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This supplementary material provides additional details for some results in the original paper.

A Proofs of the main results

This section provides i) elaboration on the surrogate f -divergence including the proofs of Proposi-
tion 1, Proposition 2 and Proposition 3, ii) deviations of the f -variational bound generated from both
the reverse and forward surrogate f -divergence, and iii) an importance-weighted f -variational bound
and the proof of Corollary 1.

A.1 Proof of Proposition 1

We first expand the LHS of (3) by substituting the definitions of f -divergence (1) and generator
function (2).

lim
n→∞

Dfλn
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In order to prove (3), we only need to show that

lim
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)
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∫
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n→∞

p(z) · f
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dz = Df (q‖p), (17)

which can be proved by showing that function g(λ) =
∫
p(x) · f (λ · q(z)/p(z)) dz is continuous in

λ, since the continuity of g(λ) brings each convergent sequence in λ to a convergent sequence in g(·).
The continuity of g(λ) can be justified as follows. For arbitrary ε > 0 and z, there exists δ such that

|g(λ+ δ)− g(λ)| =
∣∣∣∣∫ p(z) ·

[
f

(
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p(z)

)
− f
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)
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)∣∣∣∣ dz
≤
∫
p(z) · ε dz = ε ,

where we have used the uniform continuity of f(·). This completes the proof. �
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A.2 Proof of Proposition 2

We first consider the scenario when f ∈ F0. Since

f∗(tt̃) = tt̃ · f
(

1

tt̃

)
= tt̃ ·

[(
1

t

)γ0
· f
(

1

t̃

)
+ f

(
1

t

)]
= t1−γ0 · f∗0 (t̃) + f∗0 (t) · t̃,

by letting γ = 1− γ0, we can conclude that f∗0 ∈ F1. We then consider the case when f ∈ F1. Since

f∗(tt̃) = tt̃ · f
(

1

tt̃

)
= tt̃ ·

[(
1

t

)γ1
· f
(

1

t̃

)
+ f

(
1

t

)
· 1

t̃

]
= t1−γ1 · f∗1 (t̃) + f∗1 (t),

by letting γ = 1− γ1, we can conclude that f∗1 ∈ F0. This completes the proof. �

A.3 Proof of Proposition 3

We start this proof by substituting (1), (2) and (4) into the LHS of (5)

Dfλ(q ‖ p) = Ep[fλ(q/p)]

= Ep[f(λq/p)]− f(λ)

= λγEp[f(q/p)] + f(λ) · Ep[(p/q)η]− f(λ).

Since f(λ) · Ep[(p/q)η] = f(λ) · Ep[(p/q)0] = f(λ) when f ∈ F0, and f(λ) · Ep[(p/q)η] =
f(λ) ·

∫
q(x) dx = f(λ) when f ∈ F1, we have

Dfλ(q‖p) = λγDf (q‖p).

This completes the proof. �

A.4 f -variational bound from reverse divergence

We provide detailed steps for deriving (6), which is a preliminary step for Theorem 1 and the f -
variational bound induced by reverse surrogate f -divergence. A reverse surrogate f -divergence can
be decomposed as

Dfp(D)−1 (q(z)‖p(z|D)) =

∫
p(z|D) · fp(D)−1

(
q(z)

p(z|D)

)
dz

=

∫
p(z|D) ·
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f

(
q(z) · p(D)

p(z,D)
· 1

p(D)

)
− f

(
1

p(D)

)]
dz

=
1

p(D)

∫
p(z,D)

q(z)
· f
(

q(z)

p(z,D)

)
· q(z) dz − f

(
1

p(D)

)
=

1

p(D)
· Eq(z)

[
f∗
(
p(z,D)

q(z)

)]
− f

(
1

p(D)

)
.

