
Appendix

7 Additional Experiments

Supervised Learning While the primary motivation for our work is RL, we also evaluated PB2 the
supervised learning case, to test the generality of the method. Concretely, we used PB2 to optimize
six hyperparameters for a Convolutional Neural Network (CNN) on the CIFAR-10 dataset [37]. In
each setting we randomly sample the initial hyperparameter configurations and train on half of the
dataset for 50 epochs. We use B = 4 agents for RS, PBT and PB2, with tready as 5 epochs. For
ASHA we have the same maximum budget across all agents but begin with a population size of 16.

Table 2: Median best performing agent across 5 seeds. The best performing methods are bolded.

RS ASHA PBT PB2

Test Accuracy 84.43 88.85 87.20 89.10

In Table 7 we present the median best performing agent from five runs of each algorithm. We see
that PB2 outperforms all other methods, including ASHA, which was specifically designed for SL
problems [41]. This result indicates PB2 may be useful for a vast array of applications.

8 Experiment Details

For all experiments we set �t = c1 + log(c2t) with c1 = 0.2 and c2 = 0.4, as in the traffic speed data
experiment from [9].

In Table 3, 5 & 7 and we show hyperparameters for the IMPALA, PPO and CIFAR experiments. In
Table 8, 6 and 6 we show the bounds for the hyperparameters learned by PBT and PB2. All methods
were initialized by randomly sampling from these bounds.

Table 3: IMPALA: Fixed

Parameter Value
Num Workers 5
Num GPUs 0

Table 4: IMPALA: Learned

Parameter Value
Epsilon {0.01, 0.5}
Learning Rate {10

�3, 10�5
}

Entropy Coeff {0.001, 0.1}

Table 5: PPO: Fixed

Parameter Value
Filter MeanStdF ilter
SGD Iterations 10
Architecture 32-32
ready 5⇥ 10

4

Table 6: PPO: Learned

Parameter Value
Batch Size {1000, 60000}
GAE � {0.9, 0.99}
PPO Clip ✏ {0.1, 0.5}
Learning Rate ⌘ {10

�3, 10�5
}

The model used for the CIFAR dataset was from: https://zhenye-na.github.io/2018/09/
28/pytorch-cnn-cifar10.html. All experiments were run using a 32 core machine.

Table 7: CIFAR: Fixed

Parameter Value
Optimizer Adam

Iterations 50
Architecture 3 Conv Layers
ready 5

Table 8: CIFAR: Learned

Parameter Value
Train Batch Size {4, 128}
Dropout-1 {0.1, 0.5}
Dropout-2 {0.1, 0.5}
Learning Rate {10

�3, 10�4
}

Weight Decay {10
�3, 10�5

}

Momentum {0.8, 0.99}

13

https://zhenye-na.github.io/2018/09/28/pytorch-cnn-cifar10.html
https://zhenye-na.github.io/2018/09/28/pytorch-cnn-cifar10.html

9 Theoretical Results

We show the derivation for Lemma 1.

Proof. We have a reward at the starting iteration F1(x1) as a constant that allows us to write the
objective function as:

FT (xT)� F1(x1) = FT (xT)� FT�1(xT�1) + · · ·+ F3(x3)� F2(x2) + F2(x2)� F1(x1) (6)

Therefore, maximizing the left of Eq. (6) is equivalent to minimizing the cummulative regret as
follows:

max [FT (xT)� F1(x1)] = max

TX

t=1

Ft(xt)� Ft�1(xt�1) = max

TX

t=1

ft(xt) = min

TX

t=1

rt(xt)

where we define ft(xt) = Ft(xt) � Ft�1(xt�1), the regret rt = ft(x⇤
t) � ft(xt) and ft(x⇤

t) :=

max8x ft(x) is an unknown constant.

9.1 Convergence Analysis

We minimize the cumulative regret RT by sequentially suggesting an xt to be used in each iteration t.
We shall derive the upper bound in the cumulative regret and show that it asymptotically goes to zero
as T increases, i.e., limT!1

RT
T = 0. We make the following smoothness assumption to derive the

regret bound of the proposed algorithm.

Assumptions. We will assume that the kernel k is hold for some (a, b) and all L � 0. The joint
kernel satisfies for k = 1, ...,K,

8L � 0, t  T , p(sup

����
@ft(�)

@�(k)

���� � Lt)  ae�(Lt/b)
2

. (7)

These assumptions are achieved by using a time-varying kernel ktime(t, t0) = (1� !)
|t�t0|

2 [9] with
the smooth functions [9]. For completeness, we restate Lemma 3, 4, 5, 6 from [61, 9], then present
our new theoretical results in Lemma 7, 8, 9 and Theorem 10.

