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Abstract

We consider the problem of online learning with non-convex losses. In terms
of feedback, we assume that the learner observes – or otherwise constructs – an
inexact model for the loss function encountered at each stage, and we propose a
mixed-strategy learning policy based on dual averaging. In this general context, we
derive a series of tight regret minimization guarantees, both for the learner’s static
(external) regret, as well as the regret incurred against the best dynamic policy
in hindsight. Subsequently, we apply this general template to the case where the
learner only has access to the actual loss incurred at each stage of the process. This
is achieved by means of a kernel-based estimator which generates an inexact model
for each round’s loss function using only the learner’s realized losses as input.

1 Introduction

In this paper, we consider the following online learning framework:

1. At each stage t = 1, 2, . . . of a repeated decision process, the learner selects an action xt
from a compact convex subset K of a Euclidean space Rn.

2. The agent’s choice of action triggers a loss `t(xt) based on an a priori unknown loss function
`t : K → R; subsequently, the process repeats.

If the loss functions `t encountered by the agent are convex, the above framework is the standard
online convex optimization setting of Zinkevich [58] – for a survey, see [16, 29, 45] and references
therein. In this case, simple first-order methods like online gradient descent (OGD) allow the learner
to achieve O(T 1/2) regret after T rounds [58], a bound which is well-known to be min-max optimal
in this setting [1, 45]. At the same time, it is also possible to achieve tight regret minimization
guarantees against dynamic comparators – such as the regret incurred against the best dynamic policy
in hindsight, cf. [11, 21, 23, 30, 33] and references therein.

On the other hand, when the problem’s loss functions are not convex, the situation is considerably
more difficult. When the losses are generated from a stationary stochastic distribution, the problem
can be seen as a version of a continuous-armed bandit in the spirit of Agrawal [3]; in this case, there
exist efficient algorithms guaranteeing logarithmic regret by discretizing the problem’s search domain
and using a UCB-type policy [18, 37, 48]. Otherwise, in an adversarial context, an informed adversary
can impose linear regret to any deterministic algorithm employed by the learner [31, 45, 50]; as a
result, UCB-type approaches are no longer suitable.
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Table 1: Overview of related work. In regards to feedback, an “exact” model means that the learner acquires
perfect knowledge of the encountered loss functions; “unbiased” refers to an inexact model that is only accurate
on average; finally, “bandit” means that the learner records their incurred loss and has no other information. We
only report here the best known bounds in the literature; all bounds derived in this paper are typeset in bold.

In view of this impossibility result, two distinct threads of literature have emerged for online non-
convex optimization. One possibility is to examine less demanding measures of regret – like the
learner’s local regret [31] – and focus on first-order methods that minimize it efficiently [28, 31].
Another possibility is to consider randomized algorithms, in which case achieving no regret is possible:
Krichene et al. [38] showed that adapting the well-known Hedge (or multiplicative / exponential
weights) algorithm to a continuum allows the learner to achieve O(T 1/2) regret, as in the convex
case. This result is echoed in more recent works by Agarwal et al. [2] and Suggala & Netrapalli [50]
who analyzed the “follow the perturbed leader” (FTPL) algorithm of Kalai & Vempala [34] with
exponentially distributed perturbations and an offline optimization oracle (exact or approximate);
again, the regret achieved by FTPL in this setting is O(T 1/2), i.e., order-equivalent to that of Hedge
in a continuum.

Our contributions and related work. A crucial assumption in the above works on randomized
algorithms is that, after selecting an action, the learner receives perfect information on the loss function
encountered – i.e., an exact model thereof. This is an important limitation for the applicability of
these methods, which led to the following question by Krichene et al. [38, p. 8]:

One question is whether one can generalize the Hedge algorithm to a bandit setting, so
that sublinear regret can be achieved without the need to explicitly maintain a cover.

To address this open question, we begin by considering a general framework for randomized action
selection with imperfect feedback – i.e., with an inexact model of the loss functions encountered at
each stage. Our contributions in this regard are as follows:

1. We present a flexible algorithmic template for online non-convex learning based on dual averag-
ing with imperfect feedback [42].

2. We provide tight regret minimization rates – both static and dynamic – under a wide range of
different assumptions for the loss models available to the optimizer.

3. We show how this framework can be extended to learning with bandit feedback, i.e., when the
learner only observes their realized loss and must construct a loss model from scratch.

Viewed abstractly, the dual averaging (DA) algorithm is an “umbrella” scheme that contains Hedge as
a special case for problems with a simplex-like domain. In the context of online convex optimization,
the method is closely related to the well-known “follow the regularized leader” (FTRL) algorithm of
Shalev-Shwartz & Singer [46], the FTPL method of Kalai & Vempala [34], “lazy” mirror descent
(MD) [15, 16, 45], etc. For an appetizer to the vast literature surrounding these methods, we refer the
reader to [14, 16, 42, 45, 46, 55, 57] and references therein.

In the non-convex setting, our regret minimization guarantees can be summarized as follows (see
also Table 1 above): if the learner has access to inexact loss models that are unbiased and finite in
mean square, the DA algorithm achieves in expectation a static regret bound of O(T 1/2). Moreover,
in terms of the learner’s dynamic regret, the algorithm enjoys a bound of O(T 2/3V

1/3
T ) where

VT :=
∑T
t=1‖`t+1 − `t‖∞ denotes the variation of the loss functions encountered over the horizon

of play (cf. Section 4 for the details). Importantly, both bounds are order-optimal, even in the context
of online convex optimization, cf. [1, 11, 20].
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With these general guarantees in hand, we tackle the bandit setting using a “kernel smoothing”
technique in the spirit of Bubeck et al. [19]. This leads to a new algorithm, which we call bandit dual
averaging (BDA), and which can be seen as a version of the DA method with biased loss models.
The bias of the loss model can be controlled by tuning the “radius” of the smoothing kernel; however,
this comes at the cost of increasing the model’s variance – an incarnation of the well-known “bias-
variance” trade-off. By resolving this trade-off, we are finally able to answer the question of Krichene
et al. [38] in the positive: BDA enjoys an O(T

n+2
n+3 ) static regret bound and an O(T

n+3
n+4V

1/(n+4)
T )

dynamic regret bound, without requiring an explicit discretization of the problem’s search space.

This should be contrasted with the case of online convex learning, where it is possible to achieve
O(T 3/4) regret through the use of simultaneous perturbation stochastic approximation (SPSA)
techniques [25], or even O(T 1/2) by means of kernel-based methods [17, 19]. This represents
a drastic drop from O(T 1/2), but this cannot be avoided: the worst-case bound for stochastic
non-convex optimization is Ω(T (n+1)/(n+2)) [36, 37], so our static regret bound is nearly optimal
in this regard (i.e., up to O(T−1/(n+2)(n+3)), a term which is insignificant for horizons T ≤
1012). Correspondingly, in the case of dynamic regret minimization, the best known upper bound is
O(T 4/5V

1/5
T ) for online convex problems [11, 24]. We are likewise not aware of any comparable

dynamic regret bounds for online non-convex problems; to the best our knowledge, our paper is the
first to derive dynamic regret guarantees for online non-convex learning with bandit feedback.

We should stress here that, as is often the case for methods based on lifting, much of the computational
cost is hidden in the sampling step. This is also the case for the proposed DA method which, like
[38], implicitly assumes access to a sampling oracle. Estimating (and minimizing) the per-iteration
cost of sampling is an important research direction, but one that lies beyond the scope of the current
paper, so we do not address it here.

2 Setup and preliminaries

2.1. The model. Throughout the sequel, our only blanket assumption will be as follows:

Assumption 1. The stream of loss functions encountered is uniformly bounded Lipschitz, i.e., there
exist constants R,L > 0 such that, for all t = 1, 2, . . . , we have:

1. |`t(x)| ≤ R for all x ∈ K; more succinctly, ‖`t‖∞ ≤ R.

2. |`t(x′)− `t(x)| ≤ L‖x′ − x‖ for all x, x′ ∈ K.

Other than this meager regularity requirement, we make no structural assumptions for `t (such as
convexity, unimodality, or otherwise). In this light, the framework under consideration is akin to
the online non-convex setting of Krichene et al. [38], Hazan et al. [31], and Suggala & Netrapalli
[50]. The main difference with the setting of Krichene et al. [38] is that the problem’s domain K is
assumed convex; this is done for convenience only, to avoid technical subtleties involving “uniform
fatness” conditions and the like.

In terms of playing the game, we will assume that the learner can employ mixed strategies to
randomize their choice of action at each stage; however, because this mixing occurs over a continuous
domain, defining this randomization requires some care. To that end, letM ≡M(K) denote the
space of all finite signed Radon measures on K. Then, a mixed strategy is defined as an element π of
the set of Radon probability measures ∆ ≡ ∆(K) ⊆ M(K) on K, and the player’s expected loss
under π when facing a bounded loss function ` ∈ L∞(K) will be denoted as

〈`, π〉 := Eπ[`] =
∫
K `(x) dπ(x). (1)

Remark 1. We should note here that ∆ contains a vast array of strategies, including atomic and
singular distributions that do not admit a density. For this reason, we will write ∆c for the set
of strategies that are absolutely continuous relative to the Lebesgue measure λ on K, and ∆⊥ for
the set of singular strategies (which are not); by Lebesgue’s decomposition theorem [26], we have
∆ = ∆c ∪∆⊥. By construction, ∆⊥ contains the player’s pure strategies, i.e., Dirac point masses
δx that select x ∈ K with probability 1; however, it also contains pathological strategies that admit
neither a density, nor a point mass function – such as the Cantor distribution [26]. By contrast, the
Radon-Nikodym (RN) derivative p := dπ/dλ of π exists for all π ∈ ∆c, so we will sometimes refer
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to elements of ∆c as “Radon-Nikodym strategies”; in particular, if π ∈ ∆c, we will not distinguish
between π and p unless absolutely necessary to avoid confusion.

Much of our analysis will focus on strategies χ with a piecewise constant density on K, i.e., χ =∑k
i=1 αi 1Ci for a collection of weights αi ≥ 0 and measurable subsets Ci ⊆ K, i = 1, . . . , k, such

that
∫
K χ =

∑
i αiλ(Ci) = 1. These strategies will be called simple and the space of simple strategies

on K will be denoted by X ≡ X (K). A key fact regarding simple strategies is that X is dense in ∆
in the weak topology ofM [26, Chap. 3]; as a result, the learner’s expected loss under any mixed
strategy π ∈ ∆ can be approximated within arbitrary accuracy ε > 0 by a simple strategy χ ∈ X . In
addition, when k (or n) is not too large, sampling from simple strategies can be done efficiently; for
all these reasons, simple strategies will play a key role in the sequel.

