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A Convention for Handling Missing Features

To examine how a model performs when deprived of certain information, we require a convention for
evaluating f with arbitrary subsets of features S ⊆ D. For this, we defined the restricted model fS as

fS(xS) = E
[
f(X)

∣∣ XS = xS
]
.

Although we use an approximation in practice (Section 3.3), we have several reasons for defining
SAGE using this convention. The reasons are: (i) the model fS is as close as possible to the full
model f , (ii) the convention fS yields connections with intrinsic properties of the data distribution
(such as mutual information), and (iii) alternative conventions often involve evaluating the model off
the manifold of real data examples. We explain these points in detail below.

Consider how we can measure the deviation between a model f on all features X and a model g on a
subset of features XS . We consider this separately for regression tasks and classification tasks. For a
regression model f that makes prediction in Rp, a natural way to determine how much its prediction
given x differs from that of g given xS is with the squared Euclidean distance ||f(x)− g(xS)||2. In
expectation, the squared deviation between f and g is equal to:

E
[∣∣∣∣f(X)− g(XS)

∣∣∣∣2] = EX
[∣∣∣∣f(X)− E[f(X) | XS ]

∣∣∣∣2]︸ ︷︷ ︸
Does not depend on g

+EXS

[∣∣∣∣E[f(X) | XS ]− g(XS)
∣∣∣∣2]︸ ︷︷ ︸

Mean squared deviation between
g(XS) and E[f(X) | XS ]

From this, it is clear that the model g(xS) = E[f(X) | XS = xS ] deviates least from f on average.

Next, consider a classification model f that outputs probabilities for a p-class categorical variable.
To be explicit that the prediction is a vector of probabilities, we denote the model output as f(y|x),
where we have f(i|x) ≥ 0 for i = 1, 2, . . . , p and

∑p
i=1 f(i|x) = 1. The Kullback-Leibler (KL)

divergence DKL

(
f(y|x) || g(y|xS)

)
is a natural way to measure the deviation of the predictions

from g and f . The mean deviation between f and g can then be expressed as:
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EX
[
DKL

(
f(y|X) || g(y|XS)

)]
= EX

[
Ey∼f(y|X)

[
− log g(y|XS)

]]
− EX

[
H
(
f(y|X)

)]
= EXS

[
Ey∼E[f(y|X) | XS ]

[
− log g(y|XS)

]]
− EX

[
H
(
f(y|X)

)]
= EXS

[
H
(
E
[
f(y|X)

∣∣ XS

])]
− EX

[
H
(
f(y|X)

)]
+ EXS

[
DKL

(
E
[
f(y|X)

∣∣ XS

]
|| g(y|XS)

)]
︸ ︷︷ ︸

Mean KL divergence between
g(y|XS) and E

[
f(y|X)

∣∣ XS

]
With this way of rewriting the mean KL divergence, it becomes clear that the model g(y|xS) =
E[f(y|X) | XS = xS ] is closest to f in expectation.

These derivations show that in both cases, our convention for fS (marginalizing out features using
their conditional distribution) yields the model that is closest to f on average. When analyzing the
performance degradation when f is deprived of certain features, it is most conservative to use a
restricted model fS that is as faithful to f as possible, because doing otherwise may result in inflated
estimates of the impact on model performance.

Next, handling missing features with fS yields connections with intrinsic properties of the data
distribution, such as mutual information and conditional variance (Section C). That happens because
when our convention is applied to an optimal model (e.g., the Bayes classifier), it preserves the
model’s optimality. For example, the Bayes classifier f∗(x) = p(y|X = x) becomes the Bayes
classifier f∗S(xS) = p(y|XS = xS), and the conditional expectation f∗(x) = E[Y |X = x] becomes
the conditional expectation f∗S(xS) = E[Y |XS = xS ]. Our definition of fS is the unique convention
that has this property.

Finally, the convention fS only considers values of xS̄ such that x = (xS , xS̄) has support under
the full data distribution p(X). That property is a benefit of handling missing features using their
conditional distribution p(XS̄ |XS = xS). By contrast, other conventions may lead to implausible
feature combinations with no support under the data distribution.

