferentiability of the minimum. Consequently, the exact margin
may have discontinuous Clarke subdifferentials, and since the smoothed margin asymptotes to it,
it is unclear whether θt → 0. (This point was foreshadowed earlier, where it was pointed out that
alignment is not a clear consequence of convergence to stationary points of the margin maximization
objective.)

To handle this, the key to our analysis is the potential function J (W ) :=
∥∥∇α(Wt)

∥∥2
/‖Wt‖2L−2.

Suppose at time t, it holds that
〈
∇α(Wt)/‖Wt‖L−1, W̃t

〉
is close to aL, and θt is very small. If θt′
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becomes large again at some t′ > t, it must follows that J (Wt′) is much larger than J (Wt). We
prove that this is impossible, by showing that

lim
t→∞

∫ ∞
t

dJ (Wτ )

dτ
dτ = 0, (4)

and thus Theorem 4.1 follows. The proof of eq. (4) is motivated by the dual convergence analysis in
[Ji and Telgarsky, 2019], and also uses the positive homogeneity of ∇pi and∇2pi (which exist a.e.).

4.2 Main alignment consequence: margin maximization

A variety of (global) margin maximization results are immediate consequences of directional conver-
gence and alignment. This subsection investigates two examples: deep linear networks, and shallow
squared ReLU networks.

Deep linear networks predict with Φ(xi;W ) = AL · · ·A1xi, where the parameters W =
(AL, . . . , A1) are organized into L matrices. This setting has been considered in the literature,
but the original work assumed directional convergence, alignment and a condition on the support
vectors [Gunasekar et al., 2018b]; a follow-up dropped the directional convergence and alignment
assumptions, but instead assumed the support vectors span the space Rd [Ji and Telgarsky, 2018a].
As follows, we not only drop the all aforementioned assumptions, but moreover include a proof rather
than an assumption of directional convergence.

Proposition 4.2. Suppose Wt = (AL(t), . . . , A1(t)) and L(W0) < `(0). Then a unique linear max
margin predictor ū := arg max‖u‖≤1 mini yix

T
iu exists, and there exist unit vectors (vL, . . . , v1, v0)

with vL = 1 and v0 = ū such that

lim
t→∞

Aj(t)

‖Aj(t)‖
= vjv

T

j−1 and lim
t→∞

AL(t) · · ·A1(t)

‖AL(t) · · ·A1(t)‖
= ūT.

Thanks to directional convergence and alignment (cf. Theorems 3.1 and 4.1), the proof boils down to
writing down the gradient expression for each layer and doing some algebra.

A more interesting example is a certain 2-homogeneous case, which despite its simplicity is a universal
approximator; this setting was studied by Chizat and Bach [2020], who considered the infinite
width case, and established margin maximization under assumptions of directional convergence and
gradient convergence. Unfortunately, it is not clear if Theorems 3.1 and 4.1 can be applied to fill
these assumptions, since they do not handle infinite width, and indeed it is not clear if infinite width
networks or close relatives are definable in an o-minimal structure. Instead, here we consider the
finite width case, albeit with an additional assumption.

Following [Chizat and Bach, 2020, S-ReLU], organize Wt into m rows (wj(t))
m
j=1, with normaliza-

tions θj(t) := wj(t)/‖wj(t)‖ where θj(t) = 0 when ‖wj(t)‖ = 0, and consider

Φ(xi;W ) :=
∑
j

(−1)j max{0, wT

jxi}2 and ϕij(w) := yi(−1)j max{0, wTxi}2, (5)

whereby pi(W ) =
∑
j ϕij(wj), and Φ, pi, and ϕij are all 2-homogeneous and definable. (The

“(−1)j” may seem odd, but is an easy trick to get universal approximation without outer weights.)

Proposition 4.3. Consider the setting in eq. (5) along with L(W0) < `(0) and ‖xi‖ ≤ 1.

1. (Local guarantee.) s ∈ Rm with sj(t) := ‖wj(t)‖
2
/‖Wt‖2 satisfies s→ p̄ ∈ ∆m (probability

simplex on m vertices), and θj → θ̄j with θ̄j = 0 if sj = 0, and

a = lim
t→∞

min
i

pi(Wt)

‖Wt‖2
= lim
t→∞

min
i

∑
j

sj(t)ϕij(θj(t)) = min
i

max
s∈∆m

∑
j

sjϕij(θ̄j).

2. (Global guarantee.) Suppose the covering condition: there exist t0 and ε > 0 with

max
j
‖θj(t0)− θ̄j‖2 ≤ ε, and max

θ′∈Sd−1
max

{
min
2|j
‖θj(t0)− θ′‖,min

2-j
‖θj(t0)− θ′‖

}
≤ ε,
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where Sd−1 := {θ ∈ Rd : ‖θ‖ = 1}. Then margins are approximately (globally) maxi-
mized:

lim
t→∞

min
i

pi(Wt)

‖Wt‖2
≥ max
ν∈P(Sd−1)

min
i
yi

∫
max{0, xT

iθ}2 dν(θ)− 4ε,

where P(Sd−1) is the set of signed measures on Sd−1 with mass at most 1.

The first part (the “local guarantee”) characterizes the limiting margin as the maximum margin of a
linear problem obtained by taking the limiting directions (θ̄j)

m
j=1 and treating the resulting ϕij(θ̄j)

as features. The quality of this margin is bad if the limiting directions are bad, and therefore we
secondly (the “global guarantee”) consider a case where our margin is nearly as good as the infinite
width global max margin value as defined by [Chizat and Bach, 2020, eq. (5)]; see discussion therein
for a justification of this choice, and moreover calling it the globally maximal margin.

The covering condition deserves further discussion. In the infinite width setting, it holds for all ε > 0
assuming directional convergence [Chizat and Bach, 2020, Proof of Theorem D.1], but cannot hold in
such generality here as we are dealing with finite width. Similar properties have appeared throughout
the literature: Wei et al. [2018, Section 3] explicitly re-initialized network nodes to guarantee a
good covering, and more generally [Ge et al., 2015] added noise to escape saddle points in general
optimization problems.

5 Concluding remarks and open problems

In this paper, we established that the normalized parameter vectors Wt/‖Wt‖ converge, and that under
an additional assumption of locally Lipschitz gradients, the gradients also converge and align with
the parameters.

There are many promising avenues for future work based on these results. One basic line is to weaken
our assumptions: dropping homogeneity to allow for DenseNet and ResNet, and analyzing finite-time
methods like (stochastic) gradient descent, and moreover their rates of convergence. We also handled
only the binary classification case, however our tools should directly allow for cross-entropy.

Another direction is into further global margin maximization results, beyond the simple networks in
Section 4.2, and into related generalization consequences of directional convergence and alignment.

Broader impact

This paper constitutes theoretical work, with an aim of enhancing human understanding, and laying
the groundwork for further theoretical and applied work. The authors hope that advancing the
foundations of deep networks leads moreover to a better understanding of their failure modes, and
manipulation thereof, and thus an increase in safety.
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A Experimental setup

The goal of the experiments is to illustrate that directional convergence is a clear, reliable phenomenon.
Below we detail the setup for the two types of experiments: contour plots in Figure 1, and margin
plots in Figure 2 (with ResNet here in Figure 3).

Data. Figure 1 used two-dimensional synthetic data in order to capture the entire prediction surface;
data was generated by labeling points in the plane with a random network (which included a bias
term), and then deleting low-margin points. Then, when training from scratch to produce the contours,
data was embedded in R3 by appending a 1; this added bias made the maximum margin network
much simpler.

Figure 2 used the standard cifar dataset in its 10 class configuration [Krizhevsky, 2009]. There are
50,000 data points, each with 3072 dimensions, organized into 32× 32 images with 3 color channels.

Models. A few simple models both inside and outside our technical assumptions were used. All
code was implemented in PyTorch [Paszke et al., 2019].

Figure 1 worked with a style of 2-layer network which appears widely throughout theoretical
investigations: specifically, there is first a wide linear layer (in our case, 10, 000 nodes), then a
squared ReLU layer, and then a layer of random signs which is not trained. This squared ReLU
network with one trainable layer is 2-homogeneous, and was chosen both to fit with the alignment
guarantee in Theorem 4.1, and also to amplify differences with the NTK. Note that this simple
architecture is still a universal approximator with non-convex training. Figures 1b and 1c trained this
network, which can be written as x 7→

∑
j sj max

{
0,
〈
wj , x

〉}2
, where sj ∈ ±1 are fixed random

signs and (wj)
m
j=1 are the trainable parameters. Figure 1a trained the corresponding NTK [Jacot et al.,

2018, Du et al., 2018, Allen-Zhu et al., 2018, Zou et al., 2018], meaning the linear predictor obtained
by freezing the network activations, which thus has the form x 7→

∑
j sj

〈
vj , x

〉
max{0,

〈
wj , x

〉
},

where (wj)
m
j=1 from before are now fixed, and only (vj)

m
j=1 are trained.

Figure 2 used convolutional networks. Firstly, Figure 2a used “H-AlexNet”, which is based on a
simplified version of the standard AlexNet [Krizhevsky et al., 2012] as presented in the PyTorch
cifar tutorial [Paszke et al., 2019], but with biases disabled in order to give a homogeneous network.
The network ultimately consists of ReLU layers, max-pooling layers, linear layers, and convolutional
layers, and is 5-homogeneous. In particular, H-AlexNet satisfies all conditions we need for directional
convergence.

The two models outside the assumptions were DenseNet (cf. Figure 2b and ResNet (cf. Figure 3), used
unmodified from the PyTorch source, namely by invoking torchvision.models.densetnet121
and torchvision.models.resnet18 with argument num_classes=10.

Training. Training was a basic gradient descent (GD) for Figure 1, and a basic stochastic gradient
descent (SGD) for Figures 2 and 3 with a mini-batch size of 512; there was no weight decay or other
regularization, no momentum, etc.; it is of course an interesting question how more sophisticated
optimization schemes, including AdaGrad and AdaDelta and others, affect directional convergence
and alignment. Experiments were run to accuracy 10−8 or greater in order to train significantly past
the point L(W0) < `(0) from Assumption 2.2, and to better depict directional convergence.

To help reach such small risk, the main ideas were to rewrite the objective functions to be numerically
stable, and secondly to scale the step size by 1/L(Wt−1), which incidentally is consistent with gradient
flow on α with exponential loss, and is moreover an idea found across the margin literature, most
notably as the step size used in AdaBoost [Freund and Schapire, 1997]. This can lead to some
numerical instability, so the step size was reduced if the norm of the induced update was too large,
meaning the norm of the gradient times the step size was too large. A much more elaborate numerical
scheme was reported by Lyu and Li [2019, Appendix L], but not used here.

One point worth highlighting is the role of SGD, which seems as though it should have introduced a
great deal of noise into the plots, and after all is outside the assumptions of the paper (which requires
gradient flow, let alone gradient descent). Though not depicted here, experiments in Figure 2 were
also tried on subsampled data and full gradients, and Figure 1 was tried with SGD in place of GD;
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Figure 3: ResNet margins over time, plotted in the same way as Figure 2; see Appendix A for details.

while gradient descent does result in smoother plots, the difference is small overall, leaving the
rigorous analysis of directional convergence with SGD as a promising future direction.

Margin plots. A few further words are in order for the margin plots in Figures 2 and 3.