2.2. Measures of regret. With all this in hand, the regret of a learning policy πt ∈ ∆, t = 1, 2, . . . ,
against a benchmark strategy π∗ ∈ ∆ is defined as

Regπ∗(T ) =
∑T
t=1

[
Eπt [`t]− Eπ∗ [`t]

]
=
∑T
t=1〈`t, πt − π∗〉, (2)

i.e., as the difference between the player’s mean cumulative loss under πt and π∗ over T rounds. In a
slight abuse of notation, we write Regp∗(T ) if π∗ admits a density p∗, and Regx(T ) for the regret
incurred against the pure strategy δx, x ∈ K. Then, the player’s (static) regret under πt is given by

Reg(T ) = maxx∈KRegx(T ) = supχ∈X Regχ(T ) (3)
where the maximum is justified by the compactness of K and the continuity of each `t. The lemma
below provides a link between pure comparators and their approximants in the spirit of Krichene et al.
[38]; to streamline our discussion, we defer the proof to the supplement:
Lemma 1. Let U be a convex neighborhood of x in K and let χ ∈ X be a simple strategy supported
on U . Then, Regx(T ) ≤ Regχ(T ) + Ldiam(U)T .

This lemma will be used to bound the agent’s static regret using bounds obtained for simple strategies
χ ∈ X . Going beyond static comparisons of this sort, the learner’s dynamic regret is defined as

DynReg(T ) =
∑T
t=1[〈`t, πt〉 −minπ∈∆〈`t, π〉] =

∑T
t=1〈`t, πt − π∗t 〉 (4)

where π∗t ∈ arg minπ∈∆〈`t, π〉 is a “best-response” to `t (that such a strategy exists is a consequence
of the compactness of K and the continuity of each `t). In regard to its static counterpart, the agent’s
dynamic regret is considerably more ambitious, and achieving sublinear dynamic regret is not always
possible; we examine this issue in detail in Section 4.

2.3. Feedback models. After choosing an action, the agent is only assumed to observe an inexact
model ˆ̀

t ∈ L∞(K) of the t-th stage loss function `t; for concreteness, we will write
ˆ̀
t = `t + et (5)

where the “observation error” et captures all sources of uncertainty in the player’s model. This
uncertainty could be both “random” (zero-mean) or “systematic” (non-zero-mean), so it will be
convenient to decompose et as

et = zt + bt (6)
where zt is zero-mean and bt denotes the mean of et.

To define all this formally, we will write Ft = F(π1, . . . , πt) for the history of the player’s mixed
strategy up to stage t (inclusive). The chosen action xt and the observed model ˆ̀

t are both generated
after the player chooses πt so, by default, they are not Ft-measurable. Accordingly, we will collect
all randomness affecting ˆ̀

t in an abstract probability law P, and we will write bt = E[et | Ft] and
zt = et − bt; in this way, E[zt | Ft] = 0 by definition.

In view of all this, we will focus on the following descriptors for ˆ̀
t:

a) Bias: ‖bt‖∞ ≤ Bt (7a)

b) Variance: E[‖zt‖2∞ | Ft] ≤ σ2
t (7b)

c) Mean square: E[‖ˆ̀t‖2∞ | Ft] ≤M2
t (7c)

In the above, Bt, σt and Mt are deterministic constants that are to be construed as bounds on the bias,
(conditional) variance, and magnitude of the model ˆ̀

t at time t. In obvious terminology, a model
with Bt = 0 will be called unbiased, and an unbiased model with σt = 0 will be called exact.
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I Example 1 (Parametric models). An important application of online optimization is the case where
the encountered loss functions are of the form `t(x) = `(x; θt) for some sequence of parameter
vectors θt ∈ Rm. In this case, the learner typically observes an estimate θ̂t of θt, leading to the
inexact model ˆ̀

t = `(·; θ̂t). Importantly, this means that ˆ̀
t does not require infinite-dimensional

feedback to be constructed. Moreover, the dependence of ` on θ is often linear, so if θ̂t is an unbiased
estimate of θt, then so is ˆ̀

t. J

I Example 2 (Online clique prediction). As a specific incarnation of a parametric model, consider
the problem of finding the largest complete subgraph – a maximum clique – of an undirected graph
G = (V, E). This is a key problem in machine learning with applications to social networks [27], data
mining [9], gene clustering [49], feature embedding [56], and many other fields. In the online version
of the problem, the learner is asked to predict such a clique in a graph Gt that evolves over time (e.g.,
a social network), based on partial historical observations of the graph. Then, by the Motzkin-Straus
theorem [13, 41], this boils down to an online quadratic program of the form:

maximize ut(x) =
∑n
i,j=1 xiAij,txj subject to xi ≥ 0,

∑n
i=1 xi = 1, (MCP)

where At = (Aij,t)
n
i,j=1 denotes the adjacency matrix of Gt. Typically, Ât is constructed by picking

a node i uniformly at random, charting out its neighbors, and letting Âij,t = |V|/2 whenever j is
connected to i. It is easy to check that Ât is an unbiased estimator of At; as a result, the function
ût(x) = x>Âtx is an unbiased model of ut. J

I Example 3 (Online-to-batch). Consider an empirical risk minimization model of the form

f(x) = 1
m

∑m
i=1 fi(x) (8)

where each fi : Rn → R corresponds to a data point (or “sample”). In the “online-to-batch” formula-
tion of the problem [45], the optimizer draws uniformly at random a sample it ∈ {1, . . . ,m} at each
stage t = 1, 2, . . . , and observes ˆ̀

t = fit . Typically, each fi is relatively easy to store in closed form,
so ˆ̀

t is an easily available unbiased model of the empirical risk function f . J

3 Prox-strategies and dual averaging

The class of non-convex online learning policies that we will consider is based on the general template
of dual averaging (DA) / “follow the regularized leader” (FTRL) methods. Informally, this scheme
can be described as follows: at each stage t = 1, 2, . . . , the learner plays a mixed strategy that
minimizes their cumulative loss up to round t− 1 (inclusive) plus a “regularization” penalty term
(hence the “regularized leader” terminology). In the rest of this section, we provide a detailed
construction and description of the method.

3.1. Randomizing over discrete vs. continuous sets. We begin by describing the dual averaging
method when the underlying action set is finite, i.e., of the form A = {1, . . . , n}. In this case, the
space of mixed strategies is the n-dimensional simplex ∆n := ∆(A) = {p ∈ Rn+ :

∑n
i=1 pi = 1},

and, at each t = 1, 2, . . . , the dual averaging algorithm prescribes the mixed strategy

pt ← arg minp∈∆n
{η
∑t−1
s=1〈ˆ̀t, p〉+ h(p)}. (9)

In the above, η > 0 is a “learning rate” parameter and h : ∆n → R is the method’s “regularizer”,
assumed to be continuous and strongly convex over ∆n. In this way, the algorithm can be seen as
tracking the “best” choice up to the present, modulo a “day 0” regularization component – the “follow
the regularized leader” interpretation.

In our case however, the method is to be applied to the infinite-dimensional set ∆ ≡ ∆(K) of the
learner’s mixed strategies, so the issue becomes considerably more involved. To illustrate the problem,
consider one of the prototypical regularizer functions, the negentropy h(p) =

∑n
i=1 pi log pi on ∆n.

If we naïvely try to extend this definition to the infinite-dimensional space ∆(K), we immediately
run into problems: First, for pure strategies, any expression of the form

∑
x′∈K δx(x′) log δx(x′)

would be meaningless. Second, even if we focus on Radon-Nikodym strategies p ∈ ∆c and use
the integral definition h(p) =

∫
K p log p, a density like p(x) ∝ 1/(x(log x)2) on K = [0, 1/2] has

infinite negentropy, implying that even ∆c is too large to serve as a domain.
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3.2. Formal construction of the algorithm. To overcome the issues identified above, our starting
point will be that any mixed-strategy incarnation of the dual averaging algorithm must contain at
least the space X ≡ X (K) of the player’s simple strategies. To that end, let V be an ambient Banach
space which contains the set of simple strategies X as an embedded subset. For technical reasons, we
will also assume that the topology induced on X by the reference norm ‖·‖ of V is not weaker than
the natural topology on X induced by the total variation norm; formally, ‖·‖TV ≤ α‖·‖ for some
α > 0.1 For example, V could be the (Banach) spaceM(K) of finite signed measures on K, the
(Hilbert) space L2(K) of square integrable functions on K endowed with the L2 norm,2 etc.

With all this in hand, the notion of a regularizer on X is defined as follows:
Definition 1. A regularizer on X is a lower semi-continuous (l.s.c.) convex function h : V →
R ∪ {∞} such that:

1. X is a weakly dense subset of the effective domain domh := {p : h(p) <∞} of h.

2. The subdifferential ∂h of h admits a continuous selection, i.e., there exists a continuous
mapping∇h on dom ∂h := {∂h 6= ∅} such that∇h(q) ∈ ∂h(q) for all q ∈ dom ∂h.

3. h is strongly convex, i.e., there exists some K > 0 such that h(p) ≥ h(q) + 〈∇h(q), p−
q〉+ (K/2)‖p− q‖2 for all p ∈ domh, q ∈ dom ∂h.

The set Q := dom ∂h will be called the prox-domain of h; its elements will be called prox-strategies.
Remark. For completeness, recall that the subdifferential of h at q is the set ∂h(q) = {ψ ∈ V∗ :
h(p) ≥ h(q) + 〈ψ, p − q〉 for all q ∈ V}; also lower semicontinuity means that the sublevel sets
{h ≤ c} of h are closed for all c ∈ R. For more details, we refer the reader to Phelps [44].

Some prototypical examples of this general framework are as follows (with more in the supplement):

I Example 4 (L2 regularization). Let V = L2(K) and consider the quadratic regularizer h(p) =
(1/2)‖p‖22 = (1/2)

∫
K p

2 if p ∈ ∆c ∩L2(K), and h(p) =∞ otherwise. In this case, Q = domh =

∆c ∩L2(K) and ∇h(q) = q is a continuous selection of ∂h on Q. J

I Example 5 (Entropic regularization). Let V = M(K) and consider the entropic regularizer
h(p) =

∫
K p log p whenever p is a density with finite entropy, h(p) = ∞ otherwise. By Pinsker’s

inequality, h is 1-strongly convex relative to the total variation norm ‖·‖TV on V ; moreover, we have
Q = {q ∈ ∆c : supp(q) = K} ( domh and ∇h(q) = 1 + q log q on Q. In the finite-dimensional
case, this regularizer forms the basis of the well-known Hedge (or multiplicative/exponential weights)
algorithm [5, 6, 39, 54]; for the infinite-dimensional case, see [38, 43] (and below). J

With all this in hand, the dual averaging algorithm can be described by means of the abstract recursion

yt+1 = yt − ˆ̀
t, pt+1 = Q(ηt+1yt+1), (DA)

where (i) t = 1, 2, . . . denotes the stage of the process (with the convention y0 = ˆ̀
0 = 0);

(ii) pt ∈ Q is the learner’s strategy at stage t; (iii) ˆ̀
t ∈ L∞(K) is the inexact model revealed at stage

t; (iv) yt ∈ L∞(K) is a “score” variable that aggregates loss models up to stage t; (v) ηt > 0 is a
“learning rate” sequence; and (vi) Q : L∞(K)→ Q is the method’s mirror map, viz.

