
Figure 7: Predictions on Human 3.6M. We see that the GCP models are able to faithfully capture the
human trajectory. The optical flow-based method (DVF) captures the background but fails to generate
complex motion needed for long-term goal-conditioned prediction. Causal InfoGan also struggles to
capture the structure of these long sequences and produce implausible interpolations. Full qualitative
results are on the supplementary website: sites.google.com/view/gcp-hier/home.

Table 5: Prediction performance on perceptual metrics.

DATASET PICK&PLACE HUMAN 3.6M 9-ROOM MAZE 25-ROOM MAZE

METHOD FVD LPIPS FVD LPIPS FVD LPIPS FVD LPIPS

GCP-TREE 430.3 0.02 1314.3 0.05 655.50 0.174 413.31 0.168
GCP-SEQUENTIAL 328.9 0.02 1541.8 0.06 860.04 0.214 638.95 0.238

DVF [40] 2879.9 0.06 1704.6 0.05 1320.34 0.231 1476.44 0.215
CIGAN [36] 3252.6 0.12 2528.5 0.17 1440.6 0.190 677.40 0.219

A Additional results

We include additional qualitative and quantitative results here as well as at the supplementary website:
sites.google.com/view/video-gcp.

B Evidence lower bound (ELBO) derivation

We wish to optimize the likelihood of the sequence conditioned on the start and the goal frame
p(o2:T−1|o1,T). However, due to the use of latent variable models, this likelihood is intractable, and
we resort to variational inference to optimize it. Specifically, we introduce an approximate posterior
network q(z2:T−1|o1:T), where that approximates the true posterior [33, 52]. The ELBO can be
derived from the objective that consists of likelihood and a term that enforces that the approximate
posterior matches the true posterior:

ln p(o2:T−1|o1,T) ≥ ln p(o2:T−1|o1,T)− KL(q(z2:T−1|o1:T)||p(z2:T−1|o1:T))
= Eq(z2:T−1|o1:T) [ln p(o2:T−1|o1,T , z2:T−1)]− KL (q(z2:T−1|o1:T)) || p(z2:T−1|o1,T)) , (4)

where the last equality is simply a rearrangement of terms.

14

sites.google.com/view/gcp-hier/home
sites.google.com/view/video-gcp

Figure 8: Prior samples from GCP-tree on the Human 3.6M dataset. Each row is a different prior
sample conditioned on the same information.

Further, in order to efficiently parametrize these distributions, we factorize the distributions as follows
according to the graphical model in Fig 2 (right) and Eq. 2:

p(o2:T−1|o1,T , z2:T−1) =
T−1∏
t=2

p(ot|o1,T , zt), (5)

p(z2:T−1|o1,T) =
T−1∏
t=2

, (6)

q(z2:T−1|o1:T) =
T−1∏
t=2

q(zt|ot, pa(t)). (7)

We therefore require the following distributions to define our model: p(ot|o1,T , zt), p(zt|pa(t)),
q(zt|ot, pa(t)). The parameterization of these distributions is defined in Section 3.4. The parent
operator pa(t) returns the parent nodes of st according to the graphical model in Fig 2 (right). Using
these factorized distributions, we can write out the ELBO in more detail as:

ln p(o2:T−1|o1,T) ≥ Eq(z2:T−1|o1:T)

T−1∑
t=2

[ln p(ot|o1,T , zt)− KL (q(zt|ot, pa(t)) || p(zt|pa(t)))] .

(8)

C Architecture

We use a convolutional encoder and decoder similar to the standard DCGAN discriminator and
generator architecture respectively. The latent variables zn as well as en are 256-dimensional. All
hidden layers in the Multi-Layer Perceptron have 256 neurons. We add skip-connections from the
encoder activations from the first image to the decoder for all images. For the inference network we
found it beneficial to use a 2-layer 1D temporal convolutional network that adds temporal context into
the latent vectors et. For the recursive predictor that predicts en, we use group normalization [68].
We found that batch normalization [24] does not work as well as group normalization for the recursive
predictor and conjecture that this is due to the activation distributions being non-i.i.d. for different
levels of the tree. We use batch normalization in the convolutional encoder and decoder, and use local
per-image batch statistics at test time. Further, for the simple RNN (without the LSTM architecture)

15

S

g

2

1

2

g

SS

g

g S

1

2 2

gg SS

GCP-FlatVisual Foresight GCP-Hierarchical

Figure 9: Comparison of visual planning & control approaches. Execution traces of Visual Foresight
(left), GCP-tree with non-hierarchical planning (middle) and GCP-tree with hierarchical planning
(right) on two 25-room navigation tasks. Visualized are start and goal observation for all approaches
as well as predicted subgoals for hierarchical planning. Both GCP-based approaches can reach
faraway goals reliably, but GCP with hierarchical planning finds shorter trajectories to the goal.

ablation of our tree model, we activate en with hyperbolic tangent (tanh). We observed that without
this, the magnitude of activations can explode in the lower levels of the tree and conjecture that this
is due to recursive application of the same network. We found that using TreeLSTM [60] as the
backbone of the hierarchical predictor significantly improved performance over vanilla recurrent
architectures.