While margins are well-motivated from generalization and other theoretical perspectives [Bartlett
et al., 2017, Jiang et al., 2019, 2020], we also use margin plots as a visual surrogate for prediction
surface contour plots from Figure 1, but now for high-dimensional data, even with high-dimensional
outputs. In particular, Figures 2 and 3 track the prediction surface but restricted to the training
set, showing, in a sense, the output trajectory for each data example. Since the output dimension
is 10 classes, we convert this to a single real number via the usual multi-class margin (x, y) 7→
Φ(x;Wt)y −maxj 6=y Φ(x;Wt)j .

In the case of homogeneous networks, it is natural to normalize this quantity by ‖Wt‖L; for the
inhomogeneous cases DenseNet and ResNet, no such normalization is available. Therefore, for
consistency, at each time t, margins were normalized by the median nonnegative margin across all
data.

To show the evolution of the margins most clearly, we sorted margins according to the final margin
level, and used this fixed data ordering for all time; as a result, lines in the plot indeed correspond to
trajectories of single examples. Moreover, we indexed time by the log of the inverse risk, namely
ln n/L(Wt) in our notation. While this may seem odd at first, importantly it washes out the effect of
small step-sizes and other implementation choices; and crucially disallows an artificial depiction of
directional convergence by choosing rapidly-vanishing step sizes.

B Results on o-minimal structures

An o-minimal structure is a collection S = {Sn}∞n=1, where each Sn is a set of subsets of Rn
satisfying the following conditions:

1. S1 is the collection of all finite unions of open intervals and points.

2. Sn includes the zero sets of all polynomials on Rn: if p is a polynomial on Rn, then{
x ∈ Rn

∣∣ p(x) = 0
}
∈ Sn.

3. Sn is closed under finite union, finite intersection, and complement.

4. S is closed under Cartesian products: if A ∈ Sm and B ∈ Sn, then A×B ∈ Sm+n.

5. S is closed under projection Πn onto the first n coordinates: ifA ∈ Sn+1, then Πn(A) ∈ Sn.
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Given an o-minimal structure S, a set A ⊂ Rn is definable if A ∈ Sn, and a function f : D → Rm
with D ⊂ Rn is definable if the graph of f is in Sn+m. Due to the stability under projection, the
domain of a definable function is definable. In the following we consider an arbitrary fixed o-minimal
structure.

B.1 Basic properties

A convenient way to construct definable sets and functions is to use first-order formulas:

• If A is a definable set, then “x ∈ A” is a first-order formula.

• If φ and ψ are first-order formulas, then φ∧ψ, φ∨ψ, ¬φ and φ⇒ ψ are first-order formulas.

• If φ(x, y) is a first-order formula where x ∈ Rn and y ∈ Rm, and A ⊂ Rn is definable,
then ∀x ∈ Aφ(x, y) and ∃x ∈ Aφ(x, y) are first-order formulas.

Given a first-order formula, the set of free variables which satisfy the formula is definable [Van den
Dries and Miller, 1996, Appendix A]. The following basic properties of definable sets and functions
can then be shown (see [Van den Dries and Miller, 1996, Coste, 2000, Lê Loi, 2010]).

1. Given any α, β ∈ R and any definable functions f, g : D → R, we have αf + βg and fg
are definable. If g 6= 0 on D, then f/g is definable. If f ≥ 0 on D, then f1/` is definable
for any positive integer `.

2. Given a function f : D → Rm, let fi denote the i-th coordinate of its output. Then f is
definable if and only if all fi are definable.

3. Any composition of definable functions is definable.

4. Any coordinate permutation of a definable set is definable. Consequently, if the inverse of a
definable function exists, it is also definable.

5. The image and pre-image of a definable set by a definable function is definable. Particularly,
given any real-valued definable function f , all of f−1(0), f−1

(
(−∞, 0)

)
and f−1

(
(0,∞)

)
are definable.

6. Any combination of finitely many definable functions with disjoint domains is definable.
For example, the pointwise maximum and minimum of definable functions are definable.

The proofs are standard and omitted. To illustrate the idea, we give a proof of the following standard
result on the infimum and supremum operation.

Lemma B.1. Let A ⊂ Rn+1 be definable and Πn denote the projection onto the first n coordinates.
Suppose inf

{
y
∣∣ (x, y) ∈ A

}
> −∞ for all x ∈ Πn(A), then the function from Πn(A) to R given by

x 7→ inf
{
y
∣∣ (x, y) ∈ A

}
is definable. Consequently, we have:

1. Let f : D → R be definable and bounded below, and g : D → Rm be definable. Then
h : g(D)→ R given by h(y) := infx∈g−1(y) f(x) is definable.

2. Let f : Df → R and g : Dg → R be definable and bounded below, then their infimal
convolution h : Df +Dg → R given by

h(z) := inf
{
f(x) + g(y)

∣∣x ∈ Df , y ∈ Dg, x+ y = z
}

is definable.

3. A function f : D → R is definable if and only if its epigraph is definable.

4. Given a definable set A, the function dA(x) := infy∈A ‖x− y‖ is definable, which implies
the closure, interior and boundary of A are definable.

5. The lower-semicontinuous envelope of a definable function is definable.
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Proof. Note that the set

A` :=
{

(x, y)
∣∣x ∈ Πn(A), and ∀(x, y′) ∈ A, y ≤ y′

}
is definable, since it is given by the following first-order formula:

(x, y) : x ∈ Πn(A) ∧ ∀(x′, y′) ∈ A
(
(x = x′)⇒ (y ≤ y′)

)
.

Similarly, the set

A`u :=
{

(x, y)
∣∣x ∈ Πn(A), and ∀(x, y′) ∈ A`, y ≥ y′

}
is definable, and thus so is A` ∪A`u, which is the graph of the desired function.

Now we prove the remaining claims.

1. Let Gf denote the graph of f , and Gg denote the graph of g. We can just apply the main
claim to the following definable set:

(y, z) : y ∈ g(D) ∧ ∃(x, y′) ∈ Gg∃(x′, z′) ∈ Gf
(
(x = x′) ∧ (y = y′) ∧ (z = z′)

)
.

2. First, the Minkowski sum of two definable sets A and B is definable:

z : ∃x ∈ A∃y ∈ B(x+ y = z).

Then we can just apply the main claim to the Minkowski sum of the graphs of f and g.

3. Let Gf denote the graph of f . If Gf is definable, then the epigraph is definable:

(x, y) : x ∈ D ∧ ∀(x′, y′) ∈ Gf
(
(x = x′)⇒ (y ≥ y′)

)
.

If the epigraph is definable, then Gf is definable due to the main claim.

4. We can just apply the main claim to the set

(x, r) : ∃y ∈ A
(
‖x− y‖ = r

)
.

The closure of A is just d−1
A (0). The interior of A is the complement of d−1

Ac (0). The
boundary is the difference between the closure and interior.

5. The epigraph of the lower-semicontinuous envelope of f is the closure of the epigraph of f .

As another example, note that the types of networks under discussion are definable.
Lemma B.2. Suppose there exist k, d0, d1, . . . , dL > 0 and L definable functions (g1, . . . , gL) where
gj : Rd0 × · · · × Rdj−1 × Rk → Rdj . Let h1(x,W ) := g1(x,W ), and for 2 ≤ j ≤ L,

hj(x,W ) := gj
(
x, h1(x,W ), . . . , hj−1(x,W ),W

)
,

then all hj are definable. It suffices if each output coordinate of gj is the minimum or maximum over
some finite set of polynomials, which allows for linear, convolutional, ReLU, max-pooling layers and
skip connections.

Proof. The definability of hj can be proved by induction using the fact that definability is preserved
under composition. Next, note that the minimum and maximum of a finite set of polynomials is
definable. Lastly, note that each output coordinate of linear and convolutional layers can be written
as a polynomial of their input and the parameters; each output coordinate of a ReLU layer is the
maximum of two polynomials; each output of a max-pooling layer is a maximum of polynomials.
Skip connections are allowed by the definition of hj .

Below are some useful properties of definable functions.
Proposition B.3 ([Lê Loi, 2010, Exercise 2.7]). Given a definable function f : (a, b) → R where
−∞ ≤ a < b ≤ ∞, it holds that limx→a+ f(x) and limx→b− f(x) exist in R ∪ {−∞,+∞}.

15



Proof. We consider limx→a+ f(x) where a ∈ R; the other cases can be handled similarly. If
limx→a+ f(x) does not exist, then there exists k ∈ R such that lim supx→a+ f(x) > k >
lim infx→a+ f(x). In other words, for any ε > 0, there exists x1, x2 ∈ (a, a+ε) such that f(x1) > k
and f(x2) < k. However, since g := f − k is definable on (a, b), it holds that g−1

(
(−∞, 0)

)
, and

g−1(0), and g−1
(
(0,∞)

)
are all definable, and thus they are all finite unions of open intervals and

points. It then follows that there exists ε0 > 0 such that g = f − k has a constant sign (i.e., > 0, = 0
or < 0) on (a, a+ ε0), which is a contradiction.

Theorem B.4 (Monotonicity Theorem [Van den Dries and Miller, 1996, Theorem 4.1]). Given a
definable function f : (a, b) → R where −∞ ≤ a < b ≤ ∞, there exist a0, . . . , ak, ak+1 with
a = a0 < a1 < . . . < ak < ak+1 = b such that for all 0 ≤ i ≤ k, it holds on (ai, ai+1) that f is C1

and f ′ has a constant sign (i.e., > 0, = 0 or < 0).

Proposition B.3 and Theorem B.4 imply the following result which we need later.

Lemma B.5. Given a C1 definable curve γ : [0,∞) → Rn such that lims→∞ γ(s) exists and is
finite, it holds that the path swept by γ has finite length.

Proof. Let z := lims→∞ γ(s). Since
∥∥z − γ(s)

∥∥ is definable, either it is 0 for all large enough s,
or it is positive for all large enough s. In the first case, since γ is C1, it has finite length. In the
second case, Theorem B.4 implies that there exists an interval [a,∞) on which

∥∥z − γ(s)
∥∥ > 0 and

d
∥∥z − γ(s)

∥∥ / ds < 0, and thus
∥∥γ′(s)∥∥ > 0. Let

lim
s→∞

z − γ(s)∥∥z − γ(s)
∥∥ = u, and lim

s→∞

γ′(s)∥∥γ′(s)∥∥ = v.

The existence of the above limits is guaranteed by Proposition B.3. Note that 〈u, v〉 is equal to

lim
s→∞

〈
z − γ(s)∥∥z − γ(s)

∥∥ , v
〉

= lim
s→∞

∫∞
s

〈
γ′(τ), v

〉
dτ∥∥z − γ(s)
∥∥ = lim

s→∞

∫∞
s

∥∥γ′(τ)
∥∥〈γ′(τ)/

∥∥γ′(τ)
∥∥ , v〉 dτ∥∥z − γ(s)

∥∥ .

Since γ′(s)/
∥∥γ′(s)∥∥→ v, given any ε > 0, for large enough s it holds that

〈
γ′(s)/

∥∥γ′(s)∥∥ , v〉 ≥
1− ε, and thus

〈u, v〉 = lim
s→∞

∫∞
s

∥∥γ′(τ)
∥∥〈γ′(τ)/

∥∥γ′(τ)
∥∥ , v〉 dτ∥∥z − γ(s)

∥∥ ≥ (1− ε) lim
s→∞

∫∞
s

∥∥γ′(τ)
∥∥dτ∥∥z − γ(s)
∥∥ ≥ 1− ε,

which implies that u = v. Since ε > 0 was arbitrary, then

lim
s→∞

∫∞
s

∥∥γ′(τ)
∥∥dτ∥∥z − γ(s)
∥∥ = 1,

which implies that γ has finite length.