Lemma 3 ([61]). Let Lt = b
p
log 3da⇡t

�) where
PT

t=1
1
⇡t

= 1, we have with probability 1�
�
3 ,

|ft(x)� ft(x
0
)|  Lt||x� x0

||1, 8t,x,x
0
2 D. (8)

Lemma 4 ([61]). We define a discretization Dt ⇢ D ✓ [0, r]d of size (⌧t)d satisfying ||x �

[x]t ||1 
d
⌧t
, 8x 2 D where [x]t denotes the closest point in Dt to x. By choosing ⌧t =

t2

Ltd
=

rdbt2
p
log (3da⇡t/�), we have

|ft(x)� ft([x]t)| 
1

t2
.

Lemma 5 ([61]). Let �t � 2 log
3⇡t
� +2d log

✓
rdbt2

q
log

3da⇡t
2�

◆
where

PT
t=1 ⇡

�1
t = 1, then with

probability at least 1� �
3 , we have

|ft(xt)� µt(xt)| 
p
�t�t(xt), 8t, 8x 2 D.

Proof. We note that conditioned on the outputs (y1, ..., yt�1), the sampled points (x1, ...,xt) are
deterministic, and ft(xt) ⇠ N

�
µt(xt),�2

t (xt)
�
. Using Gaussian tail bounds [64], a random variable

f ⇠ N (µ,�2
) is within

p
�� of µ with probability at least 1� exp

⇣
�

�
2

⌘
. Therefore, we first claim

that if �t � 2 log
3⇡t
� then the selected points {xt}

T
t=1 satisfy the confidence bounds with probability

at least 1� �
3

|ft(xt)� µt(xt)| 
p

�t�t(xt), 8t. (9)

14

This is true because the confidence bound for individual xt will hold with probability at least 1� �
3⇡t

and taking union bound over 8t will lead to 1�
�
3 .

We show above that the bound is applicable for the selected points {xt}
T
t=1. To ensure that the

bound is applicable for all points in the domain Dt and 8t, we can set �t � 2 log
3|Dt|⇡t

� where
PT

t=1 ⇡
�1
t = 1 e.g., ⇡t =

⇡2t2

6

p(|ft (xt)� µt (xt)| 
p
�t�t (xt) � 1� |Dt|

TX

t=1

exp (��t/2) = 1�
�

3.
. (10)

By discretizing the domain Dt in Lem. 4, we have a connection to the cardinality of the domain

that |Dt| = (⌧t)d =

⇣
rdbt2

p
log (3da⇡t/�)

⌘d
. Therefore, we need to set �t such that both

conditions in Eq. (9) and Eq. (10) are satisfied. We simply take a sum of them and get �t �

2 log
3⇡t
� + 2d log

✓
rdbt2

q
log

3da⇡t
2�

◆
.

We use TB to denote the batch setting where we will run the algorithm over T iterations with a
batch size B. The mutual information is defined as Ĩ(fTB ; yTB) =

1
2 log det

⇣
ITB + ��2

f K̃TB

⌘

and the maximum information gain is as �̃T := max Ĩ(fTB ;yTB) where fTB := fTB(xTB) =

(ft,b(xt,b), ..., fT,B(xT,B)) , 8b = 1....B, 8t = t...T for the time variant GP f . Using the result
presented in [9], we can adapt the bound on the time-varying information gain into the parallel setting
using a population size of B below.
Lemma 6. (adapted from [9] with a batch size B) Let ! be the forgetting-remembering trade-off
parameter and consider the kernel for time 1 �Ktime(t, t0)  ! |t� t0|, we bound the maximum
information gain that

�̃TB 

✓
T

Ñ ⇥B
+ 1

◆✓
�Ñ⇥B + ��2

f

h
Ñ ⇥B

i3
!

◆
.

Uncertainty Sampling (US). We next derive an upper bound over the maximum information gain
obtained from a batch xt,b, 8b = 1, ..., B. In other words, we want to show that the information
gain by our chosen points xt,b will not go beyond the ones by maximizing the uncertainty. For this,
we define an uncertainty sampling (US) scheme which fills in a batch xUS

t,b by maximizing the GP
predictive variance. Particularly, at iteration t, we select xUS

t,b = argmaxx �t(x | Dt,b�1), 8b  B
and the data set is augmented over time to include the information of the new point, Dt,b =

Dt,b�1 [xUS
t,b. We note that we use xUS

t,b to derive the upper bound, but this is not used by our PB2
algorithm.
Lemma 7. Let xPB2

t,b be the point chosen by our algorithm and xUS
t,b be the point chosen by uncertainty

sampling (US) by maximizing the GP predictive variance xUS
t,b = argmaxx2D �t(x | Dt,b�1), 8b =

1, ...B and Dt,b = Dt,b�1 [xt,b. We have

�t+1,1

�
xPB2
t+1,1

�
 �t+1,1

�
xUS
t+1,1

�
 �t,b

�
xUS
t,b

�
, 8t 2 {1, ..., T} , 8b 2 {1, ...B} .