To increase the visual fidelity of the generated results when predicting images, we use a foreground-
background generation procedure similar to [65]. The decoding distribution p(ot|st) is a mixture of
discretized logistics [57], which we found to work better than alternative distributions. We use the
mean of the decoding distribution as the prediction.

For the adaptive binding model, the frame ot corresponding to the node sn is not known before the
sn is produced. We therefore conditioned the inference distribution on the entire evidence sequence
o1:T via the attention mechanism over the embeddings [2, 41]: q(zt) = Att(enc(o1:T), pa(t)). We
reuse the same observation embeddings et for the attention mechanism values.

The different paths between the same start and goal may have very different lengths (see e.g. Fig. 9),
so it is necessary for GCP models to predict sequences of different lengths. We do so by training a
termination classifier that predicts how long the sequence is. For GCP-Sequential, the termination
classifier simply outputs the number of frames in the sequence, and the sequence is produced by
recurrently unrolling that many frames. For the GCP-Tree model, to account for varied shapes of
the tree, we instead predict a binary termination value at each node. To sample a trajectory, we
recursively expand the tree, but stop the expansion where a particular node was classified as terminal
(determined by a threshold on the classifier output). This procedure enables us to model even datasets
with sequences of variable lengths.

16

Hyperparameters. The convolutional encoder and decoder both have five layers. We use the
Rectified Adam optimizer [39, 32] with β1 = 0.9 and β2 = 0.999, batch size of 16 for GCP-
sequential and 4 for GCP-tree, and a learning rate of 2e−4. On each dataset, we trained each network
for the same number of epochs on a single high-end NVIDIA GPU. Training took a day for all
datasets except the 25-room dataset, where we train the models for 3 days.

D Data processing and generation

Figure 10: Example trajectory distribu-
tions between fixed start (red) and goal
(green) rooms on the 25-room naviga-
tion task. The example goal-reaching
behavior is highly suboptimal, with both
strong multimodality in the space of pos-
sible solutions as well as low-level noise
in each individual trajectory.

For training GCPs we use a dataset of example agent goal-
reaching behavior. Below we describe how we collect
those examples on the pick&place and navigation tasks
and the details of the Human3.6M dataset. The data can
be found on the following links:

• 9-room: https://www.seas.upenn.edu/
~oleh/datasets/gcp/nav_9rooms.zip

• 25-room: https://www.seas.upenn.edu/
~oleh/datasets/gcp/nav_25rooms.zip

• pick&place: https://www.seas.upenn.edu/
~oleh/datasets/gcp/sawyer.zip

• Pre-processed H3.6: https://www.seas.
upenn.edu/~oleh/datasets/gcp/h36m.
zip

pick&place. We generate the pick&place dataset using
the RoboSuite framework [13] that is based on the Mu-
joco physics simulator [61]. We generate example goal-
reaching trajectories by placing two objects at random
locations on the table and using a rule-based policy to
move them into the box that is located at a fixed position
on the right of the workspace. We sample the object type
randomly from a set of two possible object types, bread and can, with replacement.

Human 3.6M. For the Human 3.6 dataset, we downsample the original videos to 64 by 64 resolution.
We obtain videos of length of roughly 800 to 1600 frames, which we randomly crop in time to 500-
frame sequences. We split the Human 3.6 into training, validation and test set by correspondingly
95%, 5% and 5% of the data.

Navigation. For the navigation task the agent is asked to plan and execute a path between a given
2D start and goal position. The environment is simulated using the Gym-Miniworld framework [6].
We collect goal-reaching examples by randomly sampling start and goal positions in the 2D maze and
plan trajectories using the Probabilistic Roadmap (PRM, Kavraki et al. [30]) planner. The navigation
problem is designed such that multiple possible room sequences can be traversed to reach from start
to goal for any start and goal combination. During planning we sample one possible room sequence
at random, but constrain the selection to only such sequences that do not visit any room more than
once, i.e. that do not have loops. This together with the random sampling of waypoints of the PRM
algorithm leads to collected examples of goal reaching behavior with substantial suboptimality. We
show an example trajectory distribution from the data in Fig. 10. While GCPs support training on
sequences of variable length we need to set an upper bound on the length of trajectories to bound
the required depth of the hierarchical predictive model and allow for efficient batch computation
(e.g. at most 200 frames for the 25-room environment). If plans from the PRM planner exceed this
threshold we subsample them to the maximum lenght using spline interpolation before executing
them in the environment. The training data consists of 10,000 and 23,700 sequences for the 9-room
and the 25-room task respectively, which we split at a ration of 99%, 1%, 1% into training, validation
and test.