Q(ψ) = arg maxp∈V{〈ψ, p〉 − h(p)}. (10)

For a pseudocode implementation, see Alg. 1 below. In the paper’s supplement we also show that
the method is well-posed, i.e., the arg max in (10) is attained at a valid prox-strategy pt ∈ Q. We
illustrate this with an example:
I Example 6 (Logit choice). Suppose that h(p) =

∫
K p log p is the entropic regularizer of Example 5.

Then, the corresponding mirror map is given in closed form by the logit choice model:

Λ(ϕ) =
exp(ϕ)∫
K exp(ϕ)

for all ϕ ∈ L∞(K). (11)

This derivation builds on a series of well-established arguments that we defer to the supplement.
Clearly,

∫
K Λ(ϕ) = 1 and Λ(ϕ) > 0 as a function on K, so Λ(ϕ) is a valid prox-strategy. J

1Since the dual space ofM(K) contains L∞(K), we will also view L∞(K) as an embedded subset of V∗.
2In this case, α =

√
λ(K): this is because ‖p‖2TV =

[∫
K p
]2 ≤ ∫K p2 · ∫K 1 = λ(K)‖p‖22 if p ∈ ∆c.
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Algorithm 1: Dual averaging with imperfect feedback [Hedge variant: Q← Λ]

Require: mirror map Q : L∞(K)→ Q; learning rate ηt > 0; initialize: y1 ← 0
1: for t = 1, 2, . . . do
2: set pt ← Q(ηtyt) [pt ← Λ(ηtyt) for Hedge] # update mixed strategy
3: play xt ∼ pt # choose action
4: observe ˆ̀

t # model revealed
5: set yt+1 ← yt − ˆ̀

t # update scores
6: end for

4 General regret bounds

4.1. Static regret guarantees. We are now in a position to state our first result for (DA):
Proposition 1. For any simple strategy χ ∈ X , Alg. 1 enjoys the bound

Regχ(T ) ≤ η−1
T+1[h(χ)−minh] +

∑T
t=1〈et, χ− pt〉+ 1

2K

∑T
t=1 ηt‖ˆ̀t‖2∗. (12)

Proposition 1 is a “template” bound that we will use to extract static and dynamic regret guarantees
in the sequel. Its proof relies on a suitable energy function measuring the match between the learner’s
aggregate model yt and the comparator χ. The main difficulty is that these variables live in completely
different spaces (L∞(K) vs. X respectively), so there is no clear distance metric connecting them.
However, since bounded functions ψ ∈ L∞(K) and simple strategies χ ∈ X are naturally paired
via duality, they are indirectly connected via the Fenchel–Young inequality 〈ψ, χ〉 ≤ h(χ) + h∗(ψ),
where

h∗(ψ) = maxp∈V{〈ψ, p〉 − h(p)} (13)
denotes the convex conjugate of h. We will thus consider the energy function

Et := η−1
t [h(χ) + h∗(ηtyt)− 〈ηtyt, χ〉]. (14)

By construction, Et ≥ 0 for all t and Et = 0 if and only if pt = Q(ηtyt) = χ. More to the point, the
defining property of Et is the following recursive bound (which we prove in the supplement):
Lemma 2. For all χ ∈ X , we have:

Et+1 ≤ Et + 〈ˆ̀t, χ− pt〉+
(
η−1
t+1 − η

−1
t

)
[h(χ)−minh] + ηt

2K ‖ˆ̀t‖
2
∗. (15)

Proposition 1 is obtained by telescoping (15); subsequently, to obtain a regret bound for Alg. 1, we
must relate Regx(T ) to Regχ(T ). This can be achieved by invoking Lemma 1 but the resulting
expressions are much simpler when h is decomposable, i.e., h(p) =

∫
K θ(p(x)) dx for some C2

function θ : [0,∞)→ R with θ′′ > 0. In this more explicit setting, we have:
Theorem 1. Fix x ∈ K, let C be a convex neighborhood of x in K, and suppose that Alg. 1 is run
with a decomposable regularizer h(p) =

∫
K θ ◦ p. Then, letting φ(z) = zθ(1/z) for z > 0, we have:

E[Regx(T )] ≤ φ(λ(C))− φ(λ(K))

ηT+1
+ Ldiam(C)T + 2

∑T

t=1
Bt +

α2

2K

∑T

t=1
ηtM

2
t . (16)

In particular, if Alg. 1 is run with learning rate ηt ∝ 1/tρ, ρ ∈ (0, 1), and inexact models such that
Bt = O(1/tβ) and M2

t = O(t2µ) for some β, µ ≥ 0, we have:

E[Reg(T )] = O(φ(T−nκ)T ρ + T 1−κ + T 1−β + T 1+2µ−ρ) for all κ ≥ 0. (17)

Corollary 1. If the learner’s feedback is unbiased and bounded in mean square (i.e., Bt = 0 and
suptMt <∞), running Alg. 1 with learning rate ηt ∝ 1/tρ guarantees

E[Reg(T )] = O(φ(T−nρ)T ρ + T 1−ρ). (18)

In particular, for the regularizers of Examples 4 and 5, we have:

1. For θ(z) = (1/2)z2, Alg. 1 with ηt ∝ t−1/(n+2) guarantees E[Reg(T )] = O(T
n+1
n+2 ).

2. For θ(z) = z log z, Alg. 1 with ηt ∝ t−1/2 guarantees E[Reg(T )] = O(T 1/2).
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Remark 2. Here and in the sequel, logarithmic factors are ignored in the Landau O(·) notation. We
should also stress that the role of C in Theorem 1 only has to do with the analysis of the algorithm,
not with the derived bounds (which are obtained by picking a suitable C).

First, in online convex optimization, dual averaging with stochastic gradient feedback achieves
O(
√
T ) regret irrespective of the choice of regularizer, and this bound is tight [1, 16, 45]. By contrast,

in the non-convex setting, the choice of regularizer has a visible impact on the regret because it affects
the exponent of T : in particular, L2 regularization carries a much worse dependence on T relative to
the Hedge variant of Alg. 1. This is due to the term O(φ(T−nκ)T ρ) that appears in (17) and is in
turn linked to the choice of the “enclosure set” C having λ(C) ∝ T−nκ for some κ ≥ 0.

The negentropy regularizer (and any other regularizer with quasi-linear growth at infinity, see the
supplement for additional examples) only incurs a logarithmic dependence on λ(C). Instead, the
quadratic growth of the L2 regularizer induces an O(1/λ(C)) term in the algorithm’s regret, which is
ultimately responsible for the catastrophic dependence on the dimension of K. Seeing as the bounds
achieved by the Hedge variant of Alg. 1 are optimal in this regard, we will concentrate on this specific
instance in the sequel.

4.2. Dynamic regret guarantees. We now turn to the dynamic regret minimization guarantees of
Alg. 1. In this regard, we note first that, in complete generality, dynamic regret minimization is not
possible because an informed adversary can always impose a uniformly positive loss at each stage
[45]. Because of this, dynamic regret guarantees are often stated in terms of the variation of the loss
functions encountered, namely

VT :=
∑T
t=1‖`t+1 − `t‖∞ =

∑T
t=1 maxx∈K|`t+1(x)− `t(x)|, (19)

with the convention `t+1 = `t for t = T .3 We then have:
Theorem 2. Suppose that the Hedge variant of Alg. 1 is run with learning rate ηt ∝ 1/tρ and inexact
models with Bt = O(1/tβ) and M2

t = O(t2µ) for some β, µ ≥ 0. Then:

E[DynReg(T )] = O(T 1+2µ−ρ + T 1−β + T 2ρ−2µVT ). (20)

In particular, if VT = O(T ν) for some ν < 1 and the learner’s feedback is unbiased and bounded in
mean square (i.e., Bt = 0 and suptMt <∞), the choice ρ = (1− ν)/3 guarantees

E[DynReg(T )] = O(T
2+ν
3 ). (21)

To the best of our knowledge, Theorem 2 provides the first dynamic regret guarantee for online
non-convex problems. The main idea behind its proof is to examine the evolution of play over a series
of windows of length ∆ = O(T γ) for some γ > 0. In so doing, Theorem 1 can be used to obtain a
bound for the learner’s regret relative to the best action x ∈ K within each window. Obviously, if the
length of the window is chosen sufficiently small, aggregating the learner’s regret per window will be
a reasonable approximation of the learner’s dynamic regret. At the same time, if the window is taken
too small, the number of such windows required to cover T will be Θ(T ), so this approximation
becomes meaningless. As a result, to obtain a meaningful regret bound, this window-by-window
examination of the algorithm must be carefully aligned with the variation VT of the loss functions
encountered by the learner. Albeit intuitive, the details required to make this argument precise are
fairly subtle, so we relegate the proof of Theorem 2 to the paper’s supplement.

We should also observe here that theO(T
2+ν
3 ) bound of Theorem 2 is, in general, unimprovable, even

if the losses are linear. Specifically, Besbes et al. [11] showed that, if the learner is facing a stream of
linear losses with stochastic gradient feedback (i.e., an inexact linear model), an informed adversary
can still impose DynReg(T ) = Ω(T 2/3V

1/3
T ). Besbes et al. [11] further proposed a scheme to

achieve this bound by means of a periodic restart meta-principle that partitions the horizon of play
into batches of size (T/VT )2/3 and then runs an algorithm achieving (T/VT )1/3 regret per batch.
Theorem 2 differs from the results of Besbes et al. [11] in two key aspects: (a) Alg. 1 does not
require a periodic restart schedule (so the learner does not forget the information accrued up to a
given stage); and (b) more importantly, it applies to general online optimization problems, without a
convex structure or any other structural assumptions (though with a different feedback structure).

3This notion is due to Besbes et al. [11]. Other notions of variation have also been considered [11, 21, 23],
as well as other measures of regret, cf. [30, 32]; for a survey, see [20].
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Algorithm 2: Bandit dual averaging [Hedge variant: Q← Λ]

Require: mirror map Q : L∞(K)→ Q; parameters ηt, δt, εt > 0; initialize: y1 ← 0
1: for t = 1, 2, . . . do
2: set pt ← (1− εt)Q(ηtyt) + εt/λ(K) [Q← Λ for Hedge] # mixed strategy
3: play xt ∼ pt # choose action
4: set ˆ̀

t = Kδt(xt, ·) · `t(xt)/pt(xt) # payoff model

5: set yt+1 ← yt − ˆ̀
t # update scores

6: end for

5 Applications to online non-convex learning with bandit feedback

As an application of the inexact model framework of the previous sections, we proceed to consider
the case where the learner only observes their realized reward `t(xt) and has no other information.
In this “bandit setting”, an inexact model is not available and must instead be constructed on the fly.

When K is a finite set, `t is a |K|-dimensional vector, and an unbiased estimator for `t can be
constructed by setting ˆ̀

t(x) = [1{x = xt}/P(x = xt)] `t(xt) for all x ∈ K. This “importance
weighted” estimator is the basis for the EXP3 variant of the Hedge algorithm which is known to
achieve O(T 1/2) regret [8]. However, in the case of continuous action spaces, there is a key obstacle:
if the indicator 1{x = xt} is replaced by a Dirac point mass δxt(x), the resulting loss model
ˆ̀
t ∝ δxt would no longer be a function but a generalized (singular) distribution, so the dual averaging

framework of Alg. 1 no longer applies.

