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1 Appendix A1

1.1 Discrete Laplace-Beltrami operator2

Laplace-Beltrami operator (W,A). In order to construct the discrete Laplace-Beltrami Operator3

(LBO), and with reference to the notation introduced in the main manuscript, we assume that the4

points Xk are the vertices of a simplicial mesh, i.e. the union S̄ = ∪f∈F f of a finite set F of5

triangular faces f , approximating the 3D surface S. With slight abuse of notation, we denote each6

face f = (X1, X2, X3) as a triplet of vertices oriented in clockwise order with respect to the normal7

Nf of the face. If we assume that the function r is continuous and linear within each face, then the8

samples fully specify the function. Let b1 = X3 − X2, b2 = X1 − X3 and b3 = X2 − X1, be9

the edge vectors opposite to each vertex of the triangle f and let Af be its area. The gradient of r,10

which is constant on each face f , is given by:11

(∇r)f =
1

2Af

3∑
i=1

(Nf×bi)rfi = Gf f , f =

[
rf1
rf2
rf3

]
Af =

1

2
|b1×b2|, Nf =

1

2Af
(b1×b2). (1)

The Dirichlet energy of the function r is the integral of the squared gradient norm:
∫
S̄
‖∇r‖2 dS =12 ∑

f∈F Af‖(∇r)f‖2 =
∑

f∈F
>
f Wf f , where Af is the area of face f and Wf = AfG

>
f Gf . By13

summing Lf over the faces, we obtain the overall LBO operator W ∈ RK×K mapping to the total14

Dirichlet energy >W (since this energy is non-negative, W is positive semi-definite). We also need15

the diagonal matrix A of lumped areas, with Akk being a third of the total areas of the triangles16

incident on vertex Xk. 117

Gradient operator Gf . We can verify the expression eq. (1) for the gradient as follows. The
gradient dotted with an edge vector bi must give the function change along that edge. For example,
for edge b1 we have:

〈b1, (∇r)f 〉 =

3∑
i=1

〈b1, Nf × bi〉
2Af

rfi =
〈Nf , b2 × b1〉

2Af
rf2 +

〈Nf , b3 × b1〉
2Af

rf3 = rf3 − rf2 .

We can write matrix Gf in eq. (1) much more compactly as:

Gf =
1

2Af
N̂fBf , Bf = Bf 1̂

>, Vf = [X1 X2 X3] , â =

[
0 −a3 a2

a3 0 −a1

−a2 a1 0

]
,

Here ·̂ is the hat operator, such that a×b = âb, and and 1 = (1, 1, 1), so thatBf = [b1 b2 b3]. By18

summing Gf over the faces f , we obtain an discrete operator G ∈ R3|F |×K mapping the function19

to the gradient in each face.20

1This is a required normalization factor to account for the different areas of the triangles w.r.t. the continuous
surface being approximated.
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Cotangent weight matrix W . Given the expression for Gf , we can find a compact expression fo
Wf in the LBO:

Wf = AfG
>
f Gf =

1

4Af
B>f Bf .

Note that B>f N̂
>
f N̂fBf = B>f Bf because bi ⊥ Nf and thus:

〈Nf × bi, Nf × bj〉 = 〈Nf , Nf 〉〈bi, bj〉 − 〈Nf , bj〉〈Nf , bi〉 = 〈bi, bj〉.
Wf matches the usual cotangent discretization of the Laplace-Beltrami operator: Bf contains dot21

products of edges, 2Af the norm of their cross products, and the ratio of these two are cotangents.22

Divergence operator D. Finally, we sometimes require a divergence operator. For this, let Xf ∈
R3 a vector defined on each face. In order to compute the divergence at a vertex X1, we find
the contour integral of Xf along the boundary of the triangle fan centered at X1. Thus let f =
(X1, X2, X3) be a face belonging to this fan and b1, b2, b3 be the corresponding edge vectors as
before. The contribution of this triangle to the contour integral around X1 is:

