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Abstract

The objective in statistical Optimal Transport (OT) is to consistently estimate the
optimal transport plan/map solely using samples from the given source and target
marginal distributions. This work takes the novel approach of posing statistical
OT as that of learning the transport plan’s kernel mean embedding from sample
based estimates of marginal embeddings. The proposed estimator controls over-
fitting by employing maximum mean discrepancy based regularization, which is
complementary to φ-divergence (entropy) based regularization popularly employed
in existing estimators. A key result is that, under very mild conditions, ε-optimal
recovery of the transport plan as well as the Barycentric-projection based transport
map is possible with a sample complexity that is completely dimension-free. More-
over, the implicit smoothing in the kernel mean embeddings enables out-of-sample
estimation. An appropriate representer theorem is proved leading to a kernelized
convex formulation for the estimator, which can then be potentially used to perform
OT even in non-standard domains. Empirical results illustrate the efficacy of the
proposed approach.

1 Introduction

Optimal Transport is proving to be an increasingly successful tool in solving diverse machine learning
problems. Recent research shows that variants of Optimal Transport (OT) achieve state-of-the-art
performance in various machine learning (ML) applications such as data alignment/integration [2,
24, 42, 19], domain adaptation [7, 34], model interpolation/combination [38, 35, 9], natural language
processing [43, 44] etc. It is also shown that OT based (Wasserstein) metrics serve as good loss
functions in both supervised [13, 20] and unsupervised [16] learning.

Given two marginal distributions over source and target domains, and a cost function between
elements of the domains, the classical OT problem (Kantorovich’s formulation) is that of finding
the joint distribution whose marginals are equal to the given marginals, and which minimizes the
expected cost with respect to this joint distribution [22]. This joint distribution is known as the
(optimal) transport plan or the optimal coupling. A related object of interest for ML applications
is the so-called Barycentric-projection based transport map corresponding to a transport plan (e.g.,
refer Equation (11) in [37]). Though OT techniques already improve state-of-the-art in many ML
applications, there are two main bottlenecks that seem to limit OT’s success in ML settings:

• while continuous distributions are ubiquitous, algorithms for finding the transport plan/map over
continuous domains are very scarce [15]. The situation is worse in case of non-standard domains,
which are not uncommon in ML.

• the marginal distributions are never available, and merely samples from them are given. The variant
of OT where the transport plan/map needs to be estimated merely using samples from the marginals
is known as the statistical OT problem. Unfortunately, this estimation problem is plagued with the

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



curse of dimensionality: the sample complexity of O(m−1/d), where m is number of samples, and
d is the dimensionality of data, cannot be improved without further assumptions [29].

Though several works alleviated the curse of dimensionality [14, 29, 18], none of them completely
remove the adversarial dependence on dimensionality. Further, authors in [15, 14, 12, 4] comment
that estimators that are free from the curse of dimensionality are important, yet not well-studied. The
concluding report from a recent workshop on OT (refer section 2 in [4]) summarizes that one of the
major open problems in this area is to design estimators in context of continuous statistical OT whose
sample complexity is not a strong function of the dimension (ideally dimension-free).

Our work focuses on this challenging and important problem of statistical OT over continuous
domains, and seeks consistent estimators for ε-optimal transport plan/map, whose sample complexity
is dimension-free. To this end, we take the novel approach of equivalently re-formulating the
statistical OT problem solely in terms of the relevant kernel mean embeddings [26]. More specifically,
our formulation finds the (characterizing) kernel mean embedding of a joint distribution with least
expected cost, and whose marginal embeddings are close to the given-sample based estimates of the
marginal embeddings. There are several advantages of this new approach:

1. because the samples based estimates of the kernel mean embeddings of the marginals are known
to have sample complexities that are dimension-free, it is expected that the sample complexity
remains dimension-free even for the proposed estimator of the transport plan embedding.

2. kernel embeddings provide implicit smoothness, as controlled by the kernel. Appropriate smooth-
ness not only improves the quality of estimation, but also enable out-of-sample estimation.

3. since Maximum Mean Discrepancy (MMD) is the natural notion of distance in the kernel mean em-
bedding space, this reformulation facilitates MMD based regularization for controlling overfitting.
Such regularizers are complementary to the φ-divergence (or entropy) based regularizers popularly
employed in existing estimators. [40] observe that MMD and φ-divergence based regularization
exhibit complementary properties and hence both are interesting to study.