Proof. The first inequality is straightforward that the point chosen by uncertainty sampling will have
the highest uncertainty �t+1,1

�
xPB2
t+1,1

�
 �t+1,1

�
xUS
t+1,1

�
= argmaxx �t(x | Dt,b�1).

The second inequality is obtained by using the principle of “information never hurts” [36], we know
that the GP uncertainty for all locations 8x decreases with observing a new point. Therefore, the
uncertainty at the future iteration �t+1 will be smaller than that of the current iteration �t, i.e.,
�t+1,b

⇣
xUS
t+1,b

⌘
 �t,b

⇣
xUS
t,b

⌘
, 8b  B, 8t  T . We thus conclude the proof �t+1,1

�
xUS
t+1,1

�


�t,b

⇣
xUS
t,b

⌘
, 8t 2 {1, ..., T} , 8b 2 {1, ...B}.

Lemma 8. The sum of variances of the points selected by the our PB2 algorithm �() is bounded
by the sum of variances by uncertainty sampling �US

(). Formally, w.h.p.,
PT

t=2 �t,1 (xt,1) 

1
B

PT
t=1

PB
b=1 �t,b

⇣
xUS
t,b

⌘
.

15

Proof. By the definition of uncertainty sampling in Lem. 7, we have �t+1,1 (xt+1,1) 

�t,b

⇣
xUS
t,b

⌘
, 8t 2 {1, ..., T} , 8b 2 {2, ...B} and �t,1 (xt,1)  �t,1

�
xUS
t,1

�
where xt,1 is the point

chosen by our PB2 and xUS
t,1 is from uncertainty sampling. Summing all over B, we obtain

�t,1 (xt,1) + (B � 1)�t+1,1 (xt+1,1)  �t,1

�
xUS
t,1

�
+

BX

b=2

�t,b

�
xUS
t,b

�

TX

t=1

�t,1 (xt,1) + (B � 1)

TX

t=1

�t+1,1 (xt+1,1) 

TX

t=1

BX

b=1

�t,b

�
xUS
t,b

�
by summing overT

TX

t=2

�t,1 (xt,1) 
1

B

TX

t=1

BX

b=1

�t,b

�
xUS
t,b

�
.

The last equation is obtained because of �1,1 (x1,1) � 0 and (B � 1)�T+1,1 (xT+1,1) � 0.

Lemma 9. Let C1 =
32

log(1+��2
f)

, �2
f be the measurement noise variance and �̃TB := max Ĩ be the

maximum information gain of time-varying kernel, we have
PT

t=1

PB
b=1 �

2
t,b(x

US
t,b) 

C1
16 �̃TB where

xUS
t,b is the point selected by uncertainty sampling (US).

Proof. We show that �2
t,b(x

US
t,b) = �2

f

⇣
��2
f �2

t,b(x
US
t,b)

⌘
 �2

fC2 log

⇣
1 + ��2

f �2
t,b

⇣
xUS
t,b

⌘⌘
, 8b 

B, 8t  T where C2 =
��2
f

log(1+��2
f)

� 1 and �2
f is the measurement noise variance. We have

the above inequality because s2  C2 log
�
1 + s2

�
for s 2

h
0,��2

f

i
and ��2

f �2
t,b

⇣
xUS
t,b

⌘


��2k
⇣
xUS
t,b,x

US
t,b

⌘
 ��2

f . We then use Lemma 5.3 of [14] to have the information gain over

the points chosen by a time-varying kernel Ĩ =
1
2

PT
t=1

PB
b=1 log

⇣
1 + ��2

f �2
t,b

⇣
xUS
t,b

⌘⌘
. Finally,

we obtain
TX

t=1

BX

b=1

�2
t,b(x

US
t,b)  �2

fC2

TX

t=1

BX

b=1

log

⇣
1 + ��2

f �2
t,b

�
xUS
t,b

�⌘
= 2�2

fC2Ĩ =
C1

16
�̃TB

where C1 =
2

log(1+��2
f)

and �̃TB := max Ĩ is the definition of maximum information gain given by

T ⇥B data points from a GP for a specific time-varying kernel.

Theorem 10. Let the domain D ⇢ [0, r]d be compact and convex where d is the dimension and
suppose that the kernel is such that f ⇠ GP (0, k) is almost surely continuously differentiable
and satisfies Lipschitz assumptions for some a, b. Fix � 2 (0, 1) and set �T = 2 log

⇡2T 2

2� +

2d log rdbT 2
q
log

da⇡2T 2

2� . Defining C1 = 32/ log(1+�2
f), the PB2 algorithm satisfies the following

regret bound after T time steps:

RTB =

TX

t=1

ft(x
⇤
t)� ft(xt) 

s

C1T�T

✓
T

ÑB
+ 1

◆✓
�ÑB +

h
ÑB

i3
!