To counter this, we will take a “smoothing” approach in the spirit of [19] and consider the estimator
ˆ̀
t(x) = Kt(xt, x) · `t(xt)/pt(xt) (22)

where Kt : K × K → R is a (time-varying) smoothing kernel, i.e.,
∫
KKt(x, x

′) dx′ = 1 for all
x ∈ K. For concreteness (and sampling efficiency), we will assume that losses now take values in
[0, 1], and we will focus on simple kernels that are supported on a neighborhood Uδ(x) = Bδ(x) ∩K
of x in K and are constant therein, i.e., Kδ(x, x′) = [λ(Uδ(x))]−1 1{‖x′ − x‖ ≤ δ}.

The “smoothing radius” δ in the definition ofKδ will play a key role in the choice of loss model being
fed to Alg. 1. If δ is taken too small, Kδ will approach a point mass, so it will have low estimation
error but very high variance; at the other end of the spectrum, if δ is taken too large, the variance of
the induced estimator will be low, but so will its accuracy. In view of this, we will consider a flexible
smoothing schedule of the form δt = 1/tµ which gradually sharpens the estimator over time as more
information comes in. Then, to further protect the algorithm from getting stuck in local minima, we
will also incorporate in pt an explicit exploration term of the form εt/λ(K).

Putting all this together, we obtain the bandit dual averaging (BDA) algorithm presented in pseu-
docode form as Alg. 2 above. By employing a slight variation of the analysis presented in Section 4
(basically amounting to a tighter bound in Lemma 2), we obtain the following guarantees for Alg. 2:
Proposition 2. Suppose that the Hedge variant of Alg. 2 is run with learning rate ηt ∝ 1/tρ and
smoothing/exploration schedules δt ∝ 1/tµ, εt ∝ 1/tβ respectively. Then, the learner enjoys the
bound

E[Reg(T )] = O(T ρ + T 1−µ + T 1−β + T 1+nµ+β−ρ). (23)
In particular, if the algorithm is run with ρ = (n+ 2)/(n+ 3) and µ = β = 1/(n+ 3), we obtain
the bound E[Reg(T )] = O(T

n+2
n+3 ).

Proposition 3. Suppose that the Hedge variant of Alg. 2 is run with parameters as in Proposition 2
against a stream of loss functions with variation VT = O(T ν). Then, the learner enjoys

E[DynReg(T )] = O(T 1+nµ+β−ρ + T 1−β + T 1−µ + T ν+2ρ−nµ−β). (24)
In particular, if the algorithm is run with ρ = (1− ν)(n+ 2)/(n+ 4) and µ = β = (1− ν)/(n+ 4),
we obtain the optimized bound E[DynReg(T )] = O(T

n+3+ν
n+4 ).

To the best of our knowledge, Proposition 3 is the first result of its kind for dynamic regret mini-
mization in online non-convex problems with bandit feedback. We conjecture that the bounds of
Propositions 2 and 3 can be tightened further to O(T

n+1
n+2 ) and O(T

n+2+ν
n+3 ) by dropping the explicit

exploration term; we defer this finetuning to future work.
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A Examples

In this appendix, we provide some more decomposable regularizers that are commonly used in the
literature:
I Example 7 (Log-barrier regularization). Let V =M(K) as above and consider the so-called Burg
entropy h(p) = −

∫
K log p [4]. In this case, Q = dom ∂h = {q ∈ ∆c : supp(q) = K} = domh

and∇h(q) = −1/q on Q. In the finite-dimensional case, this regularizer plays a fundamental role in
the affine scaling method of Karmarkar [35], see e.g., Tseng [52], Vanderbei et al. [53] and references
therein. The corresponding mirror map is obtained as follows: letL(p;λ) =

∫
K ψp+

∫
K log p−λ

∫
K p

denote the Lagrangian of the problem (10), so q = Q(ψ) satisfies the first-order optimality condition

ψ + 1/q − λ = 0. (A.1)

Solving for q and integrating, we get
∫
K(λ− ψ)−1 =

∫
K q = 1. The function φ(λ) =

∫
K(λ− ψ)−1

is decreasing in λ and continuous whenever finite; moreover, since ψ ∈ L∞(K), it follows that
φ is always finite (and hence continuous) for large enough λ, and limλ→∞ φ(λ) = 0. Since
supλ φ(λ) =∞, there exists some maximal λ∗ such that (A.1) holds (in practice, this can be located
by a simple line search initialized at some λ > ‖ψ‖∞). We thus get Q(ψ) = (λ∗ − ψ)−1. J

I Example 8 (Tsallis entropy). A generalization of the Shannon-Gibbs entropy for nonextensive
variables is the Tsallis entropy [51] defined here as h(p) =

∫
K θ(p) where θ(z) = [γ(1−γ)]−1(z−zγ)

for γ ∈ (0, 1], with the continuity convention (z−zγ)/(1−γ) = z log z for γ = 1 (corresponding to
the Shannon-Gibbs case). Working as in Example 7, we have Q = dom ∂h = {q ∈ ∆c : supp(q) =
K} ( domh, and the corresponding mirror map q = Q(ψ) is obtained via the first-order stationarity
equation

ψ − 1− γqγ−1

γ(1− γ)
− λ = 0. (A.2)

Then, solving for q yields Q(ψ) = (1− γ)1/(γ−1)
∫
K(µ−ψ)1/(γ−1) with µ > ‖ψ‖∞ chosen so that∫

KQ(ψ) = 1. J

B Basic properties of regularizers and mirror maps

The goal of this appendix is to prove some basic results on regularizer functions and mirror maps
that will be used liberally in the sequel. Versions of the results presented here already exist in the
literature, but our infinite-dimensional setting introduces some subtleties that require further care. For
this reason, we state and prove all required results for completeness.

We begin by recalling some definitions from the main part of the paper. First, we writeM≡M(K)
for the space of all finite signed Radon measures on K equipped with the total variation norm
‖µ‖TV = µ+(K) + µ−(K), where µ+ (resp. µ−) denotes the positive (resp. negative) part of
µ coming from the Hahn-Banach decomposition of signed measures on K. As we discussed in
Section 3, we also assume given a model Banach space V containing the set of simple strategies X as
an embedded subset and such that ‖·‖TV ≤ α‖·‖ for some α > 0.

With all this in hand, we begin by discussing the well-posedness of Alg. 1. To that end, we have the
following basic result:

Lemma B.1. Let h be a regularizer on X . Then:

1. Q(ψ) ∈ Q for all ψ ∈ V∗; in particular:

q = Q(ψ) ⇐⇒ ψ ∈ ∂h(q). (B.1)

2. If q = Q(ψ) and p ∈ domh, we have

〈∇h(q), q − p〉 ≤ 〈ψ, q − p〉. (B.2)

3. The convex conjugate h∗(ψ) = maxp∈V{〈ψ, p〉 − h(p)} is Fréchet differentiable and
satisfies

Dv h
∗(ψ) = 〈v,Q(ψ)〉 for all ψ, v ∈ V∗. (B.3)
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Corollary 2. Alg. 1 is well-posed, i.e., pt ∈ Q for all t = 1, 2, . . . if ˆ̀
t ∈ L∞(K).

Proof. We proceed item by item:

1. First, since h is strongly convex and lower semi-continuous, the maximum in (10) is attained.
Hence, by Fermat’s rule for subdifferentials, q solves (10) if and only if ψ − ∂h(q) 3 0. We thus
get the string of equivalences:

q = Q(ψ) ⇐⇒ ψ − ∂h(q) 3 0 ⇐⇒ ψ ∈ ∂h(q). (B.4)

In particular, this implies that ψ ∈ dom ∂h(q) 6= ∅, i.e., q ∈ dom ∂h =: Q, as claimed.

2. To establish (B.2), it suffices to show that it holds for all q ∈ Q (by continuity). To do so, let

φ(t) = h(q + t(p− q))− [h(q) + 〈ψ, q + t(p− q)〉]. (B.5)

Since h is strongly convex relative ψ ∈ ∂h(q) by (B.1), it follows that φ(t) ≥ 0 with equality if
and only if t = 0. Moreover, note that ψ(t) = 〈∇h(q + t(p − q)) − ψ, p − q〉 is a continuous
selection of subgradients of φ. Given that φ and ψ are both continuous on [0, 1], it follows that φ
is continuously differentiable and φ′ = ψ on [0, 1]. Thus, with φ convex and φ(t) ≥ 0 = φ(0) for
all t ∈ [0, 1], we conclude that φ′(0) = 〈∇h(q)− ψ, p− q〉 ≥ 0, from which our claim follows.

Finally, the Fréchet differentiability of h∗ is a straightforward application of the envelope theorem,
which is sometimes referred to in the literature as Danskin’s theorem, cf. Berge [10, Chap. 4] �

As we mentioned in the main text, much of our analysis revolves around the energy function (14)
defined by means of the Fenchel-Young inequality. To formalize this, it will be convenient to introduce
a more general pairing between p ∈ V and ψ ∈ V∗, known as the Fenchel coupling. Following [40],
this is defined as

F (p, ψ) = h(p) + h∗(ψ)− 〈ψ, p〉 for all p ∈ domh, ψ ∈ V∗. (B.6)

The following series of lemmas gathers some basic properties of the Fenchel coupling. The first is a
lower bound for the Fenchel coupling in terms of the ambient norm in V:

Lemma B.2. Let h be a regularizer on X with strong convexity modulus K. Then, for all p ∈ domh
and all ψ ∈ V∗, we have

F (p, ψ) ≥ K

2
‖Q(ψ)− p‖2. (B.7)

Proof. By the definition of F and the inequality (B.2), we have:

F (p, ψ) = h(p) + h∗(ψ)− 〈ψ, p〉 = h(p) + 〈ψ,Q(ψ)〉 − h(Q(ψ))− 〈ψ, p〉
≥ h(p)− h(Q(ψ))− 〈∇h(ψ), Q(ψ)− p〉

≥ K

2
‖Q(ψ)− p‖2 (B.8)

where we used (B.2) in the second line, and the strong convexity of h in the last. �

Our next result is the primal-dual analogue of the so-called “three-point identity” for the Bregman
divergence [22]:

Proposition B.1. Let h be a regularizer on X , fix some p ∈ V , ψ,ψ+ ∈ V∗, and let q = Q(ψ).
Then:

F (p, ψ+) = F (p, ψ) + F (q, ψ+) + 〈ψ+ − ψ, q − p〉. (B.9)

Proof. By definition:
F (p, ψ+) = h(p) + h∗(ψ+)− 〈ψ+, p〉
F (p, ψ) = h(p) + h∗(ψ)− 〈ψ, p〉.