A.5 f -variational bound from forward divergence

As we mentioned in Section 3.1, the assumption on p(D) > 0 or the existence of p(D)−1

in (6) can be circumvented by using the f -VI that minimizes the forward surrogate f -divergence
Dfp(D)

(p(z|D)‖q(z)). Meanwhile, in Section 3.3, the coordinate-wise update rule (16) for f ∈ F0

is also based on the f -variational bound induced by Dfp(D)
(p(z|D)‖q(z)). The f -variational bound
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and a sandwich estimate of evidence from forward surrogate f -divergence are derived below. First,
we notice that the forward surrogate f -divergence can be decomposed as follows

Dfp(D)
(p(z|D)‖q(z)) =

∫
q(z) · fp(D)

(
p(z|D)

q(z)

)
dz

=

∫
q(z) ·

[
f

(
p(z,D)

q(z) · p(D)
· p(D)

)
− f (p(D))

]
dz

= Eq(z)
[
f

(
p(z,D)

q(z)

)]
− f(p(D)).

By the non-negativity of f -divergence [17], i.e. Dfp(D)
(p(z|D)‖q(z)) ≥ 0, the f -variational bound

Lf (q,D) from forward divergence follows

Lf (q,D) = Eq(z)
[
f

(
p(z,D)

q(z)

)]
≥ f(p(D)), (18)

where equality holds when q(z) = p(z|D). Inequality (18) formulates the f -variational bound
induced by forward divergence Dfp(D)

(p(z|D)‖q(z)) and supplements Theorem 1, which is based on
the reverse f -divergence. Given convex functions f and g such that f(1) = g(1) = 0, on an interval
where f is non-decreasing and g is non-increasing, a sandwich estimate of evidence p(D) is given as
follows

(g)−1 ◦ Eq(z)
[
g

(
p(z,D)

q(z)

)]
≤ p(D) ≤ (f)−1 ◦ Eq(z)

[
f

(
p(z,D)

q(z)

)]
,

which supplements the sandwich estimate in Corollary 2 derived from the reverse f -divergence.
Stochastic f -VI algorithms that minimize Lf (q,D) in (18) can be readily implied by imitating the
steps in Section 3.2, and the optimization of Lf (q,D) in (18) also does not require f and g be
invertible. Moreover, the statistical differences between f -variational bounds (8) and (18) deserve
further investigations.

A.6 Proof of Corollary 1

The proof of Corollary 1 is derived from the proof of Theorem 1 in the importance-weighted
autoencoders paper [9], and we will prove Corollary 1 by utilizing the convexity of f∗-function and
Jensen’s inequality. First, we need to show that LIW

f (q,D, L) ≥ f∗(p(D)) for L ∈ N∗, which is a
direct result of Jensen’s inequality

LIW
f (q,D, L) = Ez1:L∼q(z)

[
f∗

(
1

L

L∑
l=1

p(zl,D)

q(zl)

)]

≥ f∗
(
Ez1:L∼q(z)

[
1

L

L∑
l=1

p(zl,D)

q(zl)

])
= f∗(p(D)).

Next, we are to prove the statement that LIW
f (q,D, L1) ≥ LIW

f (q,D, L2) for L1 ≤ L2. Let I =

{i1, · · · , iL1
} ⊂ {1, 2, · · · , L2} with |I| = L1 be a uniformly distributed subset of distinct indices

from {1, 2, · · · , L2}. Subsequently, we have the identity EI={i1,··· ,im}[(ai1 +· · ·+aiL1
)/L1], which

together with Jensen’s inequality gives

LIW
f (q,D, L2) = Ez1:L2

∼q(z)
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f∗
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q(zl)

)]

= Ez1:L2
∼q(z)
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f∗
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EI={i1,··· ,iL1

}

[
1

L1

L1∑
l=1

p(zl,D)

q(zl)

])]

≤ Ez1:L2
∼q(z)

[
EI={i1,··· ,iL1

}

[
f∗

(
1

L1

L1∑
l=1

p(zl,D)

q(zl)

)]]

= Ez1:L1
∼q(z)

[
f∗

(
1

L1

L1∑
l=1

p(zl,D)

q(zl)

)]
= LIW

f (q,D, L1).
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Lastly, we need to show that f∗(p(D)) = limL→∞ LIW
f (q,D, L), when p(z,D)/q(z) is bounded.