A key result from this work is that, under very mild conditions, the proposed methodology can
recover an ε-optimal transport plan and corresponding (Barycentric-projection based) transport map
with a sample complexity, O(m−1/2), which is completely1 dimension-free. Another contribution
is an appropriate representer theorem that guarantees finite characterization for the transport plan
embedding, leading to a fully kernelized and convex formulation for the estimation. Thus the same
formulation can potentially be used for obtaining estimators with all variants of OT: continuous,
semi-discrete, and discrete, merely by switching the kernel between the Kronecker delta and the
Gaussian kernels. More importantly, the same can be used to solve OT problems in non-standard
domains using appropriate universal kernels [5]. Finally, we discuss special cases where the proposed
convex formulation can be solved efficiently using ADMM based solver [3]. Empirical results on
synthetic and real-world datasets illustrate the efficacy of the proposed approach. The proofs of all
the theorems discussed in this paper are provided in the technical report [28].

2 Background on Optimal transport and Kernel Embeddings

In this section we briefly summarize the theories of optimal transport (OT) and kernel mean embed-
dings, which are essential for understanding the proposed methodology.

Optimal Transport

We begin with a brief discussion on OT. For more details, please refer [33], which is a comprehensive
monologue on the subject with focus on recent developments related to machine learning.

Let X ,Y be any two sets that form locally compact Hausdorff topological spaces. We denote the set
of all Radon probability measures over X byM1(X ); whereas we denote the set of strictly positive
measures byM1

+(X ) . Let c : X × Y denote a function that evaluates the cost between elements in
X ,Y and let ps ∈M1

+(X ), pt ∈M1
+(Y). Then, the Kantorovich’s OT formulation [22] is:

minπ∈M1(X ,Y)
∫
c(x, y) dπ(x, y),

s.t. πX = ps, π
Y = pt,

(1)

1Here we use a simplified notation for O(m−1/2), where the terms involving ε are ignored. Nevertheless, all
the terms/constants ignored are indeed independent of the dimension (and m).
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where πX , πY denote the marginal measures of π over X ,Y respectively. An optimal solution of (1)
is referred to as an optimal transport plan or optimal coupling.

Statistical OT: In the setting of statistical OT, the marginals ps, pt are not available; however, iid
samples from them are given. Let Dx = {x1, . . . , xm} denote the set of m iid samples from ps and
let Dy = {y1, . . . , yn} denote n iid samples from pt. The cost function is known only at the sample
data points. Let C ∈ Rm×n denote the cost matrix with with (i, j)th entry as c(xi, yj).

A popular way to estimate the optimal plan in (1) is to employ the sample based estimates for the
marginals: p̂s ≡ 1

m

∑m
i=1 δxi

and p̂t ≡ 1
n

∑n
j=1 δyj , in place of the true (unknown) marginals. Here,

δ denotes the Dirac delta function. In such a case, (1) simplifies as the standard discrete OT problem:
minπ∈Rm×n tr(πC>),
s.t. π1 = 1

m1, π>1 = 1
n1, π ≥ 0,

(2)

where tr(·) denotes the trace of a matrix, and 1,0 denote vectors/matrices with all entries as unity,
zero respectively. Since the sample complexity of (2) in estimating (1) is prohibitively high for
high-dimensional domains [29], alternative estimation methods are sought after.

Kernel mean embeddings

This section presents a brief on the theory of kernel mean embeddings. For more details, please
refer [39]. Let k be a kernel defined over a domain X and let φk,Hk be the kernel’s canonical
feature map and the canonical RKHS. Then, the kernel mean embedding of a random variable X
is defined as µX ≡ E [φ(X)]. The embedding µX is well-defined, and µX ∈ Hk, whenever k is
normalized. Further, if (and only if) k is a characteristic kernel [41], then the map X 7→ µX is
one-to-one. For discrete probability measures, the Kronecker delta kernel is characteristic, while for
continuous measures over Rd, the Gaussian kernel is an example of a characteristic kernel. Using these
embeddings, one can compute expectations of functions of the respective random variables, whenever
they exist: for e.g., E[f(X)] = E[〈f, φ(x)〉]Hk

= 〈f,E[φ(X)]〉Hk
= 〈f, µX〉Hk

∀ f ∈ Hk.

The notion of kernel mean embeddings easily extends to the case of jointly defined random variables.
Let k1, k2 be two kernels defined over domains X ,Y respectively. Let φ1, φ2 be the corresponding
canonical feature maps and letH1,H2 be the canonical RKHSs. Then the cross-covariance operator
(the joint embedding) is defined as CXY ≡ E [φ1(X)⊗ φ2(Y )], where ⊗ denotes the tensor product.
Again, whenever k1, k2 are individually characteristic, the map (X,Y ) 7→ CXY is one-to-one and
E[h(X,Y )] = 〈h,CXY 〉H1⊗H2

∀ h ∈ H1 ⊗H2. Analogously, one can define the auto-covariance
operator CXX ≡ E [φ1(X)⊗ φ1(X)].