(B.10)
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Thus, by subtracting the above, we get:

F (p, ψ+)− F (p, ψ) = h(p) + h∗(ψ+)− 〈ψ+, p〉 − h(p)− h∗(ψ) + 〈ψ, p〉
= h∗(ψ+)− h∗(ψ)− 〈ψ+ − ψ, p〉
= h∗(ψ+)− 〈ψ,Q(ψ)〉+ h(Q(ψ))− 〈ψ+ − ψ, p〉
= h∗(ψ+)− 〈ψ, q〉+ h(q)− 〈ψ+ − ψ, p〉
= h∗(ψ+) + 〈ψ+ − ψ, q〉 − 〈ψ+, q〉+ h(q)− 〈ψ+ − ψ, p〉
= F (q, ψ+) + 〈ψ+ − ψ, q − p〉 (B.11)

and our proof is complete. �

We are now in a position to state and prove a key inequality for the Fenchel coupling:

Proposition B.2. Let h be a regularizer on X with convexity modulus K, fix some p ∈ domh, and
let q = Q(ψ) for some ψ ∈ V∗. Then, for all v ∈ V∗, we have:

F (p, ψ + v) ≤ F (p, ψ) + 〈v, q − p〉+
1

2K
‖v‖2∗ (B.12)

Proof. Let q = Q(ψ), ψ+ = ψ + v, and q+ = Q(ψ+). Then, by the three-point identity (B.9), we
have

F (p, ψ) = F (p, ψ+) + F (q+, ψ) + 〈ψ − ψ+, q+ − p〉. (B.13)

Hence, after rearranging:

F (p, ψ+) = F (p, ψ)− F (q+, ψ) + 〈v, q+ − p〉
= F (p, ψ)− F (q+, ψ) + 〈v, q − p〉+ 〈v, q+ − q〉. (B.14)

By Young’s inequality, we also have

〈v, q+ − q〉 ≤ K

2
‖q+ − q‖2 +

1

2K
‖v‖2∗. (B.15)

Thus, substituting in (B.14), we get

F (p, ψ+) ≤ F (p, ψ) + 〈v, q − p〉+
1

2K
‖v‖2∗ − F (q+, ψ) +

K

2
‖q+ − q‖2. (B.16)

Our claim then follows by noting that F (q+, ψ) ≥ K
2 ‖q

+ − q‖2 (cf. Lemma B.2 above). �

C Regret derivations

Notation: from losses to payoffs. In this appendix, we prove the general regret guarantees for
Alg. 1. For notational convenience, we will switch in what follows from “losses” to “payoffs”, i.e.,
we will assume that the learner is encountering a sequence of payoff functions ut = −`t and gets as
feedback the model ût = −ˆ̀

t.

C.1. Basic bounds and preliminaries. We begin by providing some template regret bounds that
we will use as a toolkit in the sequel. As a warm-up, we prove the basic comparison lemma between
simple and pure strategies:

Lemma 1. Let U be a convex neighborhood of x in K and let χ ∈ X be a simple strategy supported
on U . Then, Regx(T ) ≤ Regχ(T ) + Ldiam(U)T .

Proof. By Assumption 1, we have ut(x) ≤ ut(x′)+L‖x−x′‖ ≤ ut(x′)+Ldiam(U) for all x′ ∈ U .
Hence, taking expectations on both sides relative to χ, we get ut(x) ≤ 〈ut, χ〉+ Ldiam(U). Our
claim then follows by summing over t = 1, 2, . . . , T and invoking the definition of the regret. �
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We now turn to the derivation of our main regret guarantees as outlined in Section 4. Much of the
analysis to follow will revolve around the energy function (14) which, for convenience, we restate
below in terms of the Fenchel coupling (B.6):

Et :=
1

ηt
[h(χ) + h∗(ηtyt)− 〈ηtyt, χ〉] =

1

ηt
F (χ, ηtyt). (14)

In words, Et essentially measures the primal-dual “distance” between the benchmark strategy χ and
the aggregate model yt, taking into account the inflation of the latter by ηt in (DA). Our overall proof
strategy will then be to relate the regret incurred by the optimizer to the evolution of Et over time. To
that end, an application of Abel’s summation formula gives:

Et+1 − Et =
1

ηt+1
F (χ, ηt+1yt+1)− 1

ηt
F (χ, ηtyt)

=
1

ηt+1
F (χ, ηt+1yt+1)− 1

ηt
F (χ, ηtyt+1) (C.1a)

+
1

ηt
F (χ, ηtyt+1)− 1

ηt
F (χ, ηtyt). (C.1b)

We now proceed to unpack the two terms (C.1a) and (C.1b) separately, beginning with the latter.

To do so, substituting p← χ, ψ ← ηtyt and ψ+ ← ηtyt+1 in Proposition B.1 yields

(C.1b) =
1

ηt
[F (χ, ηtyt + ηtût)− F (χ, ηtyt)]

=
1

ηt
[F (pt, ηtyt+1) + 〈ηtût, pt − χ〉]

=
F (pt, ηtyt+1)

ηt
+ 〈ût, pt − χ〉 (C.2)

where we used the definition pt = Q(ηtyt) of pt. We thus obtain the interim expression

Et+1 = Et + (C.1a) + 〈ût, pt − χ〉+
F (pt, ηtyt+1)

ηt
(C.3)

Moving forward, for the term (C.1a), the definition of the Fenchel coupling (B.6) readily yields:

(C.1a) =

[
1

ηt+1
− 1

ηt

]
h(χ) +

1

ηt+1
h∗(ηt+1yt+1)− 1

ηt
h∗(ηtyt+1). (C.4)

Consider now the function ϕ(η) = η−1[h∗(ηψ) + minh] for arbitrary ψ ∈ L∞(K). By Lemma B.1,
h∗ is Fréchet differentiable with Dv h

∗(·) = 〈v,Q(·)〉 for all v ∈ V∗, so a simple differentiation
yields

ϕ′(η) =
1

η
〈ψ,Q(ηψ)〉 − 1

η2
[h∗(ηψ) + minh]

=
1

η2
[〈ηψ,Q(ηψ)〉 − h∗(ηψ)−minh]

=
1

η2
[h(Q(ηψ))−minh] ≥ 0, (C.5)

where we used the Fenchel-Young inequality as an equality in the second-to-last line. Since ηt+1 ≤ ηt,
the above shows that ϕ(ηt) ≥ ϕ(ηt+1). Hence, substituting ψ ← yt+1, we ultimately obtain

1

ηt+1
h∗(ηt+1yt+1)− 1

ηt
h∗(ηtyt+1) ≤

[
1

ηt
− 1

ηt+1

]
minh. (C.6)

Therefore, combining (C.3) and (C.6), we have proved the following template bound:
Lemma C.1. For all χ ∈ X , the policy (DA) enjoys the bound

Et+1 ≤ Et + 〈ût, pt − χ〉+

(
1

ηt+1
− 1

ηt

)
[h(χ)−minh] +

1

ηt
F (pt, ηtyt+1). (C.7)
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We are now in a position to prove our basic energy inequality (restated below for convenience):

Lemma 2. For all χ ∈ X , we have:

Et+1 ≤ Et + 〈ût, χ− pt〉+
(
η−1
t+1 − η

−1
t

)
[h(χ)−minh] + ηt

2K ‖ût‖
2
∗. (15)

Proof. Going back to Proposition B.2 and setting p← pt, ψ ← ηtyt and v ← ηtût, we get

F (pt, ηtyt+1) ≤ F (pt, ηtyt) + 〈ηtût, pt − pt〉+
η2
t

2K
‖ût‖2∗ =

η2
t

2K
‖ût‖2∗ (C.8)

where we used the fact that pt = Q(ηtyt). Our claim then follows by dividing both sides by ηt and
substituting in Lemma C.1. �

We will come back to these results as needed.

C.2. Static regret guarantees. We are now ready to prove our static regret results for Alg. 1. We
begin with the precursor to our main result in that respect:

Proposition 1. For any simple strategy χ ∈ X , Alg. 1 enjoys the bound

Regχ(T ) ≤ η−1
T+1[h(χ)−minh] +

∑T
t=1〈et, χ− pt〉+ 1

2K

∑T
t=1 ηt‖ût‖2∗. (12)

Proof. Recalling the decomposition ût = ut + et for the learner’s inexact models, a simple rear-
rangement of Lemma 2 gives

〈ut, χ− pt〉 ≤ Et − Et+1 + 〈et, pt − χ〉+
(
η−1
t+1 − η

−1
t

)
[h(χ)−minh] +

ηt
2K
‖ût‖2∗. (C.9)

Thus, telescoping over t = 1, 2, . . . , T , we get

Regχ(T ) ≤ E1 − ET+1 +

(
1

ηT+1
− 1

η1

)
[h(χ)−minh] +

T∑
t=1

〈et, pt − χ〉+
1

2K

T∑
t=1

ηt‖ût‖2∗

≤ h(χ)−minh

ηT+1
+

T∑
t=1

〈et, pt − χ〉+
1

2K

T∑
t=1

ηt‖ût‖2∗, (C.10)

where we used the fact that Et ≥ 0 for all t and E1 = η−1
1 [h(χ) +h∗(0)] = η−1

1 [h(χ)−minh]. �

As a simple application of Lemma 2, we get the following bound for simple comparators:

Corollary 3. For all χ ∈ X , Alg. 1 guarantees

E[Regχ(T )] ≤ h(χ)−minh

ηT+1
+ 2

T∑
t=1

Bt +
1

2K

T∑
t=1

ηt E[‖ût‖2∗], (C.11)

Proof. Simply take expectations over (12) and use the fact that

E[〈et, pt − χ〉] = E[〈E[et | Ft], pt − χ〉] = E[〈bt, pt − χ〉 | ] ≤ E[‖bt‖∞‖pt − χ‖1] ≤ 2Bt. �

We are finally in a position to prove the main static regret guarantee of Alg. 1:

Theorem 1. Fix x ∈ K, let C be a convex neighborhood of x in K, and suppose that Alg. 1 is run
with a decomposable regularizer h(p) =

∫
K θ ◦ p. Then, letting φ(z) = zθ(1/z) for z > 0, we have:

E[Regx(T )] ≤ φ(λ(C))− φ(λ(K))

ηT+1
+ Ldiam(C)T + 2

∑T

t=1
Bt +

α2

2K

∑T

t=1
ηtM

2
t . (16)

In particular, if Alg. 1 is run with learning rate ηt ∝ 1/tρ, ρ ∈ (0, 1), and inexact models such that
Bt = O(1/tβ) and M2

t = O(t2µ) for some β, µ ≥ 0, we have:

E[Reg(T )] = O(φ(T−nκ)T ρ + T 1−κ + T 1−β + T 1+2µ−ρ) for all κ ≥ 0. (17)
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Proof. To simplify the proof, we will make the normalizing assumption θ(0) = 0; if this is not the
case, θ can always be shifted by θ(0) for this condition to hold. [Note that Examples 4 and 5 both
satisfy this convention.]

With this in mind, let C be a convex neighborhood of x in K, and let unifC = λ(C)−1 1C denote the
(simple) strategy that assigns uniform probability to the elements of C and zero to all other points in
K. We then have:

h(unifC) =

∫
K
θ(unifC) =

∫
K
θ(1C /λ(C)) =

∫
C
θ(1/λ(C)) = λ(C)θ(1/λ(C)) = φ(λ(C)).