DvXf = |b2| · 〈n,Xf 〉, n|b2| = b2 ×Nf =
1

2Af
b2 × (b3 × b1) = b3

〈b2, b1〉
2Af

− b1
〈b2, b3〉

2Af

1.2 Spectra interpolation of correspondences (ZoomOut)23

Assume that we have complete correspondences for the mesh S′, in the sense that k′j = j,24

j = 1, . . . ,K ′. We can encode those as a permutation matrix Π such that Πij = δki=j , map-25

ping functions on S to function ′ = Π on S′ (this is analogous to backward warping). This can26

be rewritten in ‘Fourier’ space as ′ = U ′̂′ = U ′Ĉ = Π = ΠÛ , which gives us the constraint [1]27

U ′C = ΠU . We can use this equation to find C given Π, or to find Π given C. Finding Π is done28

in a greedy manner, searching, for each row of U ′C, the best matching row in U (in L2 distance).29

Finding C is done by minimizing ‖U ′C −ΠU‖2A′ , which results in C = (U ′)>A′ΠU .30

In practice, we found it beneficial to add three more standard constraints when resolving for C.31

First, let Γ ∈ {0, 1}K×K be the symmetry matrix mapping each vertex of mesh S to its symmetric32

counterpart (this is trivially determined for our canonical models), and let Γ′ be the same for S′.33

Then a correct correspondence Π between meshes must preserve symmetry, in the sense that Γ′Π =34

ΠΓ; this constraint can be rewritten in Fourier space as Γ̂′C = CΓ̂, where Γ̂ = UΓU†. For35

isometric meshes, the exact same reasoning applies to the LBO L = A−1W because the LBO is an36

intrinsic property of the surface (i.e. invariant to isometry). Our meshes are not isometric, but, after37

resizing them to have the same total area, we can use the constraint L′Π ≈ ΠL in a soft manner for38

regularization; it is easy to show that this reduces to Λ′C ≈ CΛ where Λ is the matrix of eigenvalues39

of the LBO. In practices, this encourages C to be roughly diagonal. Finally, we use the method just40

described twice, to estimate jointly a mapping C from mesh S to S′, and another C ′ going in the41

other direction, and enforce CC ′ ≈ I (cycle consistency).42

2 Appendix B43

2.1 Annotation process44

We are following an annotation protocol similar to the one described in the original DensePose45

work [2]. We start with instance mask annotations provided in the LVIS dataset and crop images46

around each instance. We only annotate instances with bounding boxes larger than 75 pixels. We47

do not collect annotations for body segmentation: instead, the points are sampled from the whole48

foreground region represented by the object mask. The annotators are then shown randomly sampled49

points displayed on the image and are asked to click on corresponding points in multiple views50

rendered from a 3D model representing the given species. Each worker is asked to annotate 3 points51

on a single object instance. The points on the rendered views are mapped directly to vertex indices52

of the corresponding model. Each mesh is normalised to have approximately 5k vertices.53

2.2 Implementation details54

Compared to the original DensePose [3] models, we introduced the following changes:55
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• single channel mask supervision as a replacement of the 15-way segmentation;56

• RoI pooling size for the DensePose task is set to 28× 28;57

• a decoder module based on Panoptic FPN, as implemented in [4];58

• for the DeepLab models, the head architecture corresponds to [4];59

• IUV training, weights of individual loss terms: wmask = 5.0 (body mask), wi = 1.0 (point60

body indices), wuv = 0.01 (uv coordinates);61

• CSE training, weight on the embedding loss term: we = 0.6.62

For the DensePose-COCO dataset, all models are trained with the standard s1x schedule [5] for 130k63

iterations. On the LVIS and DensePose-Chimps datasets, the models are trained for 5k iterations64

with the learning rate drop by the factor of 10 after 4000k and 4500k iterations.65

For the evaluation purposes all 3D meshes are normalised in size to have the same geodesic distance66

between the pair of most distant points as the SMPL model (Pdist.,max = 2.5). For the animal67

classes, we do not employ part specific normalisation coefficients, as done in the updated DensePose68

evaluation protocol.69

The code, the pretrained models and the annotations for the LVIS dataset will be publicly released.70
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