The notion of embedding conditionals is also straight-forward: µY/x ≡ E [φ2(Y )/x]. Additionally,
one defines a conditional embedding operator CY/X : H1 7→ H2, such that CY/X (φ1(x)) =
µY/x ∀ x ∈ X . For convenience of notation, CY/X (φ1(x)) is simplified as CY/Xφ1(x). With this
definition, one can show that the relation CY/XCXX = CY X holds. Also, the kernel sum rule [39]
relates the conditional operator to the mean embeddings: µY = CY/XµX .

We end with this brief with a note on the related notion of universal kernel [41]. A kernel defined
over a domain X is universal if and only if its RKHS is dense in the set of all continuous functions
over X [5]. If k1, k2 are universal over X ,Y respectively, then k = k1k2 is universal over X × Y .
Moreover, φk(x, y) = φ1(x)⊗ φ2(y) ∀ x ∈ X , y ∈ Y . Hence, the RKHSH1 ⊗H2 is dense in the
set of all continuous functions over X × Y . Finally, universal kernels are also characteristic.

3 Proposed Methodology

We begin by re-formulating (1) solely in terms of kernel mean embeddings and operators. Let k1, k2
be characteristic kernels defined over X ,Y respectively. Let φ1, φ2 andH1,H2 denote the canonical
feature maps and the reproducing kernel Hilbert spaces (RKHS) corresponding to the kernels k1, k2
respectively. Let 〈·, ·〉H, ‖ · ‖H denote the default inner-product, norm in the RKHS H. Let µs ≡
EX∼ps [φ1(X)] , µt ≡ EY∼pt [φ2(Y )] denote the kernel mean embeddings of the marginals ps, pt
respectively. Let Σss ≡ EX∼ps [φ1(X)⊗ φ1(X)] and Σtt ≡ EY∼pt [φ2(Y )⊗ φ2(Y )] denote the
auto-covariance embeddings of ps, pt respectively. Recall that ⊗ denotes tensor product.

Since the variable in (1), π, is a joint measure, the cross-covariance operator, U =
E(X,Y )∼π [φ1(X)⊗ φ2(Y )], is the suitable kernel mean embedding to be employed. However,
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since the constraints involve the marginals of π, denoted by π1, π2; it is natural to employ the
kernel sum rule [39], which relates the cross-covariance operator, U , to the marginal embeddings,
µ1 ≡ EX∼π1 [φ1(X)] , µ2 ≡ EY∼π2 [φ2(Y )], via the conditional embedding operators, U1,U2, and
the auto-covariance operators, ΣU1 ≡ EX∼π1

[φ1(X)⊗ φ1(X)] ,ΣU2 ≡ EY∼π2
[φ2(Y )⊗ φ2(Y )].

The relations between these operators and embeddings follow from the definition of conditional
embedding and the kernel sum rule [39]:

U = ΣU1 U>1 = U2ΣU2 , U1µ1 = µ2, U2µ2 = µ1. (3)

Here, M> denotes the adjoint of M .

In order to re-write the objective using the above operators, we assume that the cost function, c(·, ·),
can be embedded inH1 ⊗H2. This assumption is trivially true if the domains are discrete. However,
in case of continuous domains this need not be true, in general. Hence we additionally assume that the
kernel(s) corresponding to continuous domain(s) is(are) universal and that the cost function, C(·, ·),
is continuous in that(those) continuous variable(s). It then follows that c(·, ·) can be arbitrarily closely
approximated by elements inH1 ⊗H2 [41]. Note that universal kernels are well-studied and known
for non-standard domains too [5]. These very mild assumptions are summarized below:

Assumption 1. Both kernels k1, k2 are characteristic. Moreover, if ki is over a continuous domain,
then it is universal.

Assumption 2. We assume that c ∈ H1 ⊗ H2, where c denotes either the exact function or the
(arbitrarily) close approximation of it that can be embedded.