(C.12)
Moreover, since h is decomposable and the probability constraint

∫
K χ = 1 is symmetric, the

minimum of h over X will be attained at the uniform strategy unifK = λ(K)−1 1K. Thus, with X
weakly dense in domh, we obtain

minh = h(unifK) =

∫
K
θ(1K /λ(K)) = φ(λ(K)). (C.13)

In view of all this, Corollary 3 applied to χ = unifC yields

E[Regχ(T )] ≤ φ(λ(C))− φ(λ(K))

ηT+1
+ 2

T∑
t=1

Bt +
α2

2K

T∑
t=1

ηtM
2
t , (C.14)

where we used the fact that ‖·‖TV ≤ α‖·‖ so ‖·‖∗ ≤ α‖·‖∞. The bound (16) then follows by
combining the above with Lemma 1.

Regarding the bound (17), we first note that this is not a pseudo-regret bound but a bona fide bound
for the learner’s expected regret (so we cannot simply derive our point-dependent bound over x ∈ K).
In light of this, our first step will be to consider a “uniform” simple approximant for every x ∈ K. To
that end, building on an idea by Blum & Kalai [12] and Krichene et al. [38], fix a shrinkage factor
δ > 0 and let Kδ(x) = {x + δ(x′ − x) : x′ ∈ K} ⊆ K denote the homothetic transformation that
shrinks K to a fraction δ of its original size and then transports it to x ∈ K. By construction, we
have x ∈ Kδ(x) ⊆ K and, moreover, diam(Kδ(x)) = δ diam(K) and λ(Kδ(x)) = δnλ(K). Then,
letting µx := unifKδ(x) denote the uniform strategy supported on Kδ(x), we get

E[Reg(T )] = E
[
max
x∈K

Regx(T )

]
≤ E

[
max
x∈K

Regµx(T )

]
+ δLdiam(K)T, (C.15)

where, in the last step, we used Lemma 1.

Now, by Proposition 1, we have

Regµx(T ) ≤ h(µx)−minh

ηT+1
+

T∑
t=1

〈et, pt − µx〉+
1

2K

T∑
t=1

ηt‖ût‖2∗

≤ φ(δnλ(K))− φ(λ(K))

ηT+1
+

T∑
t=1

〈et, pt − µx〉+
α2

2K

T∑
t=1

ηt‖ût‖2∞. (C.16)

and hence

E
[
max
x∈K

Regµx(T )

]
≤ φ(δnλ(K))− φ(λ(K))

ηT+1
+ E

[
max
x∈K

T∑
t=1

〈et, pt − µx〉

]
+
α2

2K

T∑
t=1

ηtM
2
t .

(C.17)
Thus, to proceed, it suffices to bound the second term of the above expression.

To do so, introduce the auxiliary process
ỹt+1 = ỹt − zt, p̃t+1 = Q(ηt+1ỹt+1), (C.18)

with p̃1 = p1. We then have
T∑
t=1

〈et, pt − µx〉 =

T∑
t=1

〈et, (pt − p̃t) + (p̃t − µx)〉

=

T∑
t=1

〈et, pt − p̃t〉+

T∑
t=1

〈bt, p̃t − µx〉+

T∑
t=1

〈zt, p̃t − µx〉 (C.19)

so it suffices to derive a bound for each of these terms. This can be done as follows:
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1. The first term of (C.19) does not depend on x, so we have

E

[
max
x∈K

T∑
t=1

〈et, pt − p̃t〉

]
=

T∑
t=1

E[E[〈et, pt − p̃t〉 | Ft]] ≤ 2

T∑
t=1

Bt (C.20)

where, in the last step, we used the definition (7a) of Bt and the bound

〈bt, pt − p̃t〉 ≤ ‖pt − p̃t‖1‖bt‖∞ ≤ 2Bt. (C.21)

2. The second term of (C.19) can be similarly bounded as

E

[
max
x∈K

T∑
t=1

〈bt, p̃t − µx〉

]
≤

T∑
t=1

E[‖p̃t − µx‖1‖bt‖∗] ≤ 2

T∑
t=1

Bt. (C.22)

3. The third term is more challenging; the main idea will be to apply Proposition 1 on the sequence
−zt, t = 1, 2, . . . , viewed itself as a sequence of virtual payoff functions. Doing just that, we
get:

T∑
t=1

〈zt, p̃t − µx〉 ≤
h(µx)−minh

ηT+1
+

1

2K

T∑
t=1

ηt‖zt‖2∗

≤ φ(δnλ(K))− φ(λ(K))

ηT+1
+
α2

2K

T∑
t=1

ηt‖zt‖2∞. (C.23)

Thus, after maximizing and taking expectations, we obtain

E
[
max
x∈K
〈zt, p̃t − µx〉

]
≤ φ(δnλ(K))− φ(λ(K))

ηT+1
+
α2

2K

T∑
t=1

ηtσ
2
t . (C.24)

Therefore, plugging Eqs. (C.20), (C.22) and (C.24) into (C.19) and substituting the result to (C.17),
we finally get

E
[
max
x∈K

Regµx(T )

]
≤ 2

φ(δnλ(K))− φ(λ(K))

ηT+1
+ 4

T∑
t=1

Bt +
α2

2K

T∑
t=1

ηt(M
2
t + σ2

t ). (C.25)

The guarantee (17) then follows by taking δnλ(K) = T−nκ for some κ ≥ 0 and plugging everything
back in (C.15). �

C.3. Dynamic regret guarantees. We now turn to the algorithm’s dynamic regret guarantees, as
encoded by Theorem 2 (stated below for convenience):
Theorem 2. Suppose that the Hedge variant of Alg. 1 is run with learning rate ηt ∝ 1/tρ and inexact
models with Bt = O(1/tβ) and M2

t = O(t2µ) for some β, µ ≥ 0. Then:

E[DynReg(T )] = O(T 1+2µ−ρ + T 1−β + T 2ρ−2µVT ). (20)

In particular, if VT = O(T ν) for some ν < 1 and the learner’s feedback is unbiased and bounded in
mean square (i.e., Bt = 0 and suptMt <∞), the choice ρ = (1− ν)/3 guarantees

E[DynReg(T )] = O(T
2+ν
3 ). (21)

Proof of Theorem 2. As we discussed in the main body of our paper, our proof strategy will be
to decompose the horizon of play into m virtual segments, estimate the learner’s regret over each
segment, and then compare the learner’s regret per-segment to the corresponding dynamic regret over
said segment. We stress here again that this partition is only made for the sake of the analysis, and
does not involve restarting the algorithm – e.g., as in Besbes et al. [11].

To make this precise, we first partition the interval T = [1 . . T ] into m contiguous segments Tk,
k = 1, . . . ,m, each of length ∆ (except possibly the m-th one, which might be smaller). More
explicitly, take the window length to be of the form ∆ = dT γe for some constant γ ∈ [0, 1] to be
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determined later. In this way, the number of windows is m = dT/∆e = Θ(T 1−γ) and the k-th
window will be of the form Tk = [(k − 1)∆ + 1 . . k∆] for all k = 1, . . . ,m− 1 (the value k = m
is excluded as the m-th window might be smaller). For concision, we will denote the learner’s
static regret over the k-th window as Reg(Tk) = maxx∈K

∑
t∈Tk〈ut, δx − pt〉 (and likewise for its

dynamic counterpart).

To proceed, let S ⊆ T be a sub-interval of T and write x∗S ∈ arg maxx∈K
∑
s∈S us(x) for any

action that is optimal on average over the interval S. To ease notation, we also write x∗t ≡ x∗{t} ∈
arg maxx∈K ut(x) for any action that is optimal at time t, and x∗k ≡ x∗Tk for any action that is optimal
on average over the k-th window. Then, for all t ∈ ∆k, k = 1, 2, . . . ,m, we have

〈ut, δx∗t − pt〉 = 〈ut, δx∗k − pt〉+ [ut(x
∗
t )− ut(x∗k)] (C.26)

so the learner’s dynamic regret over Tk can be bounded as

DynReg(Tk) =
∑
t∈Tk

〈ut, δx∗k − pt〉+
∑
t∈Tk

[ut(x
∗
t )− ut(x∗k)] = Reg(Tk) +

∑
t∈Tk

[ut(x
∗
t )− ut(x∗k)].

(C.27)

Following a batch-comparison technique originally due to Besbes et al. [11], let τk = min Tk
denote the beginning of the k-th window, and let x∗τk denote a maximizer of the first payoff function
encountered in the window Tk (this choice could of course be arbitrary). Thus, given that x∗k
maximizes the per-window aggregate

∑
t∈Tk ut(x), we obtain:∑

t∈Tk

[ut(x
∗
t )− ut(x∗k)] ≤

∑
t∈Tk

[ut(x
∗
t )− ut(x∗τk)]

≤ |Tk|max
t∈Tk

[ut(x
∗
t )− ut(x∗τk)] ≤ 2∆Vk, (C.28)

where we let Vk =
∑
t∈Tk‖ut+1 − ut‖∞. In turn, combining (C.28) with (C.27), we get:

DynReg(Tk) ≤ Reg(Tk) + 2∆Vk, (C.29)

and hence, after summing over all windows:

DynReg(T ) ≤
m∑
k=1

Reg(Tk) + 2∆VT . (C.30)

Now Theorem 1 applied to the Hedge variant of Alg. 1 readily yields

E[Reg(Tk)] = O

(
(k∆)ρ + ∆1−κ +

∑
t∈Tk

t−β +
∑
t∈Tk

t1+2µ−ρ

)
(C.31)

so, after summing over all windows, we have
m∑
k=1

E[Reg(Tk)] = O

(
∆ρ

m∑
k=1

kρ +m∆1−κ +

T∑
t=1

t−β +

T∑
t=1

t2µ−ρ

)
= O

(
∆ρm1+ρ +m∆1−κ + T 1−β + T 1+2µ−ρ). (C.32)

Since ∆ = O(T γ) and m = O(T/∆) = O(T 1−γ), we get

∆ρm1+ρ = O((m∆)ρm) = O(T γρT (1−γ)(1+ρ)) = O(T 1+ρ−γ) (C.33)

and, likewise
m∆1−κ = O(T∆−κ) = O(TT−γκ) = O(T 1−γκ). (C.34)

Then, substituting in (C.32) and (C.30), we finally get the dynamic regret bound

E[DynReg(T )] = O
(
T 1+ρ−γ + T 1−γκ + T 1−β + T 1+2µ−ρ + T γVT

)
. (C.35)

To balance the above expression, we take γ = 2ρ−2µ for the window size exponent (which calibrates
the first and fourth terms in the sum above) and κ = β/γ = β/(2ρ − 2µ) (for the second and the
third). In this way, we finally obtain

E[DynReg(T )] = O
(
T 1−β + T 1+2µ−ρ + T 2ρ−2µVT

)
(C.36)

and our proof is complete. �
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D Derivations for the bandit framework

In this appendix, we aim at deriving guarantees for the Hedge variant of Alg. 2 using template bounds
from Appendix C. We start by stating preliminary results that are used in the sequel.