The following Curve Selection Lemma is crucial in proving the Kurdyka-Łojasiewicz inequalities.

Lemma B.6 (Curve Selection [Kurdyka, 1998, Proposition 1]). Given a definable set A ∈ Rn and
x ∈ A \ {x}, there exists a definable curve γ : [0, 1] → Rn which is C1 on [0, 1] and satisfies
γ(0) = x and γ

(
(0, 1]

)
⊂ A \ {x}.

We also need the following version at infinity, from [Némethi and Zaharia, 1992, Lemma 2] and
[Kurdyka et al., 2000b, Lemma 3.4].

Lemma B.7 (Curve Selection at Infinity). Given a definable set A ∈ Rn, a definable function
f : A → R, and a sequence xi in A such that limi→∞ ‖xi‖ = ∞ and limi→∞ f(xi) = y, there
exists a positive constant a and a C1 definable curve ρ : [a,∞) → A such that

∥∥ρ(s)
∥∥ = s, and

lims→∞ f
(
ρ(s)

)
= y.
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Proof. For any x ∈ Rn, let x(j) denote the j-th coordinate of x, and consider the definable map
ψ : A→ Rn+2 given by

ψ(x) :=

(
x(1)√

1 + ‖x‖2
, . . . ,

x(n)√
1 + ‖x‖2

,
1√

1 + ‖x‖2
, f(x)

)
.

By construction, the first n + 1 coordinates of ψ(x) are bounded for all x; since furthermore
limi→∞ f(xi) = y with limi→∞ ‖xi‖ → ∞, then ψ has an accumulation point (u, 0, y) for some
‖u‖ = 1, where (u, 0, y) ∈ ψ(A) \ {(u, 0, y)}. We can therefore apply Lemma B.6, obtaining a C1

definable curve γ : [0, 1]→ Rn+2 such that γ(0) = (u, 0, y) and γ
(
(0, 1]

)
⊂ ψ(A).

With this in hand, define a curve ρ0 : [1,∞)→ A as

ρ0(s) := ψ−1

(
γ

(
1

s

))
,

which is C1 definable and satisfies lims→∞
∥∥ρ0(s)

∥∥ =∞ and lims→∞ f
(
ρ0(s)

)
= y. Theorem B.4

implies that d
∥∥ρ0(s)

∥∥ / ds is positive and continuous for all large enough s; to finish the proof, we
may obtain a C1 definable ρ from ρ0 via reparameterization (i.e., composing ρ0 with some other C1

definable function from R to R) so that
∥∥ρ(s)

∥∥ = s on [a,∞) for some a ∈ R.

B.2 Clarke subdifferentials

Here we prove the definability of Clarke subdifferential, and a chain rule along arcs which is crucial
in our analysis.

Here is a standard result on the definability of (Fréchet) derivatives: given a definable function
f : D → R with an open domain D, the set{

(x, x∗)
∣∣ f is Fréchet differentiable at x,∇f(x) = x∗

}
is definable, since it is given by the following first-order formula:
(x, x∗) : x ∈ D ∧

∀ε > 0∃δ > 0∀x′ ∈ D
(
(‖x− x′‖ < δ)⇒ f(x′)− f(x)− 〈x∗, x′ − x〉 < ε‖x− x′‖

)
.

Now consider a locally Lipschitz definable function f : D → R with an open domain D. Local
Lipschitz continuity ensures that Gâteaux and Fréchet differentiability coincide [Borwein and Lewis,
2000, Exercise 6.2.5], and f is differentiable a.e. [Borwein and Lewis, 2000, Theorem 9.1.2]. Recall
that the Clarke subdifferential at x ∈ D is defined as

∂f(x) := conv
{

lim
i→∞

∇f(xi)

∣∣∣∣xi ∈ D,∇f(xi) exists, lim
i→∞

xi = x

}
,

and that ∂̄f(x) denotes the unique minimum-norm subgradient. Similarly to the gradients, the
following result holds for the Clarke subdifferentials.
Lemma B.8. Given a locally Lipschitz definable function f : D → R with an open domain D ⊂ Rn,
the set

Γ :=
{

(x, x∗)
∣∣x ∈ D,x∗ ∈ ∂f(x)

}
is definable. Moreover, the function D 3 x 7→ ∂̄f(x) is definable.

Proof. Let D′ :=
{
x ∈ D

∣∣∇f(x) exists
}

, which is definable. The set A given by

(x, y) : x ∈ D ∧ ∀ε > 0∃x′ ∈ D′
(
‖x− x′‖ < ε

)
∧
(∥∥y −∇f(x′)

∥∥ < ε
)

is also definable. Now by Carathéodory’s Theorem, Γ is given by
(x, x∗) : ∃(x1, x

∗
1), . . . , (xn+1, x

∗
n+1) ∈ A∃λ1, . . . , λn+1 ≥ 0

(x1 = x) ∧ · · · ∧ (xn+1 = x) ∧

n+1∑
i=1

λi = 1

 ∧
n+1∑
i=1

λix
∗
i = x∗

 .

It then follows from Lemma B.1 that x 7→
∥∥∂̄f(x)

∥∥ and x 7→ ∂̄f(x) are definable.
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The following chain rule is important in our analysis; it allows us to use ∂̄f in many places that seem
to call on∇f . It is basically from [Davis et al., 2020, Theorem 5.8 and Lemma 5.2], though we detail
how their proof handles our slight extension.
Lemma B.9. Given a locally Lipschitz definable f : D → R with an open domain D, for any
interval I and any arc z : I → D, it holds for a.e. t ∈ I that

df(zt)

dt
=

〈
z∗t ,

dzt
dt

〉
, for all z∗t ∈ ∂f(zt).

Moreover, for the gradient flow in eq. (1), it holds for a.e. t ≥ 0 that dWt/ dt = −∂̄L(Wt) and
dL(Wt)/ dt = −

∥∥∂̄L(Wt)
∥∥2

.

Proof. The first part is proved in [Davis et al., 2020, Theorem 5.8] when D = Rn and I = [0,∞),
but actually holds in general as verified below. Note that for any t ∈ I excluding the endpoints, since
f is locally Lipschitz, there exists a neighborhood U of z(t) on which f is K-Lipschitz continuous.
Let g denote the infimal convolution of f |U and K‖ · ‖. It follows that g is definable (Lemma B.1)
and K-Lipschitz continuous on Rn, and f = g on U [Borwein and Lewis, 2000, Exercise 7.1.2].
Take an interval [a, b] 3 t with rational endpoints such that z

(
[a, b]

)
⊂ U , and define the absolutely

continuous curve z̃ : [0,∞)→ D as z̃(t) = z(a+ t) for t ∈ [0, b−a], and z̃(t) = z(b) for t > b−a.
Applying [Davis et al., 2020, Theorem 5.8] to g and z̃ gives that the chain rule holds for f and z a.e.
on [a, b]. Since this holds for any t ∈ I , and there are only countably many intervals with rational
endpoints, it follows that the chain rule holds a.e. for f and z on I . The second claim of Lemma B.9
can be proved in the same way as [Davis et al., 2020, Lemma 5.2].

B.3 Kurdyka-Łojasiewicz inequalities

Asymptotic Clarke critical values. To prove the Kurdyka-Łojasiewicz inequalities, we need the
notion of asymptotic Clarke critical values, introduced in [Bolte et al., 2007]. Given a locally Lipschitz
function f : D → R with an open domain D, we say that a ∈ R ∪ {+∞,−∞} is an asymptotic
Clarke critical value of f if there exists a sequence (xi, x

∗
i ) where xi ∈ D and x∗i ∈ ∂f(xi), such

that limi→∞(1 + ‖xi‖)‖x∗i ‖ = 0 and limi→∞ f(xi) = a.

We have the following result regarding the asymptotic Clarke critical values of a definable function,
which is basically from [Bolte et al., 2007, Corollary 9].
Lemma B.10. Given a locally Lipschitz definable function f : D → R with an open domain D, it
holds that f has finitely many asymptotic Clarke critical values.

To state the proof in a bit more detail, [Bolte et al., 2007, Corollary 9] shows that if f is lower
semi-continuous and f > −∞, then f has finitely many asymptotic Clarke critical values. To get
Lemma B.10, we just need to apply [Bolte et al., 2007, Corollary 9] to the lower semi-continuous
envelopes of f |f−1((0,∞)) and −f |f−1((−∞,0)).

The bounded setting. Here we consider the case where the domain of f is bounded. [Kurdyka,
1998, Theorem 1] gives a Kurdyka-Łojasiewicz inequality assuming f is differentiable; below we
extend it to the locally Lipschitz setting.
Lemma B.11. Given a locally Lipschitz definable function f : D → R with an open bounded domain
D, there exists ν > 0 and a definable desingularizing function Ψ on [0, ν) such that

Ψ′
(
f(x)

)∥∥∂̄f(x)
∥∥ ≥ 1

for any x ∈ f−1
(
(0, ν)

)
.

Proof. Since f is definable, f(D) is also definable, and thus is a finite union of open intervals and
points. It follows that either there exists ε > 0 such that (0, ε) ∩ f(D) = ∅, in which case the claim
trivially holds; otherwise we are free to choose ε > 0 such that (0, ε) ⊂ f(D). In the second case,
define φ : (0, ε)→ R as

φ(z) := inf
{∥∥∂̄f(x)

∥∥∣∣∣ f(x) = z
}
.
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By Lemmas B.1 and B.8, φ is definable. Lemma B.10 implies that there are only finitely many
asymptotic Clarke critical values on (0, ε), and thus there exists ε′ ∈ (0, ε) such that on (0, ε′) there
is no asymptotic Clarke critical value and φ(z) > 0.

Now consider the definable set

A :=
{
x ∈ f−1

(
(0, ε′)

)∣∣∣∥∥∂̄f(x)
∥∥ ≤ 2φ

(
f(x)

)}
.

It follows that there exists a sequence xi in A such that f(xi)→ 0. Since the domain of f is bounded,
xi has an accumulation point y. Applying Lemma B.6 to the graph of f |A, we have that there exists
a C1 definable curve (ρ, h) : [0, 1]→ Rn+1 such that ρ(0) = y, and h(0) = 0, and ρ

(
(0, 1]

)
⊂ A,

and h(s) = f
(
ρ(s)

)
on (0, 1].

1. Since ρ is C1 on [0, 1], there exists B > 0 such that
∥∥ρ′(s)∥∥ ≤ B on [0, 1].

2. Since h is definable, h(0) = 0, and h(s) > 0 on (0, 1], Theorem B.4 implies that there
exists a constant ω ∈ (0, 1] such that h′(s) > 0 on (0, ω).

3. Lemma B.9 implies that for a.e. s ∈ (0, ω),

h′(s)−
〈
∂̄f
(
ρ(s)

)
, ρ′(s)

〉
= 0. (6)

Since the left hand side of eq. (6) is definable, it can actually be nonzero only for finitely
many s, and thus is equal to 0 on some interval (0, µ) where µ ≤ ω.