Note that the objective in (1) can be written as: E [c(X,Y )] = 〈c,U〉H1⊗H2
. Using this and (3),

leads to the following kernel embedding formulation for OT:

min
U∈E21,U1∈L12,U2∈L21

〈c,U〉H1⊗H2

s.t. U1µs = µt, U2µt = µs,
U = ΣssU>1 ,ΣU1 = Σss, U = U2Σtt,Σ

U
2 = Σtt,

(4)

where Lij is the set of all linear operators from Hi 7→ Hj , and E21 ≡{
U ∈ L21 | ∃p ∈M1(X ,Y) 3 U = E(X,Y )∼p [φ1(X)⊗ φ2(Y )]

}
is the set of all valid cross-

covariance operators. Note that the constraints U = ΣssU>1 ,ΣU1 = Σss ⇒ U = ΣU1 U>1 , which in
turn gives that U1 is a valid conditional embedding associated with U . However, we keep the former
couple of constraints rather than the later one because i) there is no loss of generality ii) they will
lead to an elagant representor theorem, kernelization and efficient optimization, as will be clear later.
Analogous comments hold for the couple U = U2Σtt,Σ

U
2 = Σtt.

The equivalence of (4) and (1) follows from the one-to-one correspondence between the measures
involved and their kernel embeddings, which is guaranteed by the characteristic kernels, and from the
crucial embedding characterizing constraint: U ∈ E21. Without this characterizing constraint, the
formulation is not meaningful. We summarize the above re-formulation in the following theorem:

Theorem 1. Under Assumptions 1-2, the Kantorovich formulation of OT, (1), is equivalent to (4).

Note that unlike existing formulae for the operator embeddings [39], which eliminate two of the three
operators U ,U1,U2; we critically preserve all of them in (4). This is because they facilitate efficient
regularization in the statistical estimation set-up and lead to efficient algorithms (as will be shown
later). Also, the characterization of embedding, E21, is included only for the cross-covariance, and
not explicitly included for the conditional operators. This is fine because the conditional operators
are well-defined given the cross-covariance, and the auto-covariances.

The key advantage of the proposed formulation (4) over (1) is that the sample based estimates
for kernel mean embeddings of the marginals, which are known to have dimension-free sample
complexities, can be employed directly in the statistical OT setting.

3.1 Re-formulation as Learning Embedding problem

As motivated earlier, we aim to employ the standard sample based estimates for the kernel mean
embeddings of the marginals in the re-formulation (4). To this end, let the estimates for the marginal
kernel mean embeddings be denoted by: µ̂s ≡ 1

m

∑m
i=1 φ1(xi) and µ̂t ≡ 1

n

∑n
j=1 φ2(yj). Likewise,
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the estimates of the auto-covariance embeddings are given by Σ̂ss ≡ 1
m

∑m
i=1 φ1 (xi)⊗ φ1 (xi) and

Σ̂tt ≡ 1
n

∑n
j=1 φ2 (yj)⊗ φ2 (yj).

In the statistical OT setting, the cost function, c, is only available at the given samples. In con-
tinuous domains, there will exist many functions in the RKHS that will exactly match c, when
restricted to the samples. Each such choice will lead to a valid estimator. We choose ĉ to be
the orthogonal projection of c onto the samples: ĉ ≡

∑m
i=1

∑n
j=1 ρ

∗
ijφ1(xi) ⊗ φ2(yj), where

ρ∗ ≡ arg minρ

∥∥∥c−∑m
i=1

∑n
j=1 ρijφ1(xi)⊗ φ2(yj)

∥∥∥
H1⊗H2

and ‖·‖H1⊗H2
is the Hilbert-Schmidt

operator norm. Straight-forward computation shows that ρ∗ = (G1 �G2)
−1 C, where G1 and G2

are the gram-matrices with k1 and k2 over the samples x1, . . . , xm and y1, . . . , yn respectively, and
� denotes the element-wise product. Recall that C ∈ Rm×n denotes the cost matrix with with (i, j)th

entry as c(xi, yj). For universal kernels, it follows that ĉ will be equal to c at the given samples, and
hence the above is a valid choice for estimation. In addition, the above choice of ĉ helps us in proving
the representer theorem (Theorem 3).

Now, employing these estimates in (4) must be performed with caution as i) the equality constraints
now will be in the (potentially infinite dimensional) RKHS, ii) more importantly, matching the
estimates exactly will lead to overfitting. Hence, we propose to introduce appropriate regularization
by insisting that there is a close match rather than an exact match. This leads to the following kernel
mean embedding learning formulation:

min
U∈E21,U1∈L12,U2∈L21

〈ĉ,U〉H1⊗H2

s.t. ‖U1µ̂s − µ̂t‖H2
≤ ∆1, ‖U2µ̂t − µ̂s‖H1

≤ ∆2,∥∥∥U − Σ̂ssU>1
∥∥∥
H1⊗H2

≤ ϑ1,
∥∥∥U − U2Σ̂tt

∥∥∥
H1⊗H2

≤ ϑ2,

‖ΣU1 − Σ̂ss‖H1⊗H1
≤ ζ1, ‖ΣU2 − Σ̂tt‖H2⊗H2

≤ ζ2,

(5)

where ∆1,∆2, ϑ1, ϑ2, ζ1, ζ2 are regularization hyper-parameters introduced to prevent overfitting to
the estimates.