◆
+ 2

with probability at least 1� �, the bound is holds for any Ñ 2 {1, ..., T} and B ⌧ T .

Proof. Let x⇤
t = argmax8x ft(x) and xt,b be the point chosen by our algorithm at iteration t and

batch element b, we define the (time-varying) instantaneous regret as rt,b = ft(x⇤
t)� ft(xt,b) and

the (time-varying) batch instantaneous regret over B points is as follows

rBt = min
bB

rt,b = min
bB

ft(x
⇤
t)� ft(xt,b), 8b  B

 ft(x
⇤
t)� ft(xt,1)  µt(x

⇤
t) +

p
t�t(x

⇤
t) +

1

t2
� ft(xt,1) by Lem. 4

 µt(xt,1) +
p
t�t(xt,1) +

1

t2
� ft(xt,1)  2

p
t�t(xt,1) +

1

t2
(11)

16

where we have used the property that µt(xt,1)+
p
�t�t(xt,1) � µt(x⇤

t)+
p
�t�t(x⇤

t) by the definition
of selecting xt,1 = argmaxx µt(x) +

p
�t�t(x). Next, we bound the cumulative batch regret as

RTB =

TX

t=1

rBt 

TX

t=1

✓
2
p
t�t(xt,1) +

1

t2

◆
by Eq. (11)

 2
p
T�1(x1,1) +

2
p
T

B

TX

t=1

BX

b=1

�t,b

�
xUS
t,b

�
+

TX

t=1

1

t2
by Lem. 7 andT � t, 8t T


4
p
T

B

TX

t=1

BX

b=1

�t,b

�
xUS
t,b

�
+

TX

t=1

1

t2
(12)


4

B

vuutT ⇥ TB
TX

t=1

BX

b=1

�2
t,b(x

US
t,b) + 2 

r
C1

T

B
T �̃TB + 2 (13)



vuutC1
T

B
T

✓
T

ÑB
+ 1

◆
�ÑB +

1

�2
f

h
ÑB

i3
!

!
+ 2 (14)

where C1 = 32/ log(1 + �2
f), x

US
t,b is the point chosen by uncertainty sampling – used to provide the

upper bound in the uncertainty. In Eq. (12), we take the upper bound by considering two possible
cases: either �1(x1,1) �

1
B

PT
t=1

PB
b=1 �t,b

⇣
xUS
t,b

⌘
or 1

B

PT
t=1

PB
b=1 �t,b

⇣
xUS
t,b

⌘
� �1(x1,1). It

results in 2
B

PT
t=1

PB
b=1 �t,b

⇣
xUS
t,b

⌘
�

1
B

PT
t=1

PB
b=1 �t,b

⇣
xUS
t,b

⌘
+ �1(x1,1). In Eq. (13) we have

used
P1

t=1
1
t2  ⇡2/6  2 and ||z||1 

p
T ||z||2 for any vector z 2 R

T . In Eq. (14), we utilize
Lem. 6.

Finally, given the squared exponential (SE) kernel defined, �SE
ÑB

= O(

h
log ÑB

id+1
), the bound

is RTB 

s

C1
T
B�T

⇣
T

ÑB
+ 1

⌘✓
(d+ 1) log

⇣
ÑB

⌘
+

1
�2
f

h
ÑB

i3
!

◆
+ 2 where Ñ  T and

B ⌧ T .

In our time-varying setting, if the time-varying function is highly correlated, i.e., the information
between f1(.) and fT (.) does not change significantly, we have ! ! 0 and Ñ ! T . Then, the
regret bound grows sublinearly with the number of iterations T , i.e., limT!1

RTB
TB = 0. This bound

suggests that the gap between ft(xt) and the optimal ft(x⇤
t) vanishes asymptotically using PB2. In

addition, our regret bound is tighter and better with increasing batch size B.

On the other hand in the worst case, if the time-varying function is not correlated, such as Ñ ! 1

and ! ! 1, then PB2 achieves the linear regret [9].

17

	Introduction
	Problem Statement
	Population-Based Bandit Optimization
	Parallel Gaussian Process Bandits for a Time-Varying Function
	PB2 Algorithm and Convergence Guarantee

	Related Work
	Experiments
	On Policy Reinforcement Learning
	Off Policy Reinforcement Learning

	Conclusion
	Additional Experiments
	Experiment Details
	Theoretical Results
	Convergence Analysis