4. Let ν = h(µ), the Inverse Function Theorem implies that Ψ : (0, ν)→ (0, 2Bµ) given by
Ψ(z) := 2Bh−1(z) is also C1 definable with a positive derivative, and limz→0 Ψ(z) = 0.

Now for any x ∈ f−1
(
(0, ν)

)
, let s = h−1

(
f(x)

)
, we have

Ψ′
(
f(x)

)∥∥∂̄f(x)
∥∥ =

2B

h′ (s)

∥∥∂̄f(x)
∥∥ (Inverse Function Theorem)

≥ 2B

h′ (s)
· 1

2

∥∥∥∂̄f (ρ(s)
)∥∥∥ (Definition of A)

=
B
∥∥∥∂̄f (ρ(s)

)∥∥∥〈
∂̄f
(
ρ(s)

)
, ρ′(s)

〉 ≥ 1. (Bullet 3 above & Cauchy-Schwarz)

The unbounded setting. The unbounded setting is more complicated: to show directional conver-
gence, we need two Kurdyka-Łojasiewicz inequalities (cf. Lemmas 3.5 and 3.6), depending on the
relationship between the spherical and radial parts of ∂̄f .

Given a locally Lipschitz definable function f : D → R with an open domain D ⊂
{
x
∣∣ ‖x‖ > 1

}
,

recall that ∂̄rf(x) and ∂̄⊥f(x) denote the radial part and spherical part of ∂̄f(x) respectively, which
are both definable. Given ε, c, η > 0, let

Uε,c,η :=
{
x ∈ D

∣∣∣ f(x) ∈ (0, ε),
∥∥∂̄⊥f(x)

∥∥ ≥ c‖x‖η∥∥∂̄rf(x)
∥∥} .

In any o-minimal structure, Uε,c,η is definable if η is rational. Now we prove Lemma 3.5, a Kurdyka-
Łojasiewicz inequality on some Uν,c,η , using ideas from [Kurdyka et al., 2006, Proposition 6.3].

Proof of Lemma 3.5. Similarly to the proof of Lemma B.11, we only need to consider the case where
there exists ε > 0 such that (0, ε) ⊂ f(D). Without loss of generality, we can assume η is rational,
since otherwise we can consider any rational η′ ∈ (0, η). Therefore Uε,c,η is definable, and so is
f(Uε,c,η). If there exists ε′ > 0 such that f(Uε,c,η) ∩ (0, ε′) = ∅, then Lemma 3.5 trivially holds;
therefore we assume that there exists ε′ > 0 such that f(Uε′,c,η) = (0, ε′). By Lemma B.10, we
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can also make ε′ small enough so that there is no asymptotic Clarke critical value on (0, ε′). Define
φ : (0, ε′)→ R as

φ(z) := inf
{
‖x‖
∥∥∂̄f(x)

∥∥∣∣∣x ∈ Uε′,c,η, f(x) = z
}
.

Since there is no asymptotic Clarke critical value on (0, ε′), it holds that φ(z) > 0.

Consider the definable set

A :=
{
x ∈ Uε′,c,η

∣∣∣ ‖x‖∥∥∂̄f(x)
∥∥ ≤ 2φ

(
f(x)

)}
.

Since f(Uε′,c,η) = (0, ε′) as above, there exists a sequence xi in A such that f(xi) → 0. If the xi
are bounded, then the claim follows from the proof of Lemma B.11 and D ⊂

{
x
∣∣ ‖x‖ > 1

}
. If the

xi are unbounded, then without loss of generality (e.g., by taking a subsequence) we can assume
‖xi‖ → ∞. Lemma B.7 asserts that there exists a C1 definable curve ρ : [a,∞) → A such that∥∥ρ(s)

∥∥ = s and lims→∞ f
(
ρ(s)

)
= 0. Let h(s) := f

(
ρ(s)

)
, and ρ′r(s) :=

〈
ρ′(s), ρ(s)

〉
ρ(s)/s2

denote the radial part of ρ′(s), and ρ′⊥(s) := ρ′(s)− ρ′r(s) denote the spherical part of ρ′(s).

1. Theorem B.4 implies that h′ is negative and continuous on some interval [ω,∞).

2. As in the proof of Lemma B.11, it follows from Lemma B.9 that there exists µ ≥ ω, such
that

h′(s)−
〈
∂̄f
(
ρ(s)

)
, ρ′(s)

〉
= 0

for all s ∈ [µ,∞).

3. Note that for all s ∈ [µ,∞),∣∣h′(s)∣∣ =

∣∣∣∣〈∂̄f (ρ(s)
)
, ρ′(s)

〉∣∣∣∣ =

∣∣∣∣〈∂̄rf (ρ(s)
)
, ρ′r(s)

〉
+
〈
∂̄⊥f

(
ρ(s)

)
, ρ′⊥(s)

〉∣∣∣∣
≤
∥∥∥∂̄rf (ρ(s)

)∥∥∥+
∥∥∥∂̄⊥f (ρ(s)

)∥∥∥∥∥ρ′⊥(s)
∥∥

≤
(

1

csη
+
∥∥ρ′⊥(s)

∥∥)∥∥∥∂̄⊥f (ρ(s)
)∥∥∥

since
∥∥ρ′r(s)∥∥ = 1 and ρ([a,∞)) ⊂ Uε′,c,η . Let ρ̃(s) := ρ(s)/s, we have

dρ̃(s)

ds
=
ρ′⊥(s)

s
.

Since ρ̃(s) is a C1 definable curve on the unit sphere, Proposition B.3 and Lemma B.5 imply
that
∥∥ρ′⊥(s)

∥∥ /s is integrable on [µ,∞). Therefore∣∣h′(s)∣∣ ≤ −g′(s) · s∥∥∥∂̄⊥f (ρ(s)
)∥∥∥ ,

where

g(s) :=

∫ ∞
s

(
1

cτ1+η
+

∥∥ρ′⊥(τ)
∥∥

τ

)
dτ.

Let ν = h(µ), and define Ψ : (0, ν)→ R as

Ψ(z) := 2g
(
h−1(z)

)
.

It holds that limz→0 Ψ(z) = 0. Moreover, for any x ∈ Uν,c,η , let s = h−1
(
f(x)

)
, we have

Ψ′
(
f(x)

)
‖x‖
∥∥∂̄f(x)

∥∥ =
2g′(s)

h′(s)
‖x‖
∥∥∂̄f(x)

∥∥ ≥ 2g′(s)

h′(s)
· 1

2
s
∥∥∥∂̄f (ρ(s)

)∥∥∥ ≥ 1.
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Below we prove Lemma 3.6, a Kurdyka-Łojasiewicz inequality which is useful outside of Uν,c,η .

Proof of Lemma 3.6. We first assume that λ is rational, and later finish by handling the real case with
a quick reduction. Consider the definable mapping ξλ : Rn \ {0} → Rn \ {0} given by

ξλ(x) :=
x

‖x‖1+λ
.

Note that ξ−1
λ = ξ1/λ. If y = ξλ(x), then x = ξ1/λ(y), which has the Jacobian

∂(x1, . . . , xn)

∂(y1, . . . , yn)
=

∂ξ1/λ(y)

∂(y1, . . . , yn)

= ‖y‖−(1+λ)/λ

(
I − 1 + λ

λ

y

‖y‖
yT

‖y‖

)
= ‖x‖1+λ

(
I − 1 + λ

λ

x

‖x‖
xT

‖x‖

)
. (7)

Define g : ξλ(D)→ R as

g(y) := f
(
ξ−1
λ (y)

)
.

Note that g is locally Lipschitz and definable with an open bounded domain. Therefore Lemma B.11
implies that there exists ν > 0 and a definable desingularizing function Ψ on [0, ν) such that

Ψ′
(
g(y)

)∥∥∂̄g(y)
∥∥ ≥ 1

for any y ∈ g−1
(
(0, ν)

)
. Let x = ξ−1

λ (y), it holds that g is differentiable at y if and only if f is
differentiable at x, and by the definition of Clarke subdifferential,

y∗ :=

(
∂(x1, . . . , xn)

∂(y1, . . . , yn)

)T

∂̄f(x) ∈ ∂g(y).

Therefore eq. (7) implies that∥∥∂̄g(y)
∥∥ ≤ ‖y∗‖ = ‖x‖1+λ

∥∥∥∥∂̄⊥f(x)− 1

λ
∂̄rf(x)

∥∥∥∥ ≤ max

{
1,

1

λ

}
‖x‖1+λ

∥∥∂̄f(x)
∥∥ ,

and thus

max

{
1,

1

λ

}
Ψ′
(
f(x)

)
‖x‖1+λ

∥∥∂̄f(x)
∥∥ ≥ 1,

which finishes the proof for rational λ. To handle real λ > 0, we can apply the above result to any
rational λ′ ∈ (λ/2, λ).

C Omitted proofs from Section 3

We first give a generalization of Euler’s homogeneous function theorem, which can also be found in
[Lyu and Li, 2019, Theorem B.2], but with an additional requirement of a chain rule.
Lemma C.1. Suppose f : Rn → R is locally Lipschitz and L-positively homogeneous for some
L > 0, then for any x ∈ Rn and any x∗ ∈ ∂f(x),

〈x, x∗〉 = Lf(x).

Proof. Let D′ denote the set of x where f is differentiable. For any nonzero x ∈ D′, it holds that

lim
δ↓0

f(x+ δx)− f(x)−
〈
∇f(x), δx

〉
δ‖x‖

= 0.

Since f is L-positively homogeneous, f(x+ δx) = (1 + δ)Lf(x), and thus

lim
δ↓0

(
(1 + δ)L − 1

)
f(x)−

〈
∇f(x), δx

〉
δ‖x‖

= 0,
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which implies
〈
x,∇f(x)

〉
= Lf(x). This property trivially holds if 0 ∈ D′.

Now consider an arbitrary x ∈ Rn. For any sequence xi in D′ such that limi→∞ xi = x and
limi→∞∇f(xi) = x∗, it holds that

〈x, x∗〉 = lim
i→∞

〈
xi,∇f(xi)

〉
= lim
i→∞

Lf(xi) = Lf(x).

Since ∂f(x) consists of convex combinations of such x∗, Lemma C.1 holds.

Next we prove a few technical lemmas. Recall the definitions of unnormalized and normalized
smoothed margin: given W 6= 0, let

α(W ) := `−1
(
L(W )

)
, and α̃(W ) :=

α(W )

‖W‖L
.

Additionally, given any function f which is locally Lipschitz around a nonzero W , let

∂̄rf(W ) :=
〈
∂̄f(W ), W̃

〉
W̃ and ∂̄⊥f(W ) := ∂̄f(W )− ∂̄rf(W )

denote the radial and spherical parts of ∂̄f(W ) respectively.

We first characterize the Clarke subdifferentials of α, the unnormalized smoothed margin.

Lemma C.2. It holds for any W ∈ Rk that

∂̄α(W ) =
∂̄L(W )

`′
(
α(W )

) , and β(W ) :=
〈W, ∂̄α(W )〉

L
=
〈W,W ∗〉

L
for any W ∗ ∈ ∂α(W ).