3.2 Statistical Analysis of the Learning Formulation

The proposed embedding learning formulation (5) is an approximation to the OT problem (4) because
of two reasons: i) the regularization hyper-parameters ∆1,∆2, ϑ1, ϑ2, ζ1, ζ2, which are non-zero
(positive) ii) sample-based estimates (ĉ, µ̂s, µ̂t, Σ̂ss, Σ̂tt) are employed. While the effect of the
former is clear, for e.g., as the hyper-parameters→ 0, the approximation error, ε, goes to zero; the
sample complexity for estimation is more insightful. To this end we present the following theorem:
Assumption 3. Let us assume that the kernels are normalized/bounded i.e., maxx∈X k1(x, x) =
1,maxy∈Y k2(y, y) = 1.

Theorem 2. Let g
(
ĉ, µ̂s, µ̂t, Σ̂ss, Σ̂tt

)
denote the optimal objective of (5) in

Tikhonov form. Under Assumptions 1-3, with high probability we have that,∣∣∣g (ĉ, µ̂s, µ̂t, Σ̂ss, Σ̂tt)− g (c, µs, µt,Σss,Σtt)
∣∣∣ ≤ O

(
1/
√

min(m,n)
)

. The constants in
the RHS of the inequality are dimension-free.

Theorem 2 shows that embedding of an ε-optimal transport plan can recovered by solving (5) with a
sample complexity that is dimension-free. The proof of this theorem is detailed in [28]. The idea
is to uniformly bound the difference between the population and sample versions of each of the
terms in the objective. Interestingly, each of these difference terms can either be bounded by relevant
estimation errors in embedding space or by approximation errors in the RKHS, both of which are
known to be dimension-free.

Note that the regularization in (5) is based on the Maximum Mean Discrepancy (MMD) distances
between the kernel embeddings. This characteristic of our estimators is in contrast with the popular
entropic regularization [8], or φ-divergence based regularization [25] in existing OT estimators. [40]
argue that MMD and φ-divergence based regularization have complementary properties. Hence
both are interesting to study. While the dependence on dimensionality is adversely exponential with
entropic regularization, if accurate solutions are desired [14], the proposed MMD based regularization
for statistical OT leads to dimension-free estimation.
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3.3 Representer theorem & Kernelization

Interestingly, (5) admits a finite parameterization facilitating it’s efficient optimization. This important
result is summarized in the representer theorem below:
Theorem 3. Whenever (5) is solvable, there exists an optimal solution, U∗,U∗1 ,U∗2 , of (5) such
that U∗ =

∑m
i=1

∑n
j=1 αijφ1(xi) ⊗ φ2(yj),U∗1 =

∑m
i=1

∑n
j=1 βjiφ2(yj) ⊗ φ1(xi),U∗2 =∑m

i=1

∑n
j=1 γijφ1(xi) ⊗ φ2(yj). Here α ∈ Rm×n, β ∈ Rn×m, γ ∈ Rm×n that are an optimal

solution for the kernelized and convex formulation (6) given below:

min
α,γ∈Rm×n,β∈Rn×m

tr(αC>)

s.t. 1
m21

>G1β
>G2βG11− 2

mn1
>G2βG11 + 1

n21
>G21 ≤ ∆2

1
1
n21
>G2γ

>G1γG21− 2
mn1

>G1γG21 + 1
m21

>G11 ≤ ∆2
2〈

G1α− 1
mG

2
1β
>, αG2 − 1

mG1β
>G2

〉
F
≤ ϑ21,〈

αG2 − 1
nγG

2
2, G1α− 1

nG1γG2

〉
F
≤ ϑ22,

‖α1− 1
m1‖2G1�G1

≤ ζ21 , ‖α>1− 1
n1‖

2
G2�G2

≤ ζ22
α ≥ 0,1>α1 = 1,

(6)

where,G1 andG2 are the gram-matrices with k1 and k2 over x1, . . . , xm and y1, . . . , yn respectively,
and ‖x‖2M ≡ x>Mx, is the Mahalanobis squared-norm of x.

The proof of this theorem is detailed in [28]. Apart from standard representer theorem-type arguments,
the proof includes arguments that show that the characterizing set E21 when restricted to the linear
combinations of embeddings is exactly same as the convex combinations of those. This helps us
replace the membership to E21 constraint by a simplex constraint.