As an example, one alternative is to use the marginal distribution:

E
[
f(xS , XS̄)

]
.

This is what we do in practice (Section 3.3), but this breaks feature dependencies and may result
in combinations of values (xS , xS̄) that are off-manifold (e.g., if there are two perfectly correlated
features and one is removed). We view this as an undesirable property and encourage work that
removes the need for this approximation in practice.

Another option is to use the mean prediction when the missing features are drawn from the product
of their marginal distributions, as in QII [1]. This convention is even more likely to result in off-
manifold examples, because in addition to breaking dependencies between XS and XS̄ , it also breaks
dependencies within XS̄ .

B Model-Based and Universal Predictive Power

In the main text, we introduce two set functions to represent different notions of predictive power.
The function v represents the universal predictive power and quantifies the amount of signal that can
hypothetically be derived from a set of features XS :

v(S) = min
ŷ

E
[
`
(
ŷ, Y

)]
−min

g
E
[
`
(
g(XS), Y

)]
.

In contrast, the function vf represents a model-based notion of predictive power and quantifies how
much signal f derives from a given set of features:
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vf (S) = E
[
`
(
f∅(X∅), Y

)]
− E

[
`
(
fS(XS), Y

)]
.

The two quantities are different but related. To estimate v(S), a natural approach would be to train
a model using XS , learn the optimal constant prediction ŷ, and then use the performance of those
models as plug-in estimators for the two terms in v(S). The model-based predictive power vf (S) can
be viewed as an single-model approximation to this, where, instead of training a model from scratch
on XS , we obtain the model via an existing model f trained using all features.

Under certain circumstances when the model f∗ is optimal, we can see that v and vf∗ coincide
exactly for all S ⊆ D. Two simple cases where this holds are (i) for a regression task that uses the
conditional expectation f∗(x) = E[Y |X = x] and mean squared error (MSE) loss, and (ii) for a
classification task that uses the Bayes classifier f∗(x) = p(y|X = x) and cross entropy loss. We
show equality in the first case as follows:

vf∗(S) = E
[∣∣∣∣Y − f∗∅(X∅)

∣∣∣∣2]− E
[∣∣∣∣Y − f∗S(XS)

∣∣∣∣2]
= E

[∣∣∣∣Y − E[Y ]
∣∣∣∣2]− E

[∣∣∣∣Y − E[Y |XS = xS ]
∣∣∣∣2]

= v(S)

Similarly, we show equality in the second case as follows:

vf∗(S) = E
[
− log f∗∅(Y |X∅)

]
− E

[
− log f∗S(Y |XS)

]
= E

[
− log p(Y )

]
− E

[
− log p(Y |XS = xS)

]
= v(S)

Besides these two cases, equality between v and vf∗ holds for optimal models f∗ when using a
specific class of loss function— loss functions ` that satisfy the property that an optimal model f∗ for
X yields an optimal model f∗S for XS . For example, this property holds for all strictly proper scoring
rules, because optimal models under these loss functions are probabilistic forecasts [2]

C SAGE Properties with Optimal Models

C.1 Properties with Bayes Classifier

Here, we derive the properties of SAGE when it is applied to the Bayes classifier with cross entropy
loss. We derive the claim from scratch, beginning with a proof that the Bayes classifier is optimal.
To be explicit that the prediction is a vector of probabilities, we denote the model output as f(y|x),
where we have f(i|x) ≥ 0 for i = 1, 2, . . . , p and

∑p
i=1 f(i|x) = 1. We also use H to denote entropy

and I to denote mutual information.