Proof. Note that L is differentiable at W if and only if α is differentiable at W , and when both
gradients exist, the chain rule and inverse function theorem together imply that

∇α(W ) =
∇L(W )

`′
(
`−1

(
L(W )

)) =
∇L(W )

`′
(
α(W )

) ,
whereby the first claim follows from the definition of Clarke subdifferential. To prove the second
claim, the chain rule for Clarke subdifferentials [Clarke, 1983, Theorem 2.3.9] implies that

∂α(W ) ⊂ conv

 n∑
i=1

`′
(
pi(W )

)
`′
(
α(W )

) ∂pi(W )

 ,

and thus Lemma C.1 ensures for any W ∗ ∈ ∂α(W ),

〈W,W ∗〉
L

=

n∑
i=1

`′
(
pi(W )

)
`′
(
α(W )

) pi(W ) = β(W ),

which finishes the proof.

Next we note that the Clarke subdifferentials of α and α̃ are strongly related.

Lemma C.3. For any nonzero W ∈ Rk, we have

∂̄rα̃(W ) = L
β(W )− α(W )

‖W‖L+1
W̃ , and ∂̄⊥α̃(W ) =

∂̄⊥α(W )

‖W‖L
.

Proof. Note that given W 6= 0, α is differentiable at W if and only if α̃ is differentiable at W , and
when both gradients exist,

∇α̃(W ) =
∇α(W )

‖W‖L
− α(W ) · L‖W‖L−1W̃

‖W‖2L
=
∇α(W )

‖W‖L
− Lα(W )W̃

‖W‖L+1
.
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By the definition of Clarke subdifferential, for any nonzero W ,

∂α̃(W ) =

{
W ∗

‖W‖L
− Lα(W )W̃

‖W‖L+1

∣∣∣∣∣W ∗ ∈ ∂α(W )

}
. (8)

The first claim of Lemma C.3 holds since for any W ∈ ∂α(W ), by Lemma C.2,〈
W ∗

‖W‖L
− Lα(W )W̃

‖W‖L+1
, W̃

〉
= L

β(W )

‖W‖L+1
− L α(W )

‖W‖L+1
.

To prove the second claim, note that since ∂α(W ) and ∂α̃(W ) have fixed radial parts, the norms of
the whole subgradients are minimized if and only if the norms of their spherical parts are minimized.
Due to eq. (8), the norms of the spherical parts of ∂α(W ) and ∂α̃(W ) are minimized simultaneously,
and the second claim follows.

The last technical result we need is that α and β are close.
Lemma C.4. For ` ∈ {`exp, `log} and any W satisfying L(W ) < `(0), it holds that

0 < α(W ) ≤ β(W ) ≤ α(W ) + 2 ln(n) + 1.

To prove Lemma C.4, we need the following result on `exp and `log. Define σ : R+ → R by

σ(z) := `′
(
`−1(z)

)
`−1(z), (9)

and π : Rn → R by

π(v) := `−1

 n∑
i=1

`(vi)

 . (10)

Note that α(W ) = π
(
p(W )

)
where p(W ) =

(
p1(W ), . . . , pn(W )

)
.

Lemma C.5. For ` ∈ {`exp, `log}, it holds that σ is super-additive on
(
0, `(0)

)
, meaning that

σ(z1 + z2) ≥ σ(z1) + σ(z2) for any z1, z2 > 0 such that z1 + z2 < `(0). Moreover π is concave.

Proof. For `exp(z) = e−z , we have σ(z) = z ln(z), while for `log(z) = ln(1 + e−z), we have
σ(z) = (1− e−z) ln(ez − 1). In both cases limz→0 σ(z) = 0, and σ is convex on

(
0, `(0)

)
, which

implies super-additivity.

Turning to concavity of π, in the case of `exp, it is a standard fact in convex analysis that the function
π(v) = − ln

∑n
i=1 exp(−vi) is concave [Borwein and Lewis, 2000, Exercise 3.3.7]. For `log, note

that
∂π

∂vi
=

`′(vi)

`′
(
`−1

(∑n
i=1 `(vi)

)) =
`′(vi)

exp
(
−S(v)

)
− 1

,

where S(v) :=
∑n
i=1 `(vi), and

∇2π(v) =
1

exp
(
−S(v)

)
− 1

diag
(
`′′(v1), . . . , `′′(vn)

)
+

exp
(
−S(v)

)(
exp

(
−S(v)

)
− 1
)2∇S(v)∇S(v)T.

We want to show that∇2π(v) � 0, or equivalently(
exp

(
S(v)

)
− 1
)

diag
(
`′′(v1), . . . , `′′(vn)

)
−∇S(v)∇S(v)T � 0.

By definition, we need to show that for any z ∈ Rn,

(
exp

(
S(v)

)
− 1
) n∑
i=1

`′′(vi)z
2
i ≥

 n∑
i=1

`′(vi)zi

2

.
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Note that for a, b > 0, we have ea+b − 1 > (ea − 1) + (eb − 1), which implies

exp
(
S(v)

)
− 1 >

n∑
i=1

(
exp

(
`(vi)

)
− 1
)

=

n∑
i=1

e−vi .

Also note that e−vi`′′(vi) = `′(vi)
2, and thus

(
exp

(
S(v)

)
− 1
) n∑
i=1

`′′(vi)z
2
i ≥

n∑
i=1

e−vi
n∑
i=1

`′′(vi)z
2
i ≥

 n∑
i=1

`′(vi)zi

2

.

Using Lemma C.5, we can prove Lemma C.4.

Proof of Lemma C.4. For simplicity, let p :=
(
p1(W ), . . . , pn(W )

)
. Recall that α(W ) = π(p), and

from the proof of Lemma C.2 we know that

β(W ) =

n∑
i=1

`′
(
pi(W )

)
`′
(
`−1

(
L(W )

))pi(W ) =
〈
∇π(p), p

〉
.

By the super-additivity of the function σ defined in eq. (9), we know that

n∑
i=1

`′
(
pi(W )

)
pi(W ) =

n∑
i=1

`′
(
`−1

(
`(pi(W ))

))
`−1

(
`(pi(W ))

)
≤ `′

(
`−1

(
L(W )

))
`−1

(
L(W )

)
= `′

(
`−1

(
L(W )

))
α(W ),

and since `′ < 0, we have β(W ) ≥ α(W ).

On the other claim, for `exp, since π is concave,

β(W ) =
〈
∇π(p), p

〉
=
〈
∇π(p), p− 0

〉
≤ π(p)− π(0) = α(W ) + ln(n).

For `log, note that on the interval
(
0, `(0)

)
, the function h(z) := `′

(
`−1(z)

)
= e−z − 1 is convex

with limz→0 h(z) = 0 and h′(z) ∈ (−1,−1/2), and thus

∥∥π(p)
∥∥

1
=

n∑
i=1

`′
(
pi(W )

)
`′
(
`−1

(
L(W )

)) ≤ 2.

Let c = − ln
(

exp
(
ln(2)/n

)
− 1
)
≤ ln(n) − ln ln(2) and ~1 denote the all-ones vector, we have

π
(
c~1
)

= 0, and

β(W ) =
〈
∇π(p), p

〉
=
〈
∇π(p), p− c~1

〉
+
〈
∇π(p), c~1

〉
≤ π(p)− π

(
c~1
)

+ c
∥∥π(p)

∥∥
1

= α(W ) + c
∥∥π(p)

∥∥
1

≤ α(W ) + 2 ln(n)− 2 ln ln(2) ≤ α(W ) + 2 ln(n) + 1.

Now we can prove Lemma 3.4.
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Proof of Lemma 3.4. Lemma B.9 implies that for a.e. t ≥ 0,

dWt

dt
= −∂̄L(Wt).

First note that Assumption 2.2 implies that ‖W0‖ > 0, and moreover Lyu and Li [2019, Lemma 5.1]
proved that d‖Wt‖/ dt > 0 for a.e. t ≥ 0, and thus ‖Wt‖ is increasing and ‖Wt‖ ≥ ‖W0‖ > 0.

Now we have for a.e. t ≥ 0,

dα̃(Wt)

dt
=
〈
∂̄α̃(Wt),−∂̄L(Wt)

〉
=
〈
∂̄rα̃(Wt),−∂̄rL(Wt)

〉
+
〈
∂̄⊥α̃(Wt),−∂̄⊥L(Wt)

〉
.

By Lemmas C.2 to C.4, both
〈
∂̄rα̃(Wt), W̃t

〉
and

〈
−∂̄rL(Wt), W̃t

〉
are nonnegative, and thus〈

∂̄rα̃(Wt),−∂̄rL(Wt)
〉

=
∥∥∂̄rα̃(Wt)

∥∥∥∥∂̄rL(Wt)
∥∥ .

Lemmas C.2 and C.3 also imply that ∂̄⊥α̃(Wt) and −∂̄⊥L(Wt) point to the same direction, and thus〈
∂̄⊥α̃(Wt),−∂̄⊥L(Wt)

〉
=
∥∥∂̄⊥α̃(Wt)

∥∥∥∥∂̄⊥L(Wt)
∥∥ .

Now consider W̃t and ζt. Since Wt is an arc, and ‖Wt‖ ≥ ‖W0‖ > 0, it follows that W̃t is also an
arc. Moreover, for a.e. t ≥ 0,

dW̃t

dt
=

1

‖Wt‖
dWt

dt
− 1

‖Wt‖
W̃t

〈
dWt

dt
, W̃t

〉
=
−∂̄⊥L(Wt)

‖Wt‖
.

Since W̃t is an arc, dW̃t/ dt and
∥∥∥dW̃t/dt

∥∥∥ are both integrable, and by definition of the curve length,

ζt =

∫ t

0

∥∥∥∥∥dW̃t

dt

∥∥∥∥∥dt,

and for a.e. t ≥ 0 we have

dζt
dt

=

∥∥∥∥∥dW̃t

dt

∥∥∥∥∥ =

∥∥∂̄⊥L(Wt)
∥∥

‖Wt‖
.

Finally we prove the core Lemma 3.3, which directly implies Theorem 3.1.

Proof of Lemma 3.3. Recall that α̃t denotes α̃(Wt), and a = limt→∞ α̃t.

First note that if α̃t0 = a for some finite t0, then dα̃t/ dt = 0 for a.e. t ≥ 0. Lemma 3.4 then implies
for a.e. t ≥ 0 that

∥∥∂̄⊥L(Wt)
∥∥ = 0 and dζt/dt = 0, and then Lemma 3.3 trivially holds. Below we

assume α̃t < a for all finite t ≥ 0, and fix an arbitrary κ ∈ (L/2, L). We consider two cases.

1. Lemma 3.5 implies that there exists ν1 > 0 and a definable desingularizing function Ψ1 on
[0, ν1), such that if W satisfies ‖W‖ > 1, and α̃(W ) > a− ν1, and∥∥∂̄⊥α̃(W )

∥∥ ≥ α̃0

2 ln(n) + 1
‖W‖L−κ

∥∥∂̄rα̃(W )
∥∥ , (11)

then

Ψ′1
(
a− α̃(W )

)
‖W‖

∥∥∂̄α̃(W )
∥∥ ≥ 1. (12)

Now consider t large enough such that ‖Wt‖ > 1, and α̃t > a − ν1, and
α̃0‖Wt‖L−κ/(2 ln(n) + 1) ≥ 1, and moreover assume eq. (11) holds for Wt. We have∥∥∂̄⊥α̃(Wt)

∥∥ ≥∥∥∂̄rα̃(Wt)
∥∥ , and thus

∥∥∂̄⊥α̃(Wt)
∥∥ ≥ 1

2

∥∥∂̄α̃(Wt)
∥∥ .
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Therefore Lemma 3.4 implies

dα̃t
dt
≥
∥∥∂̄⊥α̃(Wt)

∥∥∥∥∂̄⊥L(Wt)
∥∥

= ‖Wt‖
∥∥∂̄⊥α̃(Wt)

∥∥ dζt
dt

≥ 1

2
‖Wt‖

∥∥∂̄α̃(Wt)
∥∥ dζt

dt
. (13)

Consequently, eqs. (12) and (13) imply that

dα̃t
dt
≥ 1

2Ψ′1 (a− α̃t)
dζt
dt
.