17

https://www.seas.upenn.edu/~oleh/datasets/gcp/nav_9rooms.zip
https://www.seas.upenn.edu/~oleh/datasets/gcp/nav_9rooms.zip
https://www.seas.upenn.edu/~oleh/datasets/gcp/nav_25rooms.zip
https://www.seas.upenn.edu/~oleh/datasets/gcp/nav_25rooms.zip
https://www.seas.upenn.edu/~oleh/datasets/gcp/sawyer.zip
https://www.seas.upenn.edu/~oleh/datasets/gcp/sawyer.zip
https://www.seas.upenn.edu/~oleh/datasets/gcp/h36m.zip
https://www.seas.upenn.edu/~oleh/datasets/gcp/h36m.zip
https://www.seas.upenn.edu/~oleh/datasets/gcp/h36m.zip

Table 6: Hyperparameters for hierarchical planning with GCPs on 9-room and 25-room navigation
tasks.

Hierarchical Planning Parameters

Hierarchical planning layers (D) 2
Samples per subgoal (M) 10

Final Segment Optimization

Sequence samples per Segment 5

General Parameters

Max. episode steps 200 / 400
Cost function

∑T−1
t=0 (xt+1 − xt)2

E Planning Experimental Setup

For planning with GCPs we use the model architectures described in Section C trained on the
navigation data described in Section D. The hyperparameters for the hierarchical planning experiments
are listed in Table 6. We keep the hyperparameters constant across both 9-room and 25-room tasks
except for the maximum episode length which we increase to 400 steps for the 25-room task. Note
that the cost function is only used at training time to train the cost estimator described in Section 4,
which we use to estimate all costs during planning.

To infer the actions necessary to execute a given plan, we train a separate inverse model at =
finv(ot, ot+1) that infers the action at which leads from observation ot to ot+1. We train the inverse
model with action labels from the training dataset and, in practice, input predicted feature vectors
êt instead of the decoded observations to not be affected by potential inaccuracies in the decoding
process. We use a simple 3-layer MLP with 128 hidden units in each layer to instantiate finv. At
every time step the current observation along with the next observation from the plan is passed to the
inverse model and the predicted action is executed. We found it crucial to perform such closed-loop
control to avoid accumulating errors that posed a central problem when inferring the actions for the
whole plan once and then executing them open-loop.

We separately tuned the hyperparameters for the visual foresight baseline and found that substantially
more samples are required to achieve good performance, even on the shorter 9-room tasks. Specifi-
cally, we perform three iterations of CEM with a batch size of 500 samples each. For sampling and
refitting of action distributions we follow the procedure described in [42]. We use a planning horizon
of 50 steps and replan after the current plan is executed. We cannot use the cost function from Table 6
for this baseline as it leads to degenerate solutions: in constrast to GCPs, VF searches over the space
of all trajectories, not only those that reach the goal. Therefore, the VF planner could minimize the
trajectory length cost used for the GCP models by predicting trajectories in which the agent does not
move. We instead use a cost function that measures whether the predicted trajectory reached the goal
by computing the L2 distance between the final predicted observation of the trajectory and the goal
observation.

We run all experiments on a single NVIDIA V100 GPU and find that we need approximately 30mins
/ 1h to evaluate all 100 task instances on the 9-room and 25-room tasks respectively when using the
hierarchical GCP planning. The VF evaluation requires many more model rollouts and therefore
increases the runtime by a factor of approximately five, even though we increase the model rollout
batch size by a factor of 20 for VF to parallelize trajectory sampling as much as possible.

F Adaptive Binding with Dynamic Programming

F.1 An efficient inference procedure

To optimize the model with adaptive binding, we perform variational inference on both w and z:

log p(x) ≥ Eq(z,w)[p(x|w, z)]−DKL(q(z|x)||p(z))−DKL(q(w|x, z)||p(w)). (9)

18

To infer q(w|x, z), we want to produce a distribution over possible alignments between the tree and
the evidence sequence. Moreover, certain alignments, such as the ones that violate the ordering of the
sequence are forbidden. We define such distribution over aligment matrices A via Dynamic Time
Warping. We define the energy of an alignment matrix as the cost, and the following distribution over
alignment matrices:

p(A|x, z) = 1

Z
e−A∗c(x,z),

where the partition function Z = EA[e
−A∗c(x,z)], and c is the MSE error between the ground truth

frame xt and the decoded frame associated with zn. We are interested in computing marginal edge
distributions w = EA[A]. Given these, we can compute the reconstruction error efficiently. We next
show how to efficiently compute the marginal edge distributions.