For a classification model trained with cross entropy loss, we decompose the population risk as
follows to reveal the optimal classifier:

E
[
`
(
f(y|X), Y

)]
= E

[
− log f(Y |X)

]
= EX

[
EY |X

[
− log f(Y |X)

]]
= EX

[
DKL

(
p(y|X) || f(y|X)

)]
+ H(Y |X)

The entropy term is constant, so the optimal prediction model is the Bayes classifier f∗(x) =
p(y|X = x). We now consider the application of SAGE to the model f∗. The restricted models f∗S
are the following:
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f∗S(y|xS) = E
[
f∗(y|X)

∣∣ XS = xS
]

= E
[
p(y|X)

∣∣ XS = xS
]

= p(y|XS = xS)

The risk incurred by the restricted model f∗S is then:

E
[
`
(
f∗S(y|XS), Y

)]
= E

[
− log f∗S(Y |XS)

]
= E

[
− log p(Y |XS)

]
= H(Y |XS)

We can now see that the cooperative game vf∗ is:

vf∗(S) = E
[
`
(
f∗∅(X∅), Y

)]
− E

[
`
(
f∗S(XS), Y

)]
= H(Y )−H(Y | XS)

= I(Y ;XS)

In the expression for Shapley values, the weighted summation has terms of the following form:

v(S ∪ {i})− v(S) = I(Y ;XS∪{i})− I(Y ;XS)

= H(Y | XS)−H(Y | XS∪{i})

= I(Y ;Xi

∣∣ XS)

This completes the derivation for the result in the main text, because we see that the Shapley values
are equal to

φi(vf∗) =
1

d

∑
S⊆D\{i}

(
d− 1

|S|

)−1

I(Y ;Xi | XS).

C.2 Properties with Conditional Expectation

We now show a similar result for optimal regression models when using mean squared error (MSE)
loss. We assume that the predictions are scalars, although a similar result holds for vector-valued
predictions. We first decompose the population risk to determine the optimal model:

E
[
`
(
f(X), Y

)]
= E

[(
f(X)− Y

)2]
= E

[(
f(X)− E[Y |X]

)2]
+ E

[(
E[Y |X]− Y

)2]
Only the first term depends on f , so it is clear that the conditional expectation function f∗(x) =
E[Y |X = x] is optimal. We now consider the application of SAGE to the model f∗. The restricted
models f∗S are the following:

f∗S(xS) = E
[
f∗(X)

∣∣ XS = xS
]

= E
[
E[Y |X]

∣∣ XS = xS
]

= E[Y |XS = xS ]

The last line follows from the law of iterated expectations. The risk incurred by the restricted model
f∗S is then:
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E
[
`
(
f∗S(XS), Y

)]
= E

[(
E[Y | XS ]− Y

)2]
= E[Var(Y |XS)]

We now see that the cooperative game vf∗ is:

vf∗(S) = Var(Y )− E
[
Var(Y |XS)

]
= Var

(
E[Y |X]

)
The last line follows from the law of total variance. The difference terms in the Shapley summation
are the following:

vf∗(S ∪ {i})− vf∗(S) = E
[
Var(Y |XS)

]
− E

[
Var(Y |XS∪{i})

]
= EXS

[
Var
(
E[Y |XS , Xi] | XS

)]
The last line also follows from the law of total variance. Intuitively, these terms quantify the average
amount of variation left in the random variable E[Y | XS , Xi] when Xi is unknown but distributed
according to p(X − i|XS). If the amount of variation is high, then i contains significant incremental
information about Y . The above expression is analogous to I(Y ;Xi | XS) from the classification
case.

Finally, we see that the SAGE values are equal to

φi(vf∗) =
1

d

∑
S⊆D\{i}

(
d− 1

|S|

)−1

E
[
Var
(
E[Y |XS , Xi]

∣∣XS

)]
.

D SAGE Sampling

Here, we describe our sampling algorithm in greater detail and discuss the consequences of using the
marginal rather than conditional distribution.

D.1 SAGE Sampling Algorithm

Our sampling approach is displayed below in Algorithm 1. In Algorithm 1, each feature’s score φi(vf )
is estimated by attempting to average many samples of the form `

(
fS(xS), y

)
−`
(
fS∪{i}(xS∪{i}), y

)
,

or the incremental improvement in the loss when incorporating Xi for a particular input-label pair
(x, y). In each sample, we draw (x, y) from the empirical data distribution, we determine S based on a
random permutation π of feature indices D, and we estimate fS(xS) via Monte Carlo approximation
with a distribution q(XS̄ |XS = xS) substituted for p(XS̄ |XS = xS).