2. On the other hand, Lemma 3.6 implies that there exists ν2 > 0 and a definable desingulariz-
ing function Ψ2 on [0, ν2), such that if ‖W‖ > 1, and α̃(W ) > a− ν2, then

max

{
1,

2

2κ− L

}
Ψ′2
(
a− α̃(W )

)
‖W‖2κ−L+1

∥∥∂̄α̃(W )
∥∥ ≥ 1. (14)

Now consider t large enough such that ‖Wt‖ > 1, and α̃t > a − ν2, and
α̃0‖Wt‖L−κ/(2 ln(n) + 1) ≥ 1, and moreover∥∥∂̄⊥α̃(Wt)

∥∥ ≤ α̃0

2 ln(n) + 1
‖Wt‖L−κ

∥∥∂̄rα̃(Wt)
∥∥ . (15)

Note that eq. (15) is the opposite to eq. (11). Lemmas C.2 and C.4 implies that∥∥∂̄rα(Wt)
∥∥ =

Lβ(Wt)

‖Wt‖
≥ Lα(Wt)

‖Wt‖
= Lα̃t‖Wt‖L−1 ≥ Lα̃0‖Wt‖L−1, (16)

while Lemma C.3 implies that∥∥∂̄rα̃(Wt)
∥∥ = L

β(Wt)− α(Wt)

‖Wt‖L+1
≤ L(2 ln(n) + 1)

‖Wt‖L+1
,

and thus ∥∥∂̄rα(Wt)
∥∥ ≥ α̃0

2 ln(n) + 1
‖Wt‖2L

∥∥∂̄rα̃(Wt)
∥∥ . (17)

On the other hand, ∂̄⊥α(Wt) = ‖Wt‖L∂̄⊥α̃(Wt) by Lemma C.3, which implies the follow-
ing in light of eqs. (15) and (17):∥∥∂̄rα(Wt)

∥∥ ≥ α̃0

2 ln(n) + 1
‖Wt‖2L

∥∥∂̄rα̃(Wt)
∥∥

≥ ‖Wt‖L+κ
∥∥∂̄⊥α̃(Wt)

∥∥
= ‖Wt‖κ

∥∥∂̄⊥α(Wt)
∥∥ .

By Lemma C.2, ∂̄α(Wt) is parallel to ∂̄L(Wt), therefore∥∥∂̄rL(Wt)
∥∥ ≥ ‖Wt‖κ

∥∥∂̄⊥L(Wt)
∥∥ . (18)

Moreover, if α̃0‖Wt‖L−κ/(2 ln(n) + 1) ≥ 1, then the triangle inequality implies∥∥∂̄α̃(Wt)
∥∥ ≤∥∥∂̄⊥α̃(Wt)

∥∥+
∥∥∂̄rα̃(Wt)

∥∥ ≤ 2α̃0

2 ln(n) + 1
‖Wt‖L−κ

∥∥∂̄rα̃(Wt)
∥∥ ,

or ∥∥∂̄rα̃(Wt)
∥∥ ≥ 2 ln(n) + 1

2α̃0
‖Wt‖κ−L

∥∥∂̄α̃(Wt)
∥∥ . (19)
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Now Lemma 3.4 and eqs. (18) and (19) imply

dα̃t
dt
≥
∥∥∂̄rα̃(Wt)

∥∥∥∥∂̄rL(Wt)
∥∥

≥ 2 ln(n) + 1

2α̃0
‖Wt‖2κ−L

∥∥∂̄α̃(Wt)
∥∥∥∥∂̄⊥L(Wt)

∥∥
=

2 ln(n) + 1

2α̃0
‖Wt‖2κ−L+1

∥∥∂̄α̃(Wt)
∥∥ dζt

dt
.

Then eq. (14) further implies

dα̃t
dt
≥ 2 ln(n) + 1

2α̃0 max{1, 2/(2κ− L)}
1

Ψ′2 (a− α̃t)
dζt
dt
.

Since Ψ′1 − Ψ′2 is definable, it is nonnegative or nonpositive on some interval (0, ν). Let Ψ′ =
max{Ψ′1,Ψ′2} on (0, ν). Now for a.e. large enough t such that ‖Wt‖ > 1, and α̃t > a − ν, and
α̃0‖Wt‖L−κ/(2 ln(n) + 1) ≥ 1, it holds that

dα̃t
dt
≥ 1

cΨ′ (a− α̃t)
dζt
dt

for some constant c > 0. Lemma 3.3 then follows.

D Omitted proofs from Section 4

We first give the following technical result.
Lemma D.1. Suppose f : Rn → R is L-positively homogeneous for some L > 0 and has a locally
Lipschitz gradient at all nonzero x ∈ Rn. Then∇f is (L− 1)-positively homogeneous: given any
nonzero x and c > 0, it holds that

∇f(cx) = cL−1∇f(x).

If∇f is differentiable at a nonzero x, then for any c > 0, it holds that

∇2f(cx) = cL−2∇2f(x).

Moreover, there exists Kσ > 0 such that for any ‖x‖ = 1, if ∇2f(x) exists, then
∥∥∇2f(x)

∥∥
σ
≤ Kσ .

Proof. By definition,

lim
‖y‖↓0

f(x+ y)− f(x)−
〈
∇f(x), y

〉
‖y‖

= 0.

On the other hand, by homogeneity,

f(cx+ z)− f(cx)−
〈
cL−1∇f(x), z

〉
= cL

(
f

(
x+

z

c

)
− f(x)−

〈
∇f(x),

z

c

〉)
.

Therefore

lim
‖z‖↓0

f(cx+ z)− f(cx)−
〈
cL−1∇f(x), z

〉
‖z‖

= cL−1 lim
‖z‖↓0

f
(
x+ z

c

)
− f(x)−

〈
∇f(x), zc

〉
‖z/c‖

= 0,

which proves the claim. The homogeneity of∇2f when it exists can be proved in the same way.

To get Kσ, note that for any ‖x‖ = 1, there exists an open neighborhood Ux of x on which ∇f is
Kx-Lipschitz continuous, and thus the spectral norm of ∇2f is bounded by Kx when it exists. All
the Ux form an open cover of the compact unit sphere, and thus has a finite subcover, which implies
the claim.

Below we estimate various quantities using Lemma D.1.
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Lemma D.2. Suppose ` ∈ {`exp, `log}, all pi are L-positively homogeneous for some L > 0, and
all ∇pi are locally Lipschitz. For any W such that L(W ) < `(0), it holds that β(W )/‖W‖L and∥∥∇α(W )

∥∥ /‖W‖L−1 are bounded.

Proof. Since pi(W ) is continuous, it is bounded on the unit sphere. Because it is L-positively
homogeneous, pi(W )/‖W‖L is bounded on Rk. Lemma C.4 implies that β(W )− 2 ln(n)− 1 ≤
α(W ) ≤ min1≤i≤n pi(W ), and it follows that β(W )/‖W‖L is bounded.

Recall that

∇α(W ) =

n∑
i=1

∂π

∂pi
∇pi(W ),

where π is defined in eq. (10) and all partial derivatives are evaluated at p(W ) :=
(p1(W ), . . . , pn(W )). It is shown in the proof of Lemma C.4 that

∥∥π(p)
∥∥

1
≤ 2. Moreover,

Lemma D.1 implies that all
∥∥∇pi(W )

∥∥ /‖W‖L−1 are bounded. Consequently,
∥∥∇α(W )

∥∥ /‖W‖L−1

is bounded.

Recall the definition of J :

J (W ) :=

∥∥∇α(W )
∥∥2

‖W‖2L−2
.

If all ∇pi are locally Lipschitz, then J is also locally Lipschitz. We further have the following result.

Lemma D.3. Under the same conditions as Lemma D.2, for any W satisfying L(W ) < `(0) and
any W ∗ ∈ ∂J (W ), 〈

W ∗,−∇L(W )
〉
≤ −K`′

(
α(W )

)
‖W‖L−2 sin(θ)2

for some constant K > 0, where θ denotes the angle between W and −∇L(W ).

Proof. Let D′ denote the set of W where all ∇pi are differentiable, and let S0 denote the set of W
where L(W ) < `(0). We only need to prove the lemma on D′ ∩ S0, since for any W ∈ S0 it follows
from [Clarke, 1983, Theorem 2.5.1] that

∂J (W ) = conv
{

lim∇J (Wi)
∣∣Wi →W,Wi ∈ D′ ∩ S0

}
.

Below we fix an arbitrary W ∈ D′ ∩ S0. All the partial derivatives below with respect to pi are
evaluated at p(W ) := (p1(W ), . . . , pn(W )). Recall that

∇α(W ) =

n∑
i=1

∂π

∂pi
∇pi(W ),

where π is defined in eq. (10). Since∇pi are also differentiable at W , we have

∇2α(W ) =

n∑
i=1

n∑
j=1

(
∂2π

∂pi∂pj
∇pi(W )∇pj(W )T

)
+

n∑
i=1

∂π

∂pi
∇2pi(W ). (20)

Now for any W ∈ D′ ∩ S0, we have (recall that W̃ = W/‖W‖)

∇J (W ) =
2∇2α(W )∇α(W )

‖W‖2L−2
−
∥∥∇α(W )

∥∥2

‖W‖4L−4
· (2L− 2)‖W‖2L−3W̃

=
2∇2α(W )∇α(W )

‖W‖2L−2
−

(2L− 2)
∥∥∇α(W )

∥∥2

‖W‖2L
W,
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and thus
‖W‖2L

2

〈
∇J (W ),−∇L(W )

〉
−`′

(
α(W )

)
=
‖W‖2L

2

〈
∇J (W ),∇α(W )

〉
= ‖W‖2∇α(W )T∇2α(W )∇α(W )− (L− 1)

∥∥∇α(W )
∥∥2 〈

W,∇α(W )
〉
. (21)

Comparing eqs. (20) and (21), first note that
n∑
i=1

n∑
j=1

∂2π

∂pi∂pj
∇α(W )T∇pi(W )∇pj(W )T∇α(W ) ≤ 0,

since π is concave by Lemma C.5, and moreover〈
W,∇α(W )

〉
=

n∑
i=1

∂π

∂pi

〈
W,∇pi(W )

〉
= L

n∑
i=1

∂π

∂pi
pi(W ).