Let the random variable RL = 1
L

∑L
l=1 p(zl,D)/q(zl) be bounded. By the strong law of large

numbers, RL converges to Eq(zl)[p(zl,D)/q(zl)] = p(D) almost surely. Therefore, LIW
f (q,D, L) =

E[f∗(RL)] converges to f∗(p(D)) a.s. as L→∞. This completes the proof.

B Examples of f -variational bounds

In this section, we provide some concrete examples of f -variational bounds by using the relationship
between f -divergence and some specific divergences [17, 18]. Some well-known variational bounds,
such as ELBO [1], RVB [2] and CUBO [3], are restored from f -variational bound (8)

Lf (q,D) = Eq(z)
[
f∗
(
p(z,D)

q(z)

)]
≥ f∗(p(D)),

and some new bounds that have rarely been investigated for VI are also introduced.

B.1 f -variational bounds under KL divergence

The most famous variational bound induced by KL divergence is the ELBO. To restore ELBO
from (8), consider a convex function f(t) = t · log t with f(1) = 0. Hence, the dual function
f∗(t) = − log t with f∗(t) = 0 is convex and decreasing. Substituting this f∗-function into (8), we
have

log p(D) ≥ Eq(z)[log p(z,D)]− Eq(z)[log q(z)] = ELBO, (19)
where the RHS terms are known as the ELBO [11]. Composing both sides of (19) with an exponential
function, we have a lower bound of evidence

p(D) ≥ exp
(
Eq(z)[log p(z,D)]− Eq(z)[log q(z)]

)
,

which verify the observation o2) and Corollary 2.

While variational upper bounds of evidence have been already discovered in Rényi’s α-VI [2]
and χ-VI [3], we rarely associate the variational upper bound with the classical KL-VI [1]. With
the new findings in Corollary 2, we can readily define a variational upper bound subject to KL
divergence. Consider the f -function, f(t) = − log t with f(1) = 0, associated with the forward KL
divergence [21, 23, 25] subject to the f -divergence in Definition 1. The dual function then becomes
f∗(t) = t log t, which is decreasing on (0, e−1] and increasing on (e−1,∞) as shown in Figure 2.
Hence, substituting f∗(t) = t log t into (8), the f -variational bound under forward KL divergence is

EUBO = Eq(z)
[
p(z,D))

q(z)
log

(
p(z,D)

q(z)

)]
≥ p(D) · log p(D) = f∗(p(D)), (20)

where the LHS term is named as evidence upper bound (EUBO). Since f∗(t) = t log t is increasing
on (e−1,∞), EUBO in (20) provides an upper bound estimate of evidence when p(D) ≥ e−1, which
can be judged from the value of ELBO. When p(D) < e−1, one should resort to other divergences, e.g.
χ-divergence and Rényi’s α-divergence, instead of KL divergence for an upper bound of evidence. To
derive an upper bound on evidence, we will only consider the occasion when p(D) ≥ e−1 hereafter.
According to Corollary 2, an upper bound of p(D) can be defined by composing both sides of (20)
with the inverse function of (f∗)−1(t) = t/W (t), which is plotted in Figure 2, and can be formulated
as (f∗)−1(t) = t/W (t), which is well-defined on t > 0, and W (t) is Lambert W function implicitly
defined by t = W (t) · exp(W (t)).

Hence, when p(D) ≥ e−1, an upper bound induced by KL divergence can be formulated as follows

p(D) ≤ max{EUBO/W (EUBO), e−1}, (21)

where EUBO is defined in (20).