One practical option for the distribution q, which we use in our experiments, is to sample from the
marginal distribution q(XS̄ |XS = xS) = p(XS̄), which corresponds to an assumption of feature
independence. Another option is to mean impute the missing features, which corresponds to a further
assumption of model linearity [4].

D.2 Properties with Marginal Sampling

SAGE’s properties change when Algorithm 1 is run with sampling from the marginal distribution
p(XS̄) rather than the conditional distribution q(XS̄ |XS = xS). Sampling from the marginal instead
of the conditional changes the underlying cooperative game and means that we no longer estimate
the Shapley values φi(vf ), but rather the Shapley values of a different game.

Sampling from the marginal distribution means that in the inner loop of Algorithm 1, the Monte Carlo
approximation estimates E[f(xS , XS̄)]. We adopt the notation f̃S to denote an alternative restricted
model (instead of fS):
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Algorithm 1 Sampling-based approximation for SAGE values

Input: data
{
xi, yi

}N
i=1

, model f , loss function `, outer samples n, inner samples m
Initialize φ̂1 = 0, φ̂2 = 0, . . . , φ̂d = 0

marginalPred = 1
N

∑N
i=1 f(xi)

for i = 1 to n do
Sample (x, y) from

{
xi, yi

}N
i=1

Sample π, a permutation of D
S = ∅
lossPrev = `(marginalPred, y)
for j = 1 to d do
S = S ∪ {π[j]}
y = 0
for k = 1 to m do

Sample xk
S̄
∼ q(xS̄ |XS = xS)

y = y + f(xS , x
k
S̄

)
end for
ȳ = y

m
loss = `(ȳ, y)
∆ = lossPrev − loss
φ̂π[j] = φ̂π[j] + ∆
lossPrev = loss

end for
end for
return φ̂1

n
, φ̂2
n
, . . . , φ̂d

n

f̃S(xS) = E[f(xS , XS̄)].

We then adopt the notation ṽf to denote the new cooperative game using f̃S , which is

ṽf (S) = E
[
`
(
f̃∅(X∅), Y

)]
− E

[
`
(
f̃S(XS), Y

)]
.

Sampling from the marginal distribution means that we estimate the Shapley values φi(ṽf ) instead
of φi(vf ). Some of the properties of the importance scores φi(ṽf ) differ from those described in
Section 3.1:

1. Due to the efficiency property, the scores satisfy
∑d
i=1 φi(ṽf ) = ṽf (D)− ṽf (∅). Because we

have f̃∅(x∅) = f∅(x∅) and f̃D(x) = fD(x) for all x (i.e., the models are the same given either
all features or no features), we also have

∑d
i=1 φi(ṽf ) =

∑d
i=1 φi(vf ) = vf (D).

2. Due to the symmetry property, we have φi(ṽf ) = φj(ṽf ) when ṽf (S∪{i}) = ṽf (S∪{j}) for all
S. That holds if we have f̃S∪{i}(xS∪{i}) = f̃S∪{j}(xS∪{j}) for all (S, x). Given our definition
of f̃S , there is no simple sufficient condition for when this holds for (Xi, Xj). Unlike in the
original formulation, perfectly correlated features may not receive equal importance.

3. Due to the dummy property, we have φi(ṽf ) = 0 if f̃S(xS) = f̃S∪{i}(xS∪{i}) for all (S, x). A
sufficient condition for this to hold is that the model f is invariant to Xi. That means that the
value φi(ṽf ) for a sensitive attribute Xi (e.g., race) may be zero even if the model depends on
correlated features (e.g., zip code).

4. Due to the monotonicity property, if we have two response variables Y, Y ′ with models f, f ′, and
we have ṽf (S ∪{i})− ṽf (S) ≥ ṽf ′(S ∪{i})− ṽf ′(S) for all S, then we have φi(ṽf ) ≥ φi(ṽf ′).
This means that if Xi contributes more predictive power to Y than to Y ′, then it receives more
importance for Y .

5. Due to the linearity property, the values φi(ṽf ) are the expectation of per-instance loss SHAP
values computed using the marginal distribution. If we define the game ṽf,x,y as
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ṽf,x,y(S) = `
(
f̃∅(x∅), y

)
− `
(
f̃S(xS), y

)
,

then we have φi(ṽf ) = EXY
[
φi(ṽf,X,Y )

]
. These are loss SHAP values computed with the same

feature independence assumption [4].