Therefore eq. (21) is upper bounded by

‖W‖2
n∑
i=1

∂π

∂pi
∇α(W )T∇2pi(W )∇α(W )− L(L− 1)

∥∥∇α(W )
∥∥2

n∑
i=1

∂π

∂pi
pi(W ). (22)

Let ∇rα(W ) and ∇⊥α(W ) denote the radial and spherical part of ∇α(W ), respectively. Let θ
denote the angle between W and∇α(W ). Lemmas C.2 and C.4 imply that〈

W,∇α(W )
〉

= Lβ(W ) > 0,

and thus θ is between 0 and π/2. Now Lemma D.1 and the proof of Lemma C.1 imply that

‖W‖2∇rα(W )T∇2pi(W )∇rα(W ) = cos(θ)2
∥∥∇α(Wt)

∥∥2
W T∇2pi(W )W

= cos(θ)2
∥∥∇α(Wt)

∥∥2 · L(L− 1)pi(W )

≤
∥∥∇α(Wt)

∥∥2 · L(L− 1)pi(W ). (23)
Moreover,

2‖W‖2∇⊥α(W )T∇2pi(W )∇rα(W ) = 2‖W‖
∥∥∇α(W )

∥∥ cos(θ)
〈
∇⊥α(W ),∇2pi(W )W

〉
= 2(L− 1)‖W‖

∥∥∇α(W )
∥∥ cos(θ)

〈
∇⊥α(W ),∇pi(W )

〉
,

and thus by Lemma C.2,

2‖W‖2
n∑
i=1

∂π

∂pi
∇⊥α(W )T∇2pi(W )∇rα(W )

= 2(L− 1)‖W‖
∥∥∇α(W )

∥∥ cos(θ)
〈
∇⊥α(W ),∇α(W )

〉
= 2(L− 1)‖W‖

∥∥∇α(W )
∥∥3

cos(θ) sin(θ)2

=2L(L− 1)
∥∥∇α(W )

∥∥2
sin(θ)2β(W ). (24)

In addition, the proof of Lemma C.4 shows that
∥∥π(p)

∥∥
1
≤ 2, and Lemma D.1 ensures that ‖∇2f‖σ

has a uniform bound Kσ on the unit sphere, therefore

‖W‖2
n∑
i=1

∂π

∂pi
∇⊥α(W )T∇2pi(W )∇⊥α(W ) ≤ 2‖W‖2

∥∥∇α(W )
∥∥2

sin(θ)2 ·Kσ‖W‖L−2

= 2Kσ‖W‖L
∥∥∇α(W )

∥∥2
sin(θ)2. (25)

Combining eqs. (21) to (25) gives〈
∇J (W ),−∇L(W )

〉
−`′

(
α(W )

) ≤
4
(
Kσ‖W‖L + L(L− 1)β(W )

)∥∥∇α(W )
∥∥2

‖W‖2L
sin(θ)2.

Invoking Lemma D.2 then gives〈
∇J (W ),−∇L(W )

〉
≤ −K`′

(
α(W )

)
‖W‖L−2 sin(θ)2

for some constant K > 0.
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The following result helps us control θt.
Lemma D.4. Under the same condition as Lemma D.2 and Assumption 2.2, it holds that∫ ∞

0

−`′
(
α(Wt)

)
‖Wt‖L−2 tan(θt)

2 dt <∞.

Proof. Recall that α̃t = α(Wt)/‖Wt‖L is nondecreasing with a limit a, and thus dα̃t/ dt is inte-
grable. Now Lemmas 3.4, C.2 and C.3 imply that

dα̃t
dt
≥
∥∥∇⊥α̃(Wt)

∥∥∥∥∇⊥L(Wt)
∥∥ =

∥∥∇⊥α(Wt)
∥∥∥∥∇⊥L(Wt)

∥∥
‖Wt‖L

=
−`′

(
α(Wt)

)∥∥∇⊥α(Wt)
∥∥2

‖Wt‖L
,

and moreover ∥∥∇⊥α(Wt)
∥∥ =

∥∥∇rα(Wt)
∥∥ tan(θt) =

Lβ(Wt)

‖Wt‖
tan(θt).

Therefore

dα̃t
dt
≥ −`′

(
α(Wt)

)
· L2 tan(θt)

2 β(Wt)
2

‖Wt‖L+2
.

Since β(Wt)/‖Wt‖L is bounded due to Lemma D.2, the proof is finished.

Now we can prove Theorem 4.1.

Proof of Theorem 4.1. Fix an arbitrary ε ∈ (0, 1), and let Jt denote J(Wt). Recall that
limt→∞ α(Wt)/‖Wt‖L = a. Lemma C.4 then implies limt→∞ β(Wt)/‖Wt‖L = a, and thus
we can find t1 such that for any t > t1,

a

(
1− ε

6

)
<
β(Wt)

‖Wt‖L
=

1

L

〈
∇α(Wt)

‖Wt‖L−1
,

Wt

‖Wt‖F

〉
< a

(
1 +

ε

6

)
. (26)

Moreover, Lemmas D.3, D.4 and B.9 imply that there exists t2 such that for any t′ > t > t2,

Jt′ − Jt <
(
aLε

6

)2

. (27)

[Lyu and Li, 2019, Corollary C.10] implies that there exists t3 > max{t1, t2} such that

1

cos(θt2)2
− 1 <

ε

3
, and thus

1

cos(θt2)
< 1 +

ε

6
. (28)

We claim that δt < 1 + ε for any t > t3.

To see this, note that eqs. (26) and (28) imply√
Jt2 =

∥∥∇α(Wt2)
∥∥

‖Wt2‖L−1
< aL

(
1 +

ε

6

)
1

cos(θt2)
< aL

(
1 +

ε

6

)2

< aL

(
1 +

ε

2

)
.

Moreover, using eq. (27), for any t > t2,

√
Jt =

√
Jt2 + Jt − Jt2 <

√
Jt2 +

(
γLε

6

)2

<
√
Jt2 +

aLε

6
< aL

(
1 +

2ε

3

)
,

and thus

1

cos(θt)
=

√
Jt

Lβ(Wt)/‖Wt‖L
<
aL
(
1 + 2ε/3

)
aL(1− ε/6)

< 1 + ε.

Since ε is arbitrary, we have limt→∞ θt = 0.

If all pi are C2, then the above proof holds without definability: it is only used in eq. (27) to ensure
the chain rule, which always holds for C2 functions.
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E Global margin maximization proofs for Section 4.2

This section often works with subscripted subsets of parameters, for instance per-layer matrices
(A1(t), . . . , AL(t)), or per-node weights (w1(t), . . . , wm(t)); to declutter slightly, we will drop “(t)”
throughout when it is otherwise clear.

First, a technical lemma regarding directional convergence and alignment properties inherited by
these subsets of Wt. This will be used in both the deep linear case and in the 2-homogeneous case.

Lemma E.1. Suppose the conditions for Theorems 3.1 and 4.1 hold. Let (U1(t), . . . , Ur(t)) be any
partition of Wt, and set sj(t) := ‖Uj(t)‖L/‖Wt‖L. Then s(t) converges to some s̄, and for each j,

lim
t→∞

‖Uj‖ · ‖∇UjL(W )‖
‖W‖ · ‖∇WL(W )‖

= lim
t→∞

〈
Uj ,−∇UjL(W )

〉
‖W‖ · ‖∇WL(W )‖

,

and moreover s̄j > 0 implies

lim
t→∞

‖Uj‖
‖W‖

= lim
t→∞

‖∇UjL(W )‖
‖∇WL(W )‖

= lim
t→∞

‖∇Ujα(W )‖
‖∇Wα(W )‖

= s̄
1/L
j ,

and

lim
t→∞

〈
Uj ,−∇UjL(W )

〉
‖Uj‖ · ‖∇UjL(W )‖

= lim
t→∞

〈
Uj ,∇Ujα(W )

〉
‖Uj‖ · ‖∇Ujα(W )‖

= 1,

and

lim
t→∞

〈
Uj ,∇Ujα(W )

〉
‖Uj‖L

= lim
t→∞

‖∇Ujα(W )‖
‖Uj‖L−1

= as̄(2−L)/LL.

Proof. First note that s(t) converges since Wt/‖Wt‖ converges, and alignment grants

s̄
1/L
j = lim

t→∞

‖Uj‖
‖W‖

= lim
t→∞

‖∇UjL(W )‖
‖∇WL(W )‖

. (29)

By directional convergence (cf. Theorem 3.1), alignment (cf. Theorem 4.1), and Cauchy-Schwarz,

−1 = lim
t→∞

〈
W,∇WL(W )

〉
‖W‖ · ‖∇WL(W )‖

= lim
t→∞

∑
j

〈
Uj ,∇UjL(W )

〉
‖W‖ · ‖∇WL(W )‖

≥ − lim
t→∞

∑
j ‖Uj‖ · ‖∇UjL(W )‖
‖W‖ · ‖∇WL(W )‖

≥ − lim
t→∞

√∑
j ‖Uj‖2 ·

√∑
j ‖∇UjL(W )‖2

‖W‖ · ‖∇WL(W )‖
= −1,

which starts and ends with −1 and is thus a chain of equalities. Applying eq. (29) and he equality
case of Cauchy-Schwarz to each j with s̄j > 0,

s̄
2/L
j = lim

t→∞

‖Uj‖ · ‖∇UjL(W )‖
‖W‖ · ‖∇WL(W )‖

= lim
t→∞

〈
Uj ,−∇UjL(W )

〉
‖W‖ · ‖∇WL(W )‖

= lim
t→∞

〈
Uj ,−∇UjL(W )

〉
‖Uj‖ · ‖∇UjL(W )‖

(
‖Uj‖ · ‖∇UjL(W )‖
‖W‖ · ‖∇WL(W )‖

)

= s̄
2/L
j lim

t→∞

〈
Uj ,−∇UjL(W )

〉
‖Uj‖ · ‖∇UjL(W )‖

,

and thus

lim
t→∞

〈
Uj ,−∇UjL(W )

〉
‖Uj‖ · ‖∇UjL(W )‖

= 1.
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The preceding statements used L(W ); to obtain the analogous statements with α(W ), note since
`′ < 0 that

∇Ujα(W )

‖∇Ujα(W )‖
=
∇UjL(W )/`′(α(W ))

‖∇UjL(W )/`′(α(W ))‖
=
−∇UjL(W )

‖∇UjL(W )‖
.

For the final claim, note Theorem 4.1 and eq. (3) imply that

lim
t→∞

‖∇α(Wt)‖
‖Wt‖L−1

= lim
t→∞

〈
∇α(Wt),Wt

〉
‖Wt‖L

= aL > 0,

and when s̄j > 0,

lim
t→∞

〈
Uj ,∇Ujα(Wt)

〉
‖Uj‖L

= lim
t→∞

‖Uj‖ · ‖∇Ujα(W )‖
‖Uj‖L

= lim
t→∞

‖∇Ujα(Wt)‖
‖Uj‖L−1

= lim
t→∞

s̄1/L‖∇Wα(W )‖
s̄(L−1)/L‖W‖L−1

= aLs̄(2−L)/L.

Applying the preceding lemma to network layers, we handle the deep linear case as follows.

Proof of Proposition 4.2. For convenience, write Aj instead of Aj(t) when time t is clear, and also
u := Aj · · ·A1 and∇uL(W ) =

∑
i `
′(yiu

Txi)yixi. By this notation,

∇AjL(W ) =
∑
i

`′(yiu
Txi)yi(AL · · ·Aj+1)T(Aj−1 · · ·A1xi)

T

= (AL · · ·Aj+1)T(Aj−1 · · ·A1∇uL(W ))T,

where (AL · · ·Aj+1)T is a column vector, and (Aj−1 · · ·A1∇uL(W ))T is a row vector, and moreover〈
Aj ,∇AjL(W )

〉
=
〈
u,∇uL(W )

〉
, where this last inner product does not depend on j.