B.2 f -variational bounds under χ-divergence

We then associate the f -variational bound (8) with the χ-divergence, which will restore the CUBO
introduced in [3]. The χ-VI framework and CUBO introduced in [3] are based on minimizing the
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Figure 2: t log t and its inverse function t/W (t).

forward χn-divergence Dχn(p||q) = Eq(z)[(p(z, x)/q(z))n − 1] for n ≥ 1, which is different from
the reverse χn-divergence given in Table 1. While it may be more straightforward to restore CUBO
from the f -VI based on forward divergence introduced in Section A.5 or invoking Proposition 1
and Proposition 2 to convert the forward χn-divergence to a reverse divergence, we will stick to
the f -variational bound (8) and show that it is general enough to restore the CUBO with a properly
chosen f -function. Consider an f -function f(t) = t−1 − t, which is convex on t > 0 and satisfies
f(1) = 0. The dual function then becomes f∗(t) = t2−1, which is increasing on t > 0. Substituting
the dual function into (8), we have

Eq(z)

[(
p(z, x)

q(z)

)2

− 1

]
≥ p(x)2 − 1. (22)

Canceling the constant terms in (22) and taking the logarithm of both sides, CUBO2 follows

CUBO2 =
1

2
logEq(z)

[(
p(z, x)

q(z)

)2
]
≥ log p(D).

To restore the more general CUBOn for n ∈ R\(0, 1), we consider the f -function f(t) = t1−n − t,
which is convex on t ≥ 0 and satisfies f(1) = 0. The corresponding dual function is f∗(t) = tn − 1,
which is increasing on t > 0 when n ≥ 1 and decreasing on t > 0 when n ≤ 0. Substituting the dual
function into (8), we have

Eq(z)
[(

p(z, x)

q(z)

)n
− 1

]
≥ p(x)n − 1. (23)

Canceling the constant terms in (23) and taking the logarithm of both sides, CUBOn follows

CUBOn =
1

n
logEq(z)

[(
p(z, x)

q(z)

)n]
≥ log p(D), (24)

which gives an evidence upper bound when n ≥ 1 and a lower bound when n ≤ 0. When n ∈ (0, 1),
a negative sign should be added such that a valid divergence is constructed [2]. When n < 1, CUBOn
recovers the RVB in [2], which will also be briefly discussed in Section B.3. The extension to χn-VI
under reverse χn-divergence is left to interested readers.

B.3 f -variational bounds under Rényi’s α-divergence

The Rényi’s α-divergence is defined as follows

Dα(p‖q) =
1

α− 1
log

∫
p(z, x)αq(z)1−αdz,

where α ∈ (0, 1) ∪ (1,+∞). When α ∈ (−∞, 0] ∪ {1}, Dα(p‖q) is not a valid divergence, and we
will not consider this scenario, while interested readers can refer to [2] for details. Rigorously, Rényi’s
α-divergence is not an f -divergence; however, as shown in Table 1, a one-to-one correspondence
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can be established between the Rényi’s α-divergence and Hellinger α-divergence, which is an f -
divergence. We first show that f -variational bound (8) can restore the RVB when α > 1 [2]. For
α > 1, consider an f -function f(t) = tα − t, which is convex on t > 0 and satisfies f(1) = 0. The
dual function then becomes f∗(t) = t1−α − 1, which is decreasing on t > 0. Substituting this dual
function into (8) and canceling the constant terms give

Eq(z)

[(
p(z,D)

q(z)

)1−α
]
≥ p(D)1−α. (25)

Since f(t) = tα − t is not convex when α ∈ (0, 1), for this instance, we then consider the
function f(t) = −tα + t, which is convex on t > 0 and satisfies f(1) = 0. The dual function is
f∗(t) = −t1−α + 1, which is decreasing on t > 0 and α ∈ (0, 1). Substituting this dual function
into (8) and canceling the constant terms give

Eq(z)

[(
p(z,D)

q(z)

)1−α
]
≤ p(D)1−α. (26)

Taking the logarithm on both sides of (25) and (26), and dividing both sides of the results by 1− α,
we have

RVB =
1

1− α
logEq(z)

[(
p(z,D)

q(z)

)1−α
]
≤ log p(D), (27)

which is identical to the RVB Lα+(q;D) defined in [2].