6. As in the original formulation, the values φi(ṽf ) are invariant to invertible transformations of the
features.

One elegant aspect of the original formulation of SAGE is a connection with intrinsic properties
of the data distribution when applied with optimal models (e.g., the Bayes classifier). We lose
these connections when using the marginal distribution because the restricted models f̃∗S based on
optimal models f∗ are no longer optimal for XS . This formulation is therefore less aligned with the
information value of each feature.

However, some recent work has advocated for advantages of sampling from the marginal distribution
in SHAP [3]. The most appealing property is that features that are not used by the model always
receive zero attribution, a property that we showed also holds for SAGE.

E Proofs

The two results from Section 3.3 of the main text are restated and proved below.

Theorem 1. The SAGE value estimates φ̂i(vf ) from Algorithm 1 converge to the correct values
φi(vf ) when run with n→∞, m→∞, with an arbitrarily large dataset

{
(xi, yi)

}N
i=1

, and with
sampling from the correct conditional distribution p(XS̄ |XS = xS).

Proof. At a high level, the algorithm has an outer loop that contributes one sample to each of the
SAGE value estimates φ̂i(vf ). Each estimate can be interpreted as a sample mean that converges to
its expectation as n becomes large. Our proof proceeds by considering the value of the expectation
under the assumptions that m→∞ and q(XS̄ |XS = xS) = p(XS̄ |XS = xS).

Each estimate φ̂i(vf ) is the average of many samples of the random variable ∆i,m
X,Y,S which we define

here as

∆i,m
x,y,S = `

( 1

m

m∑
k=1

f(xS , x
k
S̄), y

)
− `
( 1

m

m∑
l=1

f(xS∪{i}, x
l
S̄\{i}), y

)
. (1)

Specifically, we have

φ̂i(vf ) =
1

n

n∑
j=1

∆i,m
xj ,yj ,Sj

(2)

where i,m are fixed and xj , yj and Sj are determined by each iteration of Algorithm 1. Even for
fixed i,m, x, y, S, note that ∆i,m

x,y,S is a random variable because each xk
S̄

and xl
S̄\{i} are independent

samples from the distributions q(XS̄ |XS = xS) and q(XS̄\{i}|XS∪{i} = xS∪{i}) respectively. We
begin by analyzing the random variable ∆i,m

x,y,S and what it converges to as m→∞.

Consider the first term in Eq. 1. The mean prediction 1
m

∑m
k=1 f(xS , x

k
S̄

) provides a Monte Carlo
approximation of

Eq(XS̄ |XS=xS)[f(xS , XS̄)].
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We assume that samples are from the true conditional distribution p(XS̄ |XS = xS), so the average
prediction 1

m

∑m
k=1 f(xS , x

k
S̄

) is in fact an approximation of fS(xS). When we let m→∞ the law
of large numbers says that

1

m

m∑
k=1

f(xS , x
k
S̄)

p→ fS(xS) (3)

where
p→ denotes convergence in probability. By an identical argument for the second term in Eq. 1,

because of sampling from p(XS̄\{i}|XS∪{i} = xS∪{i}), we see that

1

m

m∑
l=1

f(xS∪{i}, x
l
S̄\{i})

p→ fS∪{i}(xS∪{i}) (4)

as m→∞. This lets us conclude that for fixed x, y, S, ∆i,m
x,y,S converges as m→∞ as follows:

∆i,m
x,y,S

p→ `
(
fS(xS), y

)
− `
(
fS∪{i}(xS∪{i}), y

)
. (5)

With this result, we define ∆i
x,y,S ≡ limm→∞∆i,m

x,y,S . We now consider the fact that the final
estimates φ̂i(vf ) are the average of many samples ∆i,m

X,Y,S , or many samples ∆i
X,Y,S in the limit

m→∞. We will determine the expected value of φ̂i(vf ) and argue that it converges to this value as
n→∞.