Applying the subset-alignment of Lemma E.1 to layers (Aj , . . . , A1) gives, for each j,

s̄
2/L
j = lim

t→∞

‖Aj‖ · ‖∇AjL(W )‖
‖W‖ · ‖∇WL(W )‖

= lim
t→∞

〈
Aj ,−∇AjL(W )

〉
‖W‖ · ‖∇WL(W )‖

= lim
t→∞

−
〈
u,∇uL(W )

〉
‖W‖ · ‖∇WL(W )‖

,

whereby s̄j is independent of j, which can only mean s̄2/L
j = 1/L > 0 for all j, but more importantly

‖Aj(t)‖ → ∞ for all j. By Lemma E.1, this means all layers align with their gradients.

Next it is proved by induction from AL to A1 that there exist unit vectors v0, . . . , vL with vL = 1
and Aj/‖Aj‖ = vjv

T
j−1. The base case AL holds immediately, since AL is a row vector, meaning

we can choose vL := 1 and vL−1 := AT

L/‖AL‖ since AL converges in direction. For the inductive
step Aj with j < L, note

lim
t→∞

∇AjL(W )

‖∇AjL(W )‖
= lim
t→∞

(AL · · ·Aj+1)T(Aj−1 · · ·A1∇uL(W ))T∥∥(AL · · ·Aj+1)T(Aj−1 · · ·A1∇uL(W ))T
∥∥

= lim
t→∞

(AL · · ·Aj+1)T(Aj−1 · · ·A1∇uL(W ))T∥∥(AL · · ·Aj+1)
∥∥∥∥(Aj−1 · · ·A1∇uL(W ))

∥∥
= lim
t→∞

(vLv
T

L−1 · · · vj+1v
T
j )

T(Aj−1 · · ·A1∇uL(W ))T∥∥Aj−1 · · ·A1∇uL(W )
∥∥

= lim
t→∞

vj(Aj−1 · · ·A1∇uL(W ))T∥∥Aj−1 · · ·A1∇uL(W )
∥∥ .

Since vj is a fixed unit vector and since∇AjL(W ) converges in direction, the row vector part of the
above expression must also converge to some fixed unit vector vT

j−1, namely

lim
t→∞

∇AjL(W )

‖∇AjL(W )‖
= −vjvT

j−1 where vj−1 := − lim
t→∞

Aj−1 · · ·A1∇uL(W )∥∥Aj−1 · · ·A1∇uL(W )
∥∥ .
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Since Aj and −∇AjL(W ) asymptotically align as above, then Aj/‖Aj‖→ vjv
T
j−1.

Now consider v0 and u, where it still needs to be shown that v0 = u/‖u‖. To this end, note

1 ≥ lim
t→∞

vT
0u

‖u‖
= lim
t→∞

vT
0AL · · ·A1

‖AL · · ·A1‖
≥ lim
t→∞

(
‖AL‖ · · · ‖A1‖

‖AL‖σ · · · ‖A2‖σ‖A1‖

)
vT

0

(
vLv

T

L−1 · · · v1v
T

0

)
= vT

0v0 = 1,

whereby u/‖u‖ = v0. By a similar calculation,

−1 = lim
t→∞

〈
A1,∇A1L(W )

〉
‖A1‖ · ‖∇A1L(W )‖

= lim
t→∞

〈
u,∇uL(W )

〉
‖A1‖ · ‖AL · · ·A2∇uL(W )‖

= lim
t→∞

〈
u,∇uL(W )

〉
‖u‖ · ‖∇uL(W )‖

,

which means u/‖u‖ asymptotically satisfies the optimality conditions for the optimization problem

min
‖w‖≤1

1

‖AL · · ·A1‖
∑
i

`
(
‖AL · · ·A1‖yixT

iw
)
,

which is asymptotically solved by the unique maximum margin vector ū, which is guaranteed to exist
since the data is linearly separable thanks to L(W0) < `(0).

Before moving on to the 2-homogeneous case, we first produce another technical lemma, which we
will use to control dual variables qi(t) := ∂α/∂pi(Wt), which also appear in Proposition 4.3.

Lemma E.2. Every accumulation point q̄ of
{
q(t)

∣∣ t ∈ N
}

satisfies q̄ ∈ ∆n and∑
i

q̄i

〈
W

‖W‖
,
∇W pi(W )

‖W‖L−1

〉
= lim
t→∞

〈
W

‖W‖
,
∇Wα(W )

L‖W‖L−1

〉
= min

i
lim
t→∞

pi(Wt)

‖Wt‖L
= a.

Proof. By Lemmas C.2 and C.4,

lim
t→∞

α(Wt)

‖Wt‖L
= lim
t→∞

〈
Wt

‖Wt‖
,
∇Wα(Wt)

L‖Wt‖L−1

〉
= lim
t→∞

min
i

pi(Wt)

‖Wt‖L
= a = min

i
lim
t→∞

pi(Wt)

‖Wt‖L
= a.

Moreover, since limz→∞
`log(z)
`exp(z) = 1 and since a > 0 and ‖Wt‖ → ∞, then q(t) is asymptotically

within the simplex, meaning limt→∞minq′∈∆n ‖q(t)− q′‖ = 0. Consequently, every accumulation
point q̄ of {q(t) : t ∈ N} satisfies q̄ ∈ ∆n, and∑

i

q̄i lim
t→∞

〈
W

‖W‖
,
∇W pi(W )

‖W‖L−1

〉
= lim
t→∞

〈
W

‖W‖
,
∇Wαi(W )

L‖W‖L−1

〉
= lim
t→∞

min
i

pi(Wt)

‖Wt‖L
= a.

With this in hand, we can handle the 2-homogeneous case.

Proof of Proposition 4.3. Applying Lemma E.1 to the per-node weights (w1, . . . , wm), a limit s̄
exists and due to 2-homogeneity satisfies s̄ ∈ ∆m. Whenever, s̄j > 0, then

lim
t→∞

2
∑
i

qi(t)ϕij(θj(t)) = lim
t→∞

〈
θj(t),

∑
i

qi(t)∇θϕij(θj(t))

〉

= lim
t→∞

〈
wj(t)

‖wj(t)‖
,
∇wjα(Wt)

‖wj(t)‖

〉
= 2as̄0/2 = 2a.

Consequently, this means that either s̄j > 0 and limt→∞
∑
i qi(t)ϕij(θj(t)) = a, or else s̄j = 0 and

by the choice θ̄j = 0 then limt→∞
∑
i qi(t)ϕij(θj(t)) = 0. In particular, this means s̄j > 0 iff θ̄j

attains the maximal value a, meaning s̄ satisfies the Sion primal optimality conditions for the saddle
point problem over the fixed points (θ̄1, . . . , θ̄m) [Chizat and Bach, 2020, Proposition D.3].

Now consider the dual variables qi(t) = ∂α/∂pi(Wt). By Lemma E.2, any accumulation point q̄ is
an element of ∆n and moreover is supported on those examples i minimizing pi(W ), which means q̄
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satisfies the Sion dual optimality conditions for the margin saddle point problem again over fixed
points (θ̄1, . . . , θ̄m) [Chizat and Bach, 2020, Proposition D.3]. Thus applying the Sion Theorem over
discrete domain (θ̄1, . . . , θ̄m) to the primal-dual optimal pair (s̄, q̄) gives∑

i

q̄i
∑
j

s̄jϕij(θ̄j) = min
q∈∆n

max
s∈∆m

∑
i

qi
∑
j

sjϕij(θ̄j) = min
i

max
s∈∆m

∑
j

sjϕij(θ̄j),

and directional convergence of W̃t combined with definition of q̄ gives

lim
t→∞

∑
i

qi(t)sj(t)ϕij(θj(t)) =
∑
i

q̄i
∑
j

s̄jϕij(θ̄j(t)).

Since q̄ was an arbitrary accumulation point, it holds in general that

lim
t→∞

∑
i

qi(t)sj(t)ϕij(θj(t)) = min
q∈∆n

max
s∈∆m

∑
i

qi
∑
j

sjϕij(θ̄j).

Now for the global guarantee. Fix t0 for now, and consider (θj)
m
j=1 = (θj(t0))mj=1 and their cover

guarantee. For any signed measure ν on Sd−1, we can partition Sd−1 twice so that (ν(θ1), ν(θ3), . . .)
partitions the negative mass of ν by associating it with the closest element amongst (θ1, θ3, . . .), all
of which have negative coefficient in ϕij , and also the positive mass of ν into (ν(θ2), ν(θ4), . . . );
in this way, we now have converted ν on Sd−1 into a discrete measure on (θ1, . . . , θm). Noting that
z 7→ max{0, z}2 is 2-Lipschitz over [−1, 1], and therefore for any i and any unit norm θ, θ′ that

|ϕij(θ)− ϕij(θ′)| =
∣∣∣max{0, xT

iθ}2 −max{0, xT

iθ
′}2
∣∣∣ ≤ 2

∣∣xT

iθ − xT

iθ
′∣∣ ≤ 2‖θ − θ′‖,

then, letting “θ → θj” denote the subset of Sd−1 associated with θj as above (positively or negatively),
and letting ϕi(θ) := yi max{0, xT

iθ}2, for any q,∣∣∣∣∣∣
∑
i

qi

∫
ϕi(θ) dν(θ)−

∑
i

qi
∑
j

ν(θj)ϕij(θj)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
i

qi
∑
j

∫
θ→θj

ϕi(θ) dν(θ)−
∑
i

qi
∑
j

ν(θj)ϕij(θj)

∣∣∣∣∣∣
≤
∑
i

qi

∫
θ→θj

∑
j

∣∣ϕij(θ)− ϕij(θj)∣∣d|ν|(θ)
≤ 2

∑
i

qi

∫
θ→θj

∑
j

∥∥θ − θj∥∥d|ν|(θ) ≤ 2ε.

Thus

min
q∈∆n

max
p∈∆m

∑
i

qi
∑
j

pjϕij(θj) ≤ min
q∈∆n

max
ν∈P(Sd−1)

∑
i

qi

∫
ϕi(θ) dν(θ)

≤ 2ε+ min
q∈∆n

max
p∈∆m

∑
i

qi
∑
j

pjϕij(θj).

Next, for any q ∈ ∆n and s ∈ ∆m, using the first part of the cover condition,∑
i,j

qisj(ϕij(θ̄j)− ϕij(θj(t0)) ≤
∑
i,j

qisj |ϕij(θ̄j)− ϕij(θj(t0)| ≤ 2
∑
i,j

qisj‖θ̄j − θj(t0)‖ ≤ 2ε,
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thus

lim
t→∞

∑
i,j

qisjϕij(θj) = min
q∈∆n

max
s∈∆m

∑
i,j

qisjϕij(θ̄j)

= min
q∈∆n

max
s∈∆m

∑
i,j

qisjϕij(θj(t0))−
∑
i,j

qisj
(
ϕij(θj(t0))− ϕij(θ̄j)

)
≥ min
q∈∆n

max
s∈∆m

∑
i,j

qisjϕi(θj(t0))− 2ε

≥ min
q∈∆n

max
ν∈P(Sd−1)

∑
i

qi

∫
ϕi(θ) dν(θ)− 4ε.
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