B.4 f -variational bounds under total variation distance

The total variation distance is induced by the f -function f(t) = |t− 1| with dual function f∗(t) =
|t − 1| = f(t). This f -function poses stark differences than the previous examples: i) f - and
f∗-functions are not smooth at t = 1, ii) f - and f∗-functions are not monotonic on t > 0, and iii) the
dual function f∗(t) = |t− 1| is not invertible. Nonetheless, since the dual function f∗(t) = |t− 1|
is decreasing on t ∈ [0, 1) and increasing on t ∈ (1,∞), the f -variational bounds subject to
total variation can still provide a valid upper/lower bound of evidence on each monotonic interval.
Substituting f∗(t) = |t− 1| = f(t) into (8), we have

Eq(z)
[∣∣∣∣p(z,D)

q(z)
− 1

∣∣∣∣] ≥ |p(D)− 1|. (28)

When p(D) ∈ [0, 1), inequality (28) gives a lower bound of evidence

p(D) ≥ 1− Eq(z)
[∣∣∣∣p(z,D)

q(z)
− 1

∣∣∣∣] . (29)

When p(D) ≥ 1, inequality (28) gives an upper bound of evidence

p(D) ≤ 1 + Eq(z)
[∣∣∣∣p(z,D)

q(z)
− 1

∣∣∣∣] . (30)

Combining (29) and (30), the f -variational bounds induced by the total variation distance are given
as follows

max

{
0, 1− Eq(z)

[∣∣∣∣p(z,D)

q(z)
− 1

∣∣∣∣]} ≤ p(D) ≤ 1 + Eq(z)
[∣∣∣∣p(z,D)

q(z)
− 1

∣∣∣∣] . (31)

A vanilla example demonstrating the f -variational bounds associated with total variation distance is
provided in Figure 3 of Section E.1.

C Examples of stochastic f -variational inference

This section provides supplementary interpretations for Section 3.2 with i) steps for deriving the score
function gradient in (10), ii) concrete examples of the score function, reparameterization, and IW-
reparameterization gradients under KL, χ-, and Rényi’s α-divergences, and iii) a reference algorithm
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for black box (stochastic) f -VI. First, we derive the score function gradient (10) for optimizing the
parameters θ in recognition model qθ(z). Computing the gradient of f -variational bound Lf (qθ,D)
in (8) w.r.t. parameters θ, we have

∇θLf (qθ,D) = ∇θEqθ(z)
[
f∗
(
p(z,D)

qθ(z)

)]
=

∫
p(z,D) · ∇θf

(
qθ(z)

p(z,D)

)
dz

=

∫
qθ(z) · f ′

(
qθ(z)

p(z,D)

)
· ∇θqθ(z)
qθ(z)

dz

= Eqθ(z)
[
f ′
(
qθ(z)

p(z,D)

)
· ∇θ log qθ(z)

]
,

where f ′(t) denotes ∂f(t)/∂t. An unbiased MC estimator for this score gradient function is given
in (11).