First, consider the distribution from which S is implicitly drawn. In Algorithm 1, S is determined
by a permutation π of the feature indices D = {1, . . . , d} and it contains indices that are already
included when we arrive at feature i. The number of indices |S| preceding i is uniformly distributed
between 0 and d− 1, and the preceding indices are chosen uniformly at random among the

(
d−1
|S|
)

possible combinations. We can therefore write a probability mass function p(S) for subsets S that
may be included by the time when i is added:

p(S) =
1

d

(
d− 1

|S|

)−1

. (6)

When we take the expectation of ∆i
x,y,S over S, we have

Ep(S)

[
∆i
x,y,S

]
= Ep(S)

[
`
(
fS(xS), y

)
− `
(
fS∪{i}(xS∪{i}), y

)]
=

∑
T⊆D\{i}

1

d

(
d− 1

|T |

)−1(
`
(
fT (xT ), y

)
− `
(
fT∪{i}(xT∪{i}), y

))
. (7)

The expression above already resembles the Shapley value because of the weighted summation over
subsets. We can now incorporate an expectation over (x, y) pairs drawn from the data distribution
p(X,Y ) and see that the Shapley value φi(vf ) arises naturally:

EXY Ep(S)

[
∆i
X,Y,S

]
= EXY Ep(S)

[
`
(
fS(XS), Y

)
− `
(
fS∪{i}(XS∪{i}), Y

)]
= Ep(S)

[
vf (S ∪ {i})− vf (S)

]
= φi(vf ). (8)

Finally, we invoke the law of large numbers again to conclude that in the limit of an arbitrarily large
dataset

{
(xi, yi)

}N
i=1

drawn from p(X,Y ), we have the convergence result

φ̂i(vf )
p→ φi(vf ) (9)
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as n→∞,m→∞.

In summary, our proof is the following:

φ̂i(vf ) =
1

n

n∑
j=1

∆i,m
xj ,yj ,Sj

∆i
x,y,S ≡ lim

m→∞
∆i,m
x,y,S

= `
(
fS(xS), y

)
− `
(
fS∪{i}(xS∪{i}), y

)
lim
m→∞

φ̂i(vf ) =
1

n

n∑
j=1

∆i
xj ,yj ,Sj

lim
n→∞

lim
m→∞

φ̂i(vf ) = EXY Ep(S)

[
∆i
X,Y,S

]
= φi(vf )

We now prove the second result.

Theorem 2. The SAGE value estimates φ̂i(vf ) from Algorithm 1 have variance that reduces at the
rate of O( 1

n ).

Proof. At a high level, the algorithm has an outer loop that contributes one sample ∆i,m
X,Y,S (see

Eq. 1) to each of the SAGE estimates φ̂i(vf ), where randomness arises from the sampling of x, y
and S and the inner loop samples (see Eq. 2). Regardless of how q(XS̄ |XS = xS) is chosen and the
number of inner loop samples m, the central limit theorem says that as n becomes large, the sample
mean φ̂i(vf ) converges in distribution to a Gaussian with mean E[∆i,m

X,Y,S ] and variance equal to

Var(∆i,m
X,Y,S)

n
. (10)

Although we do not have access to the numerator Var(∆i,m
X,Y,S), we can conclude that the variance of

the estimates behaves as O( 1
n ).

F Function Sensitivity

Several recent papers considered a related question of a function’s sensitivity to its various inputs
[5, 6, 7]. We briefly describe the problem to illustrate how it differs from our work.

For a scalar real-valued function f defined on multiple features x = (x1, x2, . . . , xd), this body of
work seeks to assign a sensitivity value to each feature. This is done with a variance-based measure
of the dependence of f on each feature, through an analysis of the cooperative game

wf (S) = Var
(
f(X)

)
− E

[
Var(f(X) | XS)

]
= Var

(
E
[
f(X) | XS

])
. (11)

The Shapley values φi(wf ) serve as sensitivity measures for each feature i = 1, 2, . . . , d. In prior
work, Owen connected this measure of feature importance to the two Sobol’ indices [5], Owen
and Prieur considered special cases with closed form solutions [6], and Song et al. provided a
sampling-based approximation algorithm [7].

