
We thank the reviewers for valuable and insightful feedback. The reviewers note that the method is novel, interesting,1

and relevant to the field. To address the reviewers’ concerns about the training data, we provide additional experiments2

with completely random data collection policy and find that our method improves performance over the data collection3

policy. We also perform preliminary experiments with robotic manipulation. We will update the manuscript with these4

experiments, as well as other suggestions, as detailed below.5

Figure 1: Left: random exploration data. Right: exe-
cution of our method trained on random data.

R4: “Requires examples of successful trajectories”, Can the6

method "find shorter paths than the demonstrations?"7

To reach a particular goal, our method requires training trajec-8

tories that reach goals from the same distribution. Note that9

we still test on unseen goals. This is a common requirement10

for visual planning and control (Ebert’18 [10], Pathak’18 [44]).11

These trajectories are collected with a suitable exploration pol-12

icy that need not be optimal but should cover a wide enough13

trajectory distribution. To test whether our method can work14

with very suboptimal training data, we conducted a new exper-15

iment with completely random exploration data, and observe16

that our method still successfully solves navigation tasks in the17

9-room environment (see Fig 1). This leads us to believe that18

the proposed method is scalable even to situations where no good planners exist that can be used for data collection. We19

will include a full evaluation of training with random action data in the final version. In Tab. 1, we compare the average20

trajectory length of training data and our method on both, the dataset from the original submission and the random21

action data. We find that planning with our method leads to substantially shorter trajectories.22

Table 1: Average Trajectory Length. Planning with
GCP finds shorter paths than the training distribution.

ORIGINAL DATA RANDOM DATA

TRAINING DATA 31.4 62.6
GCP-TREE (OURS) 20.7 42.6

R3: What are the differences with Sub-goal trees [26]?23

[26] employs a stochastic dynamic programming approach for24

learning to predict trajectories with low cost using a hierarchi-25

cal predictive model. In contrast, we employ a sampling-based26

planning approach that hierarchically optimizes the latent vari-27

ables of our stochastic prediction model at decision time. Such28

decision-time planning allows for greater flexibility, e.g. by changing the cost function post hoc, after training the model.29

Crucially, the use of latent variables allows our model to scale to modeling image sequences and we demonstrate30

its applicability to long-horizon visual control tasks from raw pixel inputs, while [26] only apply their method to31

low-dimensional state-based tasks. Finally, we propose an adaptive binding scheme for non-balanced subgoal splits that32

can discover bottleneck states.33

Time

Figure 2: Executions of GCP-Tree on a pick & place
task with wall separator (subsampled for visibility).

R3, R4: Application to new environment / Pick & Place task34

We have now performed preliminary evaluations of GCP-tree in35

a state-based robotic pick & place environment. Our approach36

performs long-horizon object manipulations like lifting blocks37

over a barrier and stacking them (see Fig 2). We will add a full38

quantitative evaluation with comparisons in the final paper.39

R1: "in larger problems [...] optimisation over z infeasible.”40

Planning over latent states has similar properties to planning41

over images, but is more scalable as the latent states are com-42

pact. We show that optimizing over z substantially improves the plans over the training data (see Fig. 1, Tab. 1, response43

the R4 on top). The optimization is indeed harder with longer sequences, but our goal-conditioned prediction and44

hierarchical planning enable us to optimize well even where prior work fails (e.g. over 200 steps in Fig. 1).45

R4: “The algorithm [...] commits itself to a bad subgoal and has no way of recovering from this choice.”46

It is quite possible to maintain multiple potential waypoints in parallel, analogously to a beam search. We found this to47

not be necessary for our tasks, and our method attains substantially better results than prior methods without a beam48

search, but we will discuss this as a promising topic for future work.49

R4: “the agent is tasked to reach the goal on the shortest path. Is this reflected in the success rate?”50

No, but it is reflected in the trajectory cost, which we also report in Table 4 (see L283).51

R3: “How does the adaptive binding affect the performance”52

Adaptive binding usually performs comparable or slightly worse due to harder optimization. We expect the benefits of53

adaptive binding to become more clear with better optimization or where semantic bottlenecks are important.54

R5: “Is there always a set of T observations for each dataset”55

Our datasets contain variable-length sequences. In order to determine where to stop hierarchical generation, we use a56

learned termination classifier at each node. We will add this explanation to the supplement.57