D.1. Preliminary results. We first present a technical bound for the convex conjugate of the
entropic regularizer (more on this below):

Lemma D.1. For all ψ, v ∈ V∗, there exists ξ ∈ [0, 1] such that:

log

(∫
K

exp(ψ + v)

)
≤ log

(∫
K

exp(ψ)

)
+ 〈v,Λ(ψ)〉+

1

2
〈v2,Λ(ψ + ξv)〉. (D.1)

Proof. Consider the function φ : [0, 1] → R with φ(t) = log
(∫
K exp(ψ + tv)

)
. By construction,

φ(0) = log
(∫
K exp(ψ)

)
and φ(1) = log

(∫
K exp(ψ + v)

)
. Thus, by a second-order Taylor expan-

sion with Lagrange remainder, we have:

φ(1) = φ(0) + φ′(0) +
1

2
φ′′(ξ) (D.2)

for some ξ ∈ [0, 1].

Now, for all t ∈ [0, 1], φ′(t) =
∫
K v exp(ψ+tv)∫
K exp(ψ+tv)

, which in turns gives

φ′(0) =

∫
K v exp(ψ)∫
K exp(ψ)

= 〈v,Λ(ψ)〉. (D.3)

As for the second order derivative of φ, we have for all t ∈ [0, 1]:

φ′′(t) =
∂

∂t

[∫
K v exp(ψ + tv)∫
K exp(ψ + tv)

]
=

∫
K v

2 exp(ψ + tv)
∫
K exp(ψ + tv)−

(∫
K v exp(ψ + tv)

)2(∫
K exp(ψ + tv)

)2
≤
∫
K v

2 exp(ψ + tv)
∫
K exp(ψ + tv)(∫

K exp(ψ + tv)
)2 =

∫
K v

2 exp(ψ + tv)∫
K exp(ψ + tv)

(D.4)

Thus, for all t ∈ [0, 1], we get
φ′′(t) ≤ 〈v2,Λ(ψ + tv)〉. (D.5)

Our claim then follows by injecting (D.3) and (D.5) into (D.2). �

In the next lemma, we now present an expression of the Fenchel coupling in the specific case of the
negentropy regularizer h(p) =

∫
K p log p.

Lemma D.2. In the case of the negentropy regularizer h(p) =
∫
K p log p, the Fenchel coupling for

all ψ ∈ V∗ and p ∈ domh is given by

F (p, ψ) =

∫
K
p log p+ log

(∫
K

exp(ψ)

)
− 〈ψ, p〉. (D.6)

Proof. We remind the general expression of the Fenchel coupling given in (B.6):

F (p, ψ) = h(p) + h∗(ψ)− 〈ψ, p〉 for all p ∈ domh, ψ ∈ V∗, (D.7)

where h∗(ψ) = maxp∈V{〈ψ, p〉−h(p)}. In the case of the negentropy regularizer h(p) =
∫
K p log p,

we have that arg maxp∈V{〈ψ, p〉 − h(p)} = Λ(ψ) and

h∗(ψ) = 〈ψ,Λ(ψ)〉 − h(Λ(ψ)). (D.8)
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Combining the above, we then get:

h∗(ψ) =

∫
K
ψΛ(ψ)−

∫
K

Λ(ψ) log Λ(ψ)

=

∫
K
ψΛ(ψ)−

∫
K

Λ(ψ)ψ +

∫
K

log

(∫
K

exp(ψ)

)
Λ(ψ)

= log

(∫
K

exp(ψ)

)
.

which, combined with (B.6), delivers (D.6). �

Finally we state a result enabling to control the difference between the regret Reg(T ) and R̃eg(T )
induced respectively by two policies pt and p̃t against the same rewards and models.

Lemma D.3. For t = 1, . . . , T , let pt, p̃t be two policies with respective regret Reg(T ) and R̃eg(T )
against a given sequence of models (ût)t for the rewards (ut)t. Then:

Reg(T ) ≤ R̃eg(T ) +

T∑
t=1

‖pt − p̃t‖∞. (D.9)

Proof. See Slivkins [47, Chap. 6]. �

D.2. Hedge-specific bounds. We are now ready to adapt the template bound of Lemma C.1 to the
Hedge case.

Lemma D.4. Assuming the regularizer h is the negentropy h(p) =
∫
K p log p, and that the mirror

map Q corresponds to the logit operator Λ, there exists ξ ∈ [0, 1] such that, for all χ ∈ X the policy
(DA) enjoys the bound:

Et+1 ≤ Et + 〈ût, pt − χ〉+

(
1

ηt+1
− 1

ηt

)
[h(χ)−minh] +

ηt
2
Gt(ξ)

2. (D.10)

where for all ξ ∈ [0, 1], Gt(ξ)2 = 〈Λ(ηtyt + ξηtût), û
2
t 〉.

Proof. We know from Lemma D.4 that the policy (DA) enjoys the bound:

Et+1 ≤ Et + 〈ût, pt − χ〉+

(
1

ηt+1
− 1

ηt

)
[h(χ)−minh] +

1

ηt
F (pt, ηtyt+1). (D.11)

The following lemma will help us handle the Fenchel coupling term in (D.11)

Lemma D.5. For a given t in the policy (DA), there exists ξ ∈ [0, 1] such that the following bounds
holds:

F (pt, ηtyt+1) ≤ η2
t

2
Gt(ξ)

2. (D.12)

Injecting the result given in Lemma D.5 in Eq. (D.11) yields the stated claim. �

Moving forward, we are only left to prove Lemma D.5.

Proof. Since we are in the case of the negentropy regularizer, Lemma D.2 enables to rewrite the
Fenchel coupling term of (D.11) as:

F (pt, ηtyt+1) =

∫
K
pt log pt + log

(∫
K

exp(ηtyt+1)

)
− 〈ηtyt+1, pt〉. (D.13)
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Injecting yt+1 = yt + ût in (D.13) yields:

F (pt, ηtyt+1) =

∫
K
pt log pt + log

(∫
K

exp(ηtyt + ηtût)

)
− 〈ηtyt, pt〉 − 〈ηtût, pt〉

= F (pt, ηtyt) +

(
log

∫
K

exp(ηtyt + ηtût)− log

∫
K

exp(ηtyt)

)
− 〈ηtût, pt〉

= log

(∫
K

exp(ηtyt + ηtût)

)
− log

(∫
K

exp(ηtyt)

)
− 〈ηtût, pt〉 (D.14)

where we used the fact that F (pt, ηtyt) = 0.

Now, by Lemma D.1 applied to ψ ← ηtyt and v ← ηtût, there exists ξ ∈ [0, 1] such that

log

(∫
K

exp(ηtyt + ηtût)

)
≤ log

(∫
K

exp(ηtyt)

)
+ ηt〈ût,Λ(ηtyt)〉+

η2
t

2
〈û2
t ,Λ(ηtyt + ξηtût)〉,

(D.15)
where we used the fact that pt = Λ(ηtyt). Our claim then follows by injecting (D.15) into our prior
expression for the Fenchel coupling F (pt, ηtyt+1) in the case of the Hedge variant. �

Proposition D.1. If we run the Hedge variant of Alg. 1, there exists a sequence ξt ∈ [0, 1] such that:

E[Regx(T )] ≤ log(λ(K)/λ(C))
ηT+1

+ Ldiam(C)T + 2
∑T

t=1
Bt +

1

2

∑T

t=1
ηt E[Gt(ξt)

2 | Ft],
(D.16)

where C is a convex neighborhood of x in K.

Proof. This result is obtained by using the template bound given in Lemma D.4, then by proceeding
exactly as in the proofs of Proposition 1 and Theorem 1. �

We stress here that Proposition D.1 does not correspond to the Hedge instantiation Theorem 1. Indeed,
the second order term 1

2

∑T
t=1 ηt E[Gt(ξt)

2 | Ft] builds on results that are specific to Hedge, and is a
priori considerably sharper than α2

2K

∑T
t=1 ηtM

2
t , the second order term of Theorem 1.

D.3. Guarantees for Alg. 2. For clarity, we begin by reminding the specific assumptions relative
to Alg. 2. In particular, we are still considering throughout a dual averaging policy (DA) with a
negentropy regularizer. We additionally assume that at each round t, we receive a model ût built
according to the “smoothing” approach described in Section 5 where for all t:

ût(x) = Kt(xt, x) · ut(xt)/pt(xt) (D.17)

where Kt : K × K → R is a (time-varying) smoothing kernel, i.e.,
∫
KKt(x, x

′) dx′ = 1 for all
x ∈ K. For concreteness (and sampling efficiency), we will assume that payoffs now take values in
[0, 1], and we will focus on simple kernels that are supported on a neighborhood Uδ(x) = Bδ(x) ∩K
of x in K and are constant therein, i.e., Kδ(x, x′) = [λ(Uδ(x))]−1 1{‖x′ − x‖ ≤ δ}.
we incorporate in pt an explicit exploration term of the form εt/λ(K).

Under these assumptions, we may now bound both the bias and variance terms in (D.16).

Lemma D.6. The following inequality holds, where L is a uniform Lipschitz coefficient for the
reward functions ut (as described in Assumption 1)

Bt ≤ Lδt. (D.18)

Moreover, there exists a constant CK (depending only on the set K) such that:

sup
ξ∈[0,1]

E[Gt(ξ)
2 | Ft] ≤ CKδ−nt ε−1

t . (D.19)

Note that bounding the second order term of Theorem 1 under the same assumptions would have
yielded a δ−2n

t factor instead of δ−nt , which is a strictly weaker result!
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Proof. We first prove (D.18). Using the fact that ut(x) =
∫
K ut(x)Kt(xt, x)dxt, we obtain:

|E[ût(x)− ut(x) | Ft]| =
∣∣∣∣∫
K
Kt(xt, x)

ut(xt)

pt(xt)
pt(xt)dxt −

∫
K
ut(x)Kt(xt, x)dxt

∣∣∣∣
=

∣∣∣∣∫
K

(ut(xt)− ut(x))Kt(xt, x)dxt

∣∣∣∣
= [λ(Uδt(x))]−1

∣∣∣∣∫
K
1{‖x′ − x‖ ≤ δt}(ut(xt)− ut(x))dxt

∣∣∣∣
≤ L[λ(Uδt(x))]−1

∫
K
1{‖x′ − x‖ ≤ δt}(ut‖xt)− ut(x)‖︸ ︷︷ ︸

≤λ(Uδt (x))δt

≤ Lδt. (D.20)

This bound is uniform (does not depend on the point x), and thus implies the stated inequality for Bt.

We now turn to (D.19). To that end, let ξ ∈ [0, 1]. We will prove a uniform bound on E[Gt(ξ)
2 | Ft].

As a preliminary it is capital to note that, K being convex compact, there exists constants CMK and
CmK such that for all x ∈ K,

CmK δ
n
t ≤ [λ(Uδt(x))] ≤ CMK δnt .