Our work considers the problem of assessing feature importance for black-box machine learning
models. In contrast with the function sensitivity work, we allow for a response variable Y that is
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jointly distributed with X , which is not necessarily in R, and we consider how predictive each feature
is of Y . The work on function sensitivity is equivalent to an application of SAGE to the special case
where Y ≡ f(X), where the model output is real-valued f(X) ∈ R, and where the loss ` is MSE
loss.

For cases with a response variable Y ∈ R, a natural question is whether there is a relationship
between φi(vf ) and φi(wf ). The only case when these values coincide is when the loss is MSE and
the model f is the conditional expectation f∗(x) = E[Y |X = x]. Equality of the Shapley values
follows from equality of the cooperative games:

wf∗(S) = Var
(
E[f∗(X) | XS ]

)
= Var

(
E[E[Y | X] | XS ]

)
= Var

(
E[Y | XS ]

)
= Var(Y )− E[Var(Y | XS)]

= E
[(
Y − f∗∅(X∅)

)]
− E

[(
Y − f∗S(XS)

)2]
= vf∗(S)

Outside of this special case, the sensitivity values φi(wf ) differ from the SAGE values φi(vf ).

G Summary of Additive Importance Measures

Table 1 summarizes the additive importance measures described in Section 2.3. For each method,
we indicate which part of the subdomain of P(D) it prioritizes and show whether it approximates v
(universal predictive power) or vf (model-based predictive power).

Permutation tests, conditional permutation tests and mean importance assign scores in a similar
manner. Each of these methods make different assumptions to approximate the difference

vf (D \ {i})− vf (D) = E
[
`
(
fD\{i}(XD\{i}), Y

)]
− E

[
`
(
f(X), Y

)]
,

where the restricted model is given by:

fD\{i}(xD\{i}) = EXi|XD\{i}

[
f(xD\{i}, Xi)

]
.

Conditional permutation tests make the closest approximation, but they have the expectation over
Xi outside the loss function instead of inside it. Permutation tests make an assumption of feature
independence by sampling Xi from its marginal distribution p(Xi) instead of from its conditional
distribution p(Xi|XD\{i} = xD\{i}). And finally, mean importance makes a further assumption of
model linearity by simply using the marginal mean E[Xi].

H Experiment Details

This section provides more details about our experiments, as well as several additional results.

H.1 Datasets and Hyperparameters

Table 2 provides information about the datasets, models and validation/test splits used in our experi-
ments. All hyperparameters were chosen using the validation data (number of rounds for decision
trees, `1 regularization for BRCA, early stopping for the MLP) and the test data were reserved for
measuring model performance and calculating feature importance.

The BRCA data required a small amount of pre-processing. We manually selected a small set of
genes with known BRCA associations and then selected the remaining genes uniformly at random to
have 50 total genes. A small number of missing expression values were imputed with their mean.

10



Table 1: Summary of additive importance measures. Approximates: whether the method approximates
universal or model-based predictive power. Importance values: the values assigned as each method is
run until convergence, with φ0 indicating the value for which u(S) closely approximates v or vf . For
Shapley Net Effects and SAGE φi(·) denotes the Shapley value.