Given two sequences x0:T , z0:N , denote the partition function of aligning two subsequences x0:i, z0:j
as fi,j =

∑
A∈A0:i,0:j

e−A∗c(x0:i,z0:j). [7] shows that these can be computed efficiently as:

fi,j = c(xi, zj) ∗ (fi−1,j−1 + fi−1,j).

We note that we do not include the third term fi,j−1), as we do not want a single predicted frame to
match multiple ground truth frames. Furthermore, denote the partition function of aligning xi:T , zj:N
as bi,j =

∑
A∈Ai:T,j:N

e−A∗c(xi:T ,zj:N). Analogously, we can compute it as:

bi,j = c(xi, zj) ∗ (bi+1,j+1 + bi+1,j).

Proposition 1 The total unnormalized density of all alignment matrices that include the edge (i, j)
can be computed as ei,j = fi,j ∗bi,j/c(xi, zj) = c(xi, zj)∗ (fi−1,j−1+fi−1,j)∗ (bi+1,j+1+bi+1,j).
Moreover, the probability of the edge (i, j) can be computed as wi,j = ei,j/Z.

Proposition 1 enables us to compute the expected reconstruction loss in quadratic time:

p(x|z) = w ∗ c(x, z).

F.2 Bottleneck Discovery Experimental Setup

In order to use the adaptive binding model to discover bottleneck frames that are easier to predict, we
increase the reconstruction loss on those nodes as described in the main text. Specifically, we use
Gaussian decoding distribution for this experiment, and set the variance of the decoding distribution
for several top layers in the hierarchy to a fraction of the value for lower layers. This encourages
the model to bind the frames that are easier to predict higher in the hierarchy as the low variance
severely penalizes poor predictions. We found this simple variance re-weighting scheme effective at
discovering bottleneck frames on several environments.

To generate the visualization of the discovered tree structure in Fig. 6 we evenly subsample the
original 80-frame sequences and display those nodes that bound closest to the subsampled frames
such that the resulting graph structure still forms a valid 2-connected tree. The variations in tree
structure arise because the semantic bottlenecks which the nodes specialize on binding to appear at
different time steps in the sequences due to variations in speed and initial position of the robot arm as
well as initial placement of the objects.

G Training from Random Data

In the room navigation experiments we train our model with noisy trajectories that reach diverse goals
with considerable suboptimality (see Fig. 10). To test whether our method can work with even more
suboptimal training data, we conduct preliminary experiments with completely random exploration
data, and observe that our method still successfully solves navigation tasks in the 9-room environment
(see Fig. 11). This suggests that the proposed method is scalable even to situations where no good
planners exist that can be used for data collection.

19

Figure 11: Left: random exploration data.
Right: execution of our method trained on
random data.Table 7: Average Trajectory Length. Planning with GCP finds shorter paths than the training
distribution.

ORIGINAL DATA RANDOM DATA

TRAINING DATA 31.4 62.6
GCP-TREE (OURS) 20.7 42.6

In
Tab. 7,
we
com-
pare
the
av-
er-
age
trajectory length of training data and our method on both, the dataset used for the experiments in
section 5.1 and the random action data. We find that planning with our method leads to substantially
shorter trajectories, further showing the ability of our approach to improve upon low-quality training
data.

G.1 Runtime Complexity

Computational efficiency. While the sequential forward predictor performs O(T) sequential op-
erations to produce a sequence of length T, the hierarchical prediction can be more efficient due to
parallelization. As the depth of the tree is dlog T e, it only requires O(log T) sequential operations
to produce a sequence, assuming all operations that can be conducted in parallel are parallelized
perfectly. We therefore batch the branches of the tree and process them in parallel at every level to
utilize the benefit of efficient computation on modern GPUs. We note that the benefits of the GCP-tree
runtime lie in parallelization, and thus diminish with large batch sizes, where the parallel processing
capacity of the GPU is already fully utilized. We notice that, when predicting video sequences of
500 frames, GCP-sequential can use up to 4 times bigger batches than GCP-Tree without significant
increase in runtime cost. This benefit is applicable both during training and inference.

When training tree-structured networks we exploit the provided parallelism in the structure of the
model and batch recursions in the tree that are independent when conditioned on their parents.

20