We note that (6) is jointly convex in the variables α, β, and γ. This is because the constraints are either
convex quadratic or linear and the objective is also linear. Hence obtaining estimators using (6) is
computationally tractable (refer also section 3.5). It is easy to verify that (6) simplifies to the discrete
OT problem (2) if both the kernels are chosen to be the Kronecker delta and all the hyper-parameters
are set to zero. If one of the kernel is chosen as the Kronecker delta and the other as the Gaussian
kernel, then (6) can be used for semi-discrete OT in the statistical setting. Additionally, by employing
appropriate universal kernels, (6) can be used for statistical OT in non-standard domains.

We end this section with a small technical note. While the cross-covariance operator obtained by
solving (6) will always be a valid one; for some hyper-parameters, which are too high, it may happen
that the optimal β, γ induce invalid conditional embeddings. This may make computing the transport
map (7) intractable. Hence, in practice, we include additional constraints β, γ ≥ 0.

3.4 Proposed Optimal Map Estimator

Once the embedding of the transport plan is obtained by solving (6), generic approaches for recovering
the measure corresponding to a kernel embedding, detailed in [21, 36], can be employed to recover
the corresponding transport plan. Moreover, since the recovery methods in [36] have dimension-free
sample complexity, the overall sample complexity for estimating the optimal transport plan hence
remains dimension-free.

We estimate the Barycentric-projection based optimal transport map, T , at any x ∈ X as follows:
T (x) ≡ argmin

y∈Y
E [c (y, Y ) /x] = argmin

y∈Y
〈c(y, ·),U∗1φ1(x)〉 ,

= argmin
y∈Y

∑n
j=1

(
c(y, yj)

∑n
j=1

(
β∗jik1 (xi, x)

))
,

(7)

where β∗ are obtained by solving (6) and U∗1 is the corresponding conditional embedding. (7) turns out
to be that of finding the Karcher mean [23], whenever the cost is a squared-metric etc. Alternatively,
one can directly minimize E [c (y, Y ) /x] with respect to y ∈ Y using stochastic gradient descent
(SGD). The following theorem summarizes the consistency with SGD:
Theorem 4. Let the cost be a metric or it’s powers greater than unity and let Y be compact. Then
the SGD based estimator for T has a sample complexity that remains dimension-free.

An advantage with our map estimator is that it can be computed even at out-of-sample x ∈ X . This
is possible because of the implicit smoothing induced by the kernel.
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Figure 1: (a) & (b) plots the average MSE obtained by the proposed approach and the EMD (2) on
the problem of learning the transport map between multivariate Gaussians; (c) & (d) plots average
out-of-sample MSE obtained by the proposed approach with the learned transport map.

3.5 A Special Case

Though (6) can be solved using off-the-shelf convex solvers, the structure in the proposed problem
can be exploited to derive efficient alternating directions method of multipliers (ADMM) based
solvers. Further speed-up may be obtained in the special case when εi = 0 in (6). This simplifies the
constraints corresponding to ε1 and ε2 in (6) as α = (1/m)G1β

> and α = (1/n)γG2, respectively.
Using this and re-writing (6) in Tikhonov form leads to the following optimization problem:

min
α∈Amn,β≥0,γ≥0

tr(αC>) +λ1
∥∥α1− 1

m1
∥∥2
G1

+ λ2
∥∥α>1− 1

n1
∥∥2
G2

+ν1
∥∥α1− 1

m1
∥∥2
G1�G1

+ ν2
∥∥α>1− 1

n1
∥∥2
G2�G2

s.t. α = 1
mG1β

>, α = 1
nγG2,

(8)

where Amn = {x ∈ Rm×n | x ≥ 0,1>x1 = 1} and λi > 0, νi > 0 are the regularization hyper-
parameter corresponding to ∆2

i , ζ
2
i in (6). The ADMM updates for (8) are discussed in [28]. Without

loss of generality, if we assume m ≥ n, the per iteration cost of ADMM algorithm for (8) is O(m3).

4 Related Work

A popular strategy for performing continuous statistical OT is to simply employ the sample based
plug-in estimates for the marginals. This reduces the statistical OT problem to the classical discrete
OT problem, for which efficient algorithms exist [8, 1]. However, the sample complexity of the
discrete OT based estimation is plagued with the curse of dimensionality [29].