SUBDOMAIN APPROXIMATES METHOD IMPORTANCE VALUES

{
D
}
∪
{
{D \ {i}} | i ∈ D

}

v Feature Ablation
φi = E

[
`
(
fi(XD\{i}), Y

)]
− E

[
`
(
f(X), Y

)]
φ0 = min

ŷ
E
[
`
(
ŷ, Y

)]
− E

[
`
(
f(X), Y

)]
−
∑
i∈D

φi

vf

Permutation Test

φi = EXY

[
EXi

[
`
(
f(Xi, XD\{i}), Y

)]]
− E

[
`
(
f(X), Y

)]
φ0 = min

ŷ
E
[
`
(
ŷ, Y

)]
− E

[
`
(
f(X), Y

)]
−
∑
i∈D

φi

Conditional
Permutation Test

φi = EXY

[
EXi|XD\{i}

[
`
(
f(Xi, XD\{i}), Y

)]]
− E

[
`
(
f(X), Y

)]
φ0 = min

ŷ
E
[
`
(
ŷ, Y

)]
− E

[
`
(
f(X), Y

)]
−
∑
i∈D

φi

Mean Importance
φi = E

[
`
(
f(E[Xi], XD\{i}), Y

)]
− E

[
`
(
f(X), Y

)]
φ0 = min

ŷ
E
[
`
(
ŷ, Y

)]
− E

[
`
(
f(X), Y

)]
−
∑
i∈D

φi

{
∅
}
∪
{
{i} | i ∈ D

}
v

Univariate Predictors
φi = min

ŷ
E
[
`
(
ŷ, Y

)]
− E

[
`
(
fi(Xi), Y

)]
φ0 = 0

Squared Correlation
φi = Corr(Xi, Yi)

2

φ0 = 0

P(D)

v Shapley Net Effects
φi = φi(v) (Shapley value)

φ0 = 0

vf SAGE
φi = φi(vf ) (Shapley value)

φ0 = 0

Table 2: Summary of datasets. Split size: number of examples used for training, validation and testing.
Classes: the number of possible classes (where applicable).

Dataset Features Examples Split Size Classes Loss Model Type

Bank Marketing 16 45,211 (36,169, 4,521, 4,521) 2 Cross Entropy CatBoost
Bike Rental 12 10,886 (8,710, 1,088, 1,088) – MSE XGBoost
Credit Default 20 1,000 (800, 100, 100) 2 Cross Entropy CatBoost
Breast Cancer 50 556 (334, 111, 111) 4 Cross Entropy Logistic Regression
MNIST 784 70,000 (54,000, 6,000, 10,000) 10 Cross Entropy MLP (256, 256)

When calculating feature importance, our sampling approximation for SAGE (Algorithm 1) was run
using draws from the marginal distribution. We used a fixed set of 512 background samples for the
bank, bike and credit datasets, 128 for MNIST, and all 334 training examples for BRCA.

When generating random subsets for the correlation experiment in the main text, we first sampled the
number of included features k uniformly at random and then generated a random subset of k indices.
We used 5,000 random subsets for the bank, bike, credit and BRCA datasets, and 1,500 subsets for
MNIST.

H.2 Additional Results

Global explanations for several datasets are provided for visual comparison. Figure 1 shows the bank
marketing explanations, Figure 2 shows the bike demand explanations, and Figure 3 shows the credit
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Figure 1: Feature importance for bank marketing dataset.
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Figure 2: Feature importance for bike demand dataset.

quality explanations. The error bars in the SAGE explanations indicate 95% confidence intervals.
The explanations have clear differences, but the differences are less pronounced than with the higher
dimensional datasets (MNIST and BRCA).

To contextualize the computational cost of calculating SAGE values, we performed a direct compari-
son between our proposed approach and a naive calculation via SHAP. Recall that SAGE values are
the expectation of loss SHAP values across the entire dataset, which must be calculated separately for
each instance (see Section 3.1 of the main text). We estimated SAGE values using both approaches to
compare how quickly each converges.

To quantify SAGE’s convergence speed, we ran the sampling algorithm for a variable number
of iterations and then calculated the result’s mean similarity with the correct values, which were
determined by running the sampling algorithm until the convergence criterion was satisfied for
t = 0.01 (see Section 3.3 of the main text). For SHAP, we determined the mean number of iterations
required for a local explanation to converge (again, with t = 0.01) and generated multiple local
explanations with this number of samples; we then averaged a variable number of local explanations
and calculated the similarity with the true SAGE explanation.

Figure 4 shows the results, using both MSE and correlation as metrics. The results show that both
approaches eventually converge to the correct values, but SHAP requires 2-4 orders of magnitude
more model evaluations. The results could be made more favorable to SHAP by using a more liberal
convergence criterion for the local explanations; SAGE shows that spreading computation across
examples yields the correct result more efficiently. However, these barely-converged SHAP values
would not be useful as local explanations. We conclude that our sampling approach is far more
practical when users only require the global explanation.
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Figure 3: Feature importance for credit quality dataset.
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Figure 4: Convergence comparison between SAGE and an indirect calculation via local SHAP values.
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