C.1 Gradient estimators under KL divergence

We first provide the gradient estimators for stochastic f -VI subject to KL divergence. For the ELBO
originated from reverse KL divergence, we choose the f -function f(t) = t log t, which gives the dual
function f∗(t) = − log t and derivative f ′(t) = 1 + log t. Substituting f ′(t) = 1 + log t into (11)
and multiplying the result by −15, we have a score function gradient estimator of ELBO

∇θL̂f (qθ,D) =
1

K

K∑
k=1

log
p(zk,D)

qθ(zk)
· ∇θ log qθ(zk), (32)

where zk ∼ qθ(z). The score function gradient estimator (32) for ELBO restores the result in [26].
Given a noise variable ε ∼ p(ε) and a mapping gθ(·) such that z = gθ(ε), and substituting f∗(t) =
− log t into (13) and multiplying the result by −1, we have a reparameterization gradient estimator
of ELBO

∇θL̂
rep
f (qθ,D) =

1

K

K∑
k=1

∇θ log
p(gθ(εk),D)

q(gθ(εk))
, (33)

where εk ∼ p(ε). The reparameterization gradient (33) restores the gradient of standard VAE in [7].
Substituting f∗(t) = − log t into (14) and drawing the two-dimensional noise samples {εk,1:L}Kk=1
from p(ε), we have an IW-reparameterization gradient of ELBO

∇θL̂
IW, rep
f (qθ,D, L) =

1

K

K∑
k=1

∇θ log

(
1

L

L∑
l=1

p(gθ(εk,l),D)

qθ(gθ(εk,l))

)
,

which restores the gradient of IW-VAE in [9]. In practice, the (IW-)reparameterization gradients
can be computed by invoking the backpropagation functions in machine learning libraries or other
automatic differentiation tools.

We then give the gradients for optimizing the EUBO defined in (20), which has rarely been reported
before. For EUBO, we consider the f -function f(t) = − log t, which gives the dual function
f∗(t) = t log t and derivative f ′(t) = −1/t. Hence, substituting f ′(t) = −1/t into (11), we have a
score function gradient estimator of EUBO

∇θL̂f (qθ,D) = − 1

K

K∑
k=1

p(zk,D)

qθ(zk)
· ∇θ log qθ(zk),

where zk ∼ qθ(z). The reparameterization gradient estimator of EUBO can be obtained by substitut-
ing the dual function f∗(t) = t log t into (13), which gives

∇θL̂rep
f (qθ,D) =

1

K

K∑
k=1

∇θ
(
p(gθ(εk),D))

qθ(gθ(εk))
· log

p(gθ(εk),D)

qθ(gθ(εk))

)
,

5When deriving the ELBO in (19), we also multiplied the f -variational bound by −1.
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where noise samples εk ∼ p(ε). The IW-reparameterization gradient estimator of EUBO is obtained
by substituting the dual function f∗(t) = t log t into (14), which gives

∇θL̂IW, rep
f (qθ,D, L) =

1

K

K∑
k=1

∇θ

(
1

L

L∑
l=1

p(gθ(εk,l),D)

qθ(gθ(εk,l))
· log

(
1

L

L∑
l=1

p(gθ(εk,l),D)

qθ(gθ(εk,l))

))
,

where the noise samples {εk,1:L}Kk=1 ∼ p(ε).

C.2 Gradient estimators under χ-divergence

We then implement the gradient estimators of f -VI to χ-divergence. For conciseness, we only
consider the gradient of objective function exp (n · CUBOn), which has unbiased estimators, while
the estimators of CUBOn in (24) are biased but more stable in numerical computation. Similar to
Section B.2, we choose the f -function f(t) = t1−n−t, which implies the dual function f∗(t) = tn−1
and the derivative f ′(t) = (1− n)t−n − 1. Hence, substituting f ′(t) = (1− n)t−n − 1 into (11),
we have a score function gradient estimator for χ-VI

∇θL̂f (qθ,D) =
1− n
K

K∑
k=1

[(
p(zk,D)

qθ(zk)

)n
∇θ log qθ(zk)

]
where zk ∼ qθ(z). Given a noise variable ε ∼ p(ε) and a mapping gθ(·) such that z = gθ(ε), the
reparameterization gradient estimator is obtained by substituting f∗(t) = tn − 1 into (13)

∇θL̂
rep
f (qθ,D) =

1

K

K∑
k=1

∇θ
(
p(gθ(εk), x)

qθ(gθ(εk))