Many approaches for alleviating the curse of dimensionality exist. For e.g., [14] propose entropic
regularization. However, their results (e.g., theorem 3 in [14]) show that the curse of dimensionality
is not completely removed, especially if accurate solutions are desired. Empirical results in [11,
refer Figures 4 and 5] confirm that the quality of the solution degrades very quickly with entropic
regularization. [29, 12] make low-rank assumptions, which may not be satisfied in all applications.
Further, as per theorem 1 in [29], the dependence on d still exists. Similar comments hold for [18],
which makes a smoothness assumption.

While the approach of [15] efficiently estimates the optimal dual objective, recovering the optimal
transport plan from the dual’s solution again requires the knowledge of the exact marginals (refer
proposition 2.1 in [15]). Since estimating distributions in high-dimensional settings is known to be
challenging, this alternative is not attractive for applications where the transport plan is required, e.g.,
domain adaptation [7],ecological inference [27], data alignment [2] etc.

On passing we note that though there are existing works that employ kernels in context of OT [15,
32, 45, 30], none of them use the notion of kernel embedding of distributions and limit the use of
kernels to either function approximation or computing the MMD distance. Though relations between
Wasserstein and MMD distance [11] exist, none of them explore regularization with MMD distances.
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Table 1: Accuracy obtained on the target domains of the Office-Caltech dataset.
(a) In-sample source dataset

Task EMD OTLin [31] OTKer [31] Proposed

A→ C 80.68 82.92 83.07 85.24
A→ D 72.66 82.28 82.53 84.05
A→W 69.05 77.70 76.35 77.57
C → A 82.61 88.31 88.09 90.49
C → D 68.35 79.75 78.99 77.97
C →W 65.54 71.89 70.00 74.46
D → A 81.50 88.57 85.23 91.09
D → C 76.51 82.17 78.22 86.52
D →W 91.89 97.57 96.35 96.35
W → A 71.22 80.00 76.23 87.54
W → C 69.55 77.58 73.72 80.96
W → D 80.76 97.72 96.20 96.20

Average 75.86 83.87 82.08 85.70

(b) Out-of-sample source dataset

OTLin [31] OTKer [31] Proposed

56.75 79.11 84.42
79.49 82.79 84.81
55.41 76.35 82.16
87.79 84.54 90.71
81.01 74.94 78.73
70.00 68.11 75.27
64.53 81.95 87.56
43.67 72.79 81.33
90.04 82.02 89.60
60.09 73.88 79.10
49.34 63.17 76.83
95.95 90.89 93.16

69.51 77.54 83.64

5 Experiments

We evaluate our estimator for the transport map (7) on both synthetic and real-world datasets. Our
code is available at https://www.iith.ac.in/~saketha/research.html. Additional details
on the experiments are available in the technical report [28].

5.1 Learning OT map between multivariate Gaussian distributions

The optimal transport map between two Gaussian distributions gsource = N(m1,Σ1) and gtarget =
N(m2,Σ2) with squared Euclidean cost has a closed form expression [33] given by T : x 7→
m2 + A(x −m1), where A = Σ

− 1
2

1 (Σ
1
2
1 Σ2Σ

1
2
1 )

1
2 Σ
− 1

2
1 . We compare the proposed estimator (7) in

terms of the deviation from the optimal transport map.

Experimental setup: We consider mean zero Gaussian distributions with unit-trace covariances and
sample equal number (m) of source and target data points, where m ∈ {10, 20, 50, 100, 150, 200}
and d ∈ {100, 1000}. The covariance matrices are computed as Σ1 = V1V

>
1 /‖V1‖F and

Σ2 = V2V
>
2 /‖V2‖F , where V1 ∈ Rd×d and V2 ∈ Rd×d are generated randomly from the uni-

form distribution. Our approach employs the Gaussian kernels, k(x, z) = exp(−‖x − z‖2/2σ2).
Initial experiments indicate that suitable values of σ include those that does not yield high condition
number of the Gram matrices. As a baseline, we also report the results obtained from the discrete OT
estimator, henceforth referred to as EMD, learned via the discrete OT problem (2). For each (d,m),
we randomly sample five sets of data points and report the average mean square error (MSE).

Results: The results are reported in Figures 1(a) & (b). We observe that the proposed estimator
obtains lower average MSE than EMD across different number of samples and dimensions. The
advantage of the proposed estimator over EMD is more pronounced at higher dimension.

Out-of-sample evaluation: We also evaluate our estimator’s ability to map out-of-sample data by
sampling additionalmoos = 200 points from the source distributions in the above experiments. These
source points are not used to learn the estimator. The results are reported in Figure 1(c) & (d). We
observe that the performance on out-of-sample data points are similar to the in-sample data points
(Figures 1(a) & (b)). In addition, the average out-of-sample MSE generally decreases with increasing
number of samples since a better estimator is learned with more number of samples. Overall, the
results illustrate the utility of the proposed approach for out-of-sample estimation. It should be noted
that the baseline EMD cannot map out-of-sample data points.