Now, using Gt(ξ)2 = 〈Λ(ηtyt + ξηtût), û
2
t 〉 and ût(x) = Kt(xt, x) · ut(xt)/pt(xt), we may write:

E
[
Gt(ξ)

2
∣∣Ft] = E

[∫
K

Λ(ηtyt + ξηtût)(x)Kt(xt, x)2ut(xt)
2

pt(xt)2
dx

∣∣∣∣Ft]

≤
∫
K

≤1︷ ︸︸ ︷
ut(x

′)2

pt(x′)2
pt(x

′)

(∫
K

Λ(ηtyt + ξηtût)(x)Kt(x
′, x)2dx

)
dx′

≤
∫
K

1

pt(x
′)︸ ︷︷ ︸

≥εt/λ(K)

[λ(Uδt(x′))]−2︸ ︷︷ ︸
≤(CmK )2δ−2n

(∫
K

Λ(ηtyt + ξηtût)(x)1{‖x′ − x‖ ≤ δt}dx
)
dx′

≤ λ(K)

(CmK )2δ2n
t εt

∫
K

(∫
K

Λ(ηtyt + ξηtût)(x)1{‖x′ − x‖ ≤ δt}dx
)
dx′

=
λ(K)

(CmK )2δ2n
t εt

∫
K

(∫
K

Λ(ηtyt + ξηtût)(x)1{‖x′ − x‖ ≤ δt}dx′
)
dx (Fubini)

=
λ(K)

(CmK )2δ2n
t εt

∫
K

Λ(ηtyt + ξηtût)(x)

(∫
K
1{‖x′ − x‖ ≤ δt}dx′

)
︸ ︷︷ ︸

=λ(Uδt (x))≤CMK δnt λ(K)

dx

≤ λ(K)

(CmK )2δ2n
t εt

CMK δ
n
t

(∫
K

Λ(ηtyt + ξηtût)(x)dx

)
︸ ︷︷ ︸

=1

=

(
λ(K)CMK
(CmK )2

)
δ−nt ε−1

t . (D.21)

This bound depends only on K, and is notably independent on ξ ∈ [0, 1]. The result (D.19) follows
directly. �

We are now ready to prove Proposition 2 and Eq. (24).

Proposition 2. Suppose that the Hedge variant of Alg. 2 is run with learning rate ηt ∝ 1/tρ and
smoothing/exploration schedules δt ∝ 1/tµ, εt ∝ 1/tβ respectively. Then, the learner enjoys the
bound

E[Reg(T )] = O(T ρ + T 1−µ + T 1−β + T 1+nµ+β−ρ). (23)
In particular, if the algorithm is run with ρ = (n+ 2)/(n+ 3) and µ = β = 1/(n+ 3), we obtain
the bound E[Reg(T )] = O(T

n+2
n+3 ).
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Proof. Let us consider a slight modification of Alg. 2 in which

• The models (ût) received by the learner are the same models than those generated by
running Alg. 2,

• At each round t, the action xt is sampled according to p̃t = Λ(ηtyt) (without taking into
account the explicit exploration term).

The regret of this algorithm may be bounded using the Hedge template bound stated in Proposition D.1,
since we are indeed considering the regret induced by Hedge against the sequence of reward models
ût

4. Then, writing R̃eg(T ) for the regret induced by the policy (p̃t)t, we get

E[R̃egx(T )] ≤ log(λ(K)/λ(C))
ηT+1

+ Ldiam(C)T + 2
∑T

t=1
Bt +

1

2

∑T

t=1
ηt E[Gt(ξt)

2 | Ft].
(D.22)

Using the bounds presented in Lemma D.6 we then get:

E[R̃egx(T )] ≤ log(λ(K)/λ(C))
ηT+1

+Ldiam(C)T +2L
∑T

t=1
δt+

1

2
CK
∑T

t=1
ηtδ
−n
t ε−1

t . (D.23)

We are however interested in guarantees for Alg. 2, in which we play with the policy (pt)t, which
slightly differs from the Hedge policy (p̃t)t. To that end, Lemma D.3 enables us to bound the
difference between the regrets Reg T and R̃eg(T ), induced by (pt)t and (p̃t)t respectively. Namely
we can write:

Reg T ≤ R̃eg(T ) +

T∑
t=1

‖p̃t − pt‖∞. (D.24)

For any t ≥ 1, x ∈ K, we have

|p̃t(x)− pt(x)| =
∣∣∣∣p̃t(x)− (1− εt)p̃t(x)− εt

λ(K)

∣∣∣∣ = εt · |p̃t − 1/λ(K)| ≤ εt
(

1 +
1

λ(K)

)
.

(D.25)

Injecting this in (D.24) we get

Reg T ≤ R̃eg(T ) +

(
1 +

1

λ(K)

) T∑
t=1

εt. (D.26)

Finally, combining (D.26) with (D.23) yields:

E[R̃egx(T )] ≤ log(λ(K)/λ(C))
ηT+1

+ Ldiam(C)T

+ 2L
∑T

t=1
δt +

CK
2

∑T

t=1
ηtδ
−n
t ε−1

t +

(
1 +

1

λ(K)

)∑T

t=1
εt. (D.27)

Now, using the same reasoning as in the proof of Theorem 1 with regards to the set C, and using
ηt ∝ 1/tρ, δt ∝ 1/tµ and εt ∝ 1/tβ straightforwardly gives:

E[Reg(T )] = O(T ρ + T 1−µ + T 1−β + T 1+nµ+β−ρ).

Finally, ρ = (n+ 2)/(n+ 3) and µ = β = 1/(n+ 3) gives the optimal bound:

E[Reg(T )] = O(T
n+2
n+3 ).

�

Proposition 3. Suppose that the Hedge variant of Alg. 2 is run with parameters as in Proposition 2
against a stream of loss functions with variation VT = O(T ν). Then, the learner enjoys

E[DynReg(T )] = O(T 1+nµ+β−ρ + T 1−β + T 1−µ + T ν+2ρ−nµ−β). (24)

In particular, if the algorithm is run with ρ = (1− ν)(n+ 2)/(n+ 4) and µ = β = (1− ν)/(n+ 4),
we obtain the optimized bound E[DynReg(T )] = O(T

n+3+ν
n+4 ).

4Even though these models were generated by Alg. 2, which does not exactly corresponds to Hedge
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Proof. We use the same virtual segmentation as in the proof of Theorem 2. As a reminder, this
means that we partition the interval T = [1 . . T ] into m contiguous segments Tk, k = 1, . . . ,m,
each of length ∆ (except possibly the m-th one, which might be smaller). More explicitly, take the
window length to be of the form ∆ = dT γe for some constant γ ∈ [0, 1] to be determined later. In
this way, the number of windows is m = dT/∆e = Θ(T 1−γ) and the k-th window will be of the
form Tk = [(k − 1)∆ + 1 . . k∆] for all k = 1, . . . ,m− 1 (the value k = m is excluded as the m-th
window might be smaller). For concision, we will denote the learner’s static regret over the k-th
window as Reg(Tk) = maxx∈K

∑
t∈Tk〈ut, δx − pt〉 (and likewise for its dynamic counterpart).

Following the proof of Theorem 2 up to (C.30), we can still write in our bandit setting:

DynReg(T ) ≤
m∑
k=1

Reg(Tk) + 2∆VT . (D.28)

Now Proposition 2 applied to the Hedge variant of Alg. 2 readily yields

E[Reg(Tk)] = O

(
(k∆)ρ +

∑
t∈Tk

t−β +
∑
t∈Tk

t−µ +
∑
t∈Tk

tβ+nµ−ρ

)
(D.29)

so, after summing over all windows, we have

m∑
k=1

E[Reg(Tk)] = O

(
∆ρ

m∑
k=1

kρ +

T∑
t=1

t−β +

T∑
t=1

t−µ +

T∑
t=1

tβ+nµ−ρ

)
= O

(
∆ρm1+ρ + T 1−β + T 1−µ + T 1+β+nµ−ρ). (D.30)

Since ∆ = O(T γ) and m = O(T/∆) = O(T 1−γ), we get

∆ρm1+ρ = O((m∆)ρm) = O(T γρT (1−γ)(1+ρ)) = O(T 1+ρ−γ). (D.31)

Then, substituting in (D.30) and (D.28), we finally get the dynamic regret bound

E[DynReg(T )] = O
(
T 1+ρ−γ + T 1−β + T 1−µ + T 1+β+nµ−ρ + T γVT

)
. (D.32)

To balance the above expression, we take γ = 2ρ− β − nµ for the window size exponent (which
calibrates the first and fourth terms in the sum above). In this way, we finally obtain

E[DynReg(T )] = O
(
T 1+nµ+β−ρ + T 1−β + T 1−µ + T 2ρ−nµ−βVT

)
(D.33)

and our proof is complete. �

E Numerical experiments

Our aim in this appendix is to provide some numerical illustrations of the theory presented in the rest
of our paper. All numerical experiments were run on a machine with 48 CPUs (Intel(R) Xeon(R)
Gold 6146 CPU @ 3.20GHz), with 2 Threads per core, and 500Go of RAM. For a simulation horizon
of T = 2×105, we choose a reward function [0, 1] that is a linear combination of trigonometric terms
with different frequencies and amplitudes, arbitrarily drawn. Because of this analytic expression, we
are able to calculte the learner’s best action in hindsight (or instantaneously) and plot the relevant
regret curves.

For illustration purposes, we compared 2 strategies, called “Grid” and “Kernel”. The “Kernel” method
is as outlined in Section 5 (cf. Alg. 2) with parameters described below. The “Grid” method involves
partitioning the search space into a grid of a given mesh-size (a hyperparameter of the algorithm),
and then treating the problem as a finite-armed bandit; in particular, the “Grid” strategy employs the
EXP3 algorithm [7] with rewards sampled at the grid points.

In Fig. 1, we plot the mean regret for both algorithms, with different hyperparameters, over T
iterations. The confidence intervals are represented by the shaded areas, which corresponds to the
mean value of the regret modulated by the standard deviation of our sample runs of each algorithm
(computed on 92 initialization seeds for sampling, kept constant across different runs for control
validation).
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Figure 1: Expected average regret, averaged on 92 realizations for each algorithm (solid line). The variance is
presented (shaded area) where we add and remove the standard deviation (computed on the 92 seeds) from the
mean. Finally, the theoretical regret bound is displayed (dashed line).

Figure 2: Two slices of the mean regret, averaged on 92 realizations for each algorithm (solid line). Whisker
at 5-95% CI , boxes at 25-75% CI and median displayed with vertical bars.

The dashed line represent in the figure corresponds to the theoretical regret bound of T−
1
3 , which is

the expected regret bound of the Kernel algorithm mean regret (without explicit exploration in our
case). For performance evaluation purposes, we “slice” different snapshots of the regret in Fig. 2 at
iteration counts 2× 105 and 2× 105. In both cases, we observe a dramatic drop in variance for the
Kernel algorithm relative to the Grid strategy, with a fixed number of arms uniformly cut beforehand;
we also note that the performance of the Kernel method approaches the theoretical slope of T−1/3

that characterizes the Kernel method.

By contrast, the mean regret for the Grid approach seems to converge to a finite value which indicates
a much slower regret minimization rate; on the other hand, the mean regret of the Kernel method
converges to 0 at the anticipated rate.
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