5.2 Domain adaptation

We experiment on the Caltech-Office dataset [17], which contains images from four domains:
Amazon (online retail), the Caltech image dataset, DSLR (images taken from a high resolution DSLR
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camera), and Webcam (images taken from a webcam). The domains vary with respect to factors
such as background, lightning conditions, noise, etc. The number of examples in each domain is:
958 (Amazon), 1123 (Caltech), 157 (DSLR), and 295 (Webcam). Each domain has images from
ten classes and in turn is considered as the source or the target domain. We perform multi-class
classification in the target domain given the labeled data only from the source domain. Using OT, we
first transport the labeled source domain data-points to the target domain and then learn a classifier
for the target domain using the adapted source data-points. Overall, there are twelve adaptation tasks
(e.g., task A→ C has Amazon as the source and Caltech as the target domain). We employ DeCAF6
features to represent the images [10, 31, 6].

Experimental setup: For learning transport plan, we randomly select ten images per class for the
source domain (eight per class when DSLR is the source, due to its sample size). The remaining
samples of the source domain is marked as out-of-sample source data-points. The target domain is
partitioned equally into training and test sets. The transport map is learned using the source-target
training sets. The ‘in-sample’ accuracy is then evaluated on the target’s test set. We also evaluate
the quality of our out-of-sample estimation as follows. Instead of projecting the source training
set samples onto the target domain, we project only the out-of-sample (OOS) source data-points
and compute the accuracy over the target’s test set. It should be noted that the transport model has
not been learned on the OOS data-points, such mappings may not be as accurate as the in-sample
mapping. The OOS evaluation assesses the downstream effectiveness of OOS estimation on domain
adaptation. Out-of-sample estimation is especially attractive in big data and online applications. The
classification in the target domain is performed using a 1-Nearest Neighbor classifier [17, 31, 6]. The
above experimentation is performed five times and the average in-sample and out-of-sample accuracy
are reported in Tables 1(a) & 1(b), respectively.

Baselines: We compare our approach with EMD, OTLin [31], and OTKer [31]. Both OTLin and
OTKer aim to solve the discrete optimal transport problem and also learn a transformation approxi-
mating the corresponding transport map in a joint optimization framework. OTLin learns a linear
transformation while OTKer learns a non-linear transformation (e.g., via Gaussian kernel). The
learned transformation allows OTLin and OTKer to perform out-of-sample estimation as well. We
use the Python Optimal Transport (POT) library (https://github.com/PythonOT/POT) imple-
mentations of OTLin and OTKer in our experiments.

Results: We observe from Tables 1(a) & 1(b) that the proposed approach outperforms the baselines,
obtaining the best in-sample and out-of-sample (OOS) accuracy. As discussed, the in-sample accuracy
is likely to be better than out-of-sample accuracy (for any approach). Interestingly, for a few tasks
with Amazon and Caltech as the source domains, the OOS accuracy of our approach is comparable to
our in-sample accuracy. In these domains, the OOS set is larger than the training set. The proposed
OOS estimation is able to exploit this and provide an effective knowledge transfer. Conversely, we
observe a drop in our OOS accuracy (when compared with the corresponding in-sample accuracy) in
tasks with DSLR and Webcam as the source domains since the size of OOS set is quite small and
hence lesser potential for knowledge transfer. On the other hand, OTLin suffers a significant drop in
OOS performance, likely due the the overfitting of the learned linear transformation on the source
training points. While OTKer has better OOS performance than OTLin, it has more variance between
in-sample and out-of-sample performance than the proposed approach.

6 Conclusions

The idea of employing kernel embeddings of distributions in OT seems promising, especially in
the continuous case. It not only leads to sample complexities that are dimension-free, but also
provides a new regularization scheme based on MMD distances, which is complementary to existing
φ-divergence based regularization.

While the optimal solution of the proposed MMD regularized formulation recovers the transport plan,
the objective value does not seem to have any special use. On the contrary, it has been shown that
with entropic, φ-divergence based regularizations the optimal objectives lead to notions of Sinkhorn
divergences [11] and Hillinger-Kantorovich metrics [25]. We make an initial observation that in the
special case in section 3.5, the objective in (8), resembles that defining the Hillinger-Kantorovich
metrics very closely. Hence, we conjecture that our optimal objective in this special case may also
define a new family of metrics. However, we postpone such connections (if any) to future work.
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