)n
=

n

K

K∑
k=1

(
p(gθ(εk), x)

qθ(gθ(εk))

)n
∇θ log

p(gθ(εk), x)

qθ(gθ(εk))
,

where noise samples εk ∼ p(ε). While the preceding two gradient estimators recover the result
in [3], we supplement χ-VI with an IW-reparameterization gradient estimator, which is obtained by
substituting f∗(t) = tn − 1 into (14)

∇θL̂
IW, rep
f (qθ,D, L) =

n

K

K∑
k=1

(
1

L

L∑
l=1

p(gθ(εk,l),D)

qθ(gθ(εk,l))

)n
∇θ log

(
1

L

L∑
l=1

p(gθ(εk,l),D)

qθ(gθ(εk,l))

)
,

where the noise samples {εk,1:L}Kk=1 ∼ p(ε).

C.3 Gradient estimators under Rényi’s α-divergence

Our last example implements the f -VI gradient estimators to Rényi’s α-divergences and supplements
Rényi’s α-VI [2] with a set of unbiased gradient estimators. Similar to the gradients of χ-VI
introduced in Section C.2, this section considers the gradient estimators of objective function exp{(1−
α) · RVB}, where RVB is defined in (27). The choices of f -functions are i) f(t) = tα − t,
f∗(t) = t1−α−1 and f ′(t) = αtα−1−1 for α ∈ (0, 1), and ii) f(t) = −tα+ t, f∗(t) = −t1−α+1,
and f ′(t) = −αtα−1 + 1 for α ∈ (1,+∞). Consequently, the score gradient estimator is

∇θL̂f (qθ,D) =
α

K

K∑
k=1

(
qθ(zk)

p(zk,D)

)α−1
∇θ log qθ(zk),

where zk ∼ qθ(z). Given a noise variable ε ∼ p(ε) and a mapping gθ(·) such that z = gθ(ε), the
reparameterization gradient estimator under Rényi’s α-divergence is

∇θL̂rep
f (qθ,D) =

1− α
K

K∑
k=1

(
p(gθ(εk),D)

qθ(gθ(εk))

)1−α

∇θ log
p(gθ(εk), x)

qθ(gθ(εk))
,

where noise samples εk ∼ p(ε). The IW-reparameterization gradient estimator then becomes

∇θL̂rep
f (qθ,D, L) =

1− α
K

K∑
k=1

(
1

L

L∑
l=1

p(gθ(εk,l),D)

qθ(gθ(εk,l))

)1−α

∇θ log

(
1

L

L∑
l=1

p(gθ(εk,l),D)

qθ(gθ(εk,l))

)
,

where the noise samples {εk,1:L}Kk=1 ∼ p(ε).
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C.4 Stochastic f -variational inference algorithm

The following table provides a reference algorithm to implement stochastic f -VI.

Algorithm 1: Stochastic f -VI
Input: Dataset D = {xn}Nn=1, model p(z, x), variational family qθ(z), and f -function.
Initialize: Recognition parameters θ0.
while θ has not converged do

Randomly draw i) a minibatch DM from full dataset D and ii) nosise samples {εk}Kk=1 or
{εk,1:L}Kk=1 from noise distribution p(ε);

Approximate full likelihood p(gθt(εk), D), recognition distribution qθt(gθt(εk)), and prior
distribution p(gθt(εk));

Compute the gradient of f -variational bound from (11), (13) or (14);
Update parameters θt+1 from θt and the gradient.

end
Return: Recognition distribution qθ(z).

D Mean-field f -variational inference

This section supplements the mean-field f -VI by providing i) steps for deriving the coordinate-wise
update rules (15) and (16), ii) an example of mean-field f -VI subject to KL divergence, and iii) a
reference mean-field f -VI algorithm. The mean-field f -VI is developed on the basis of mean-field
assumption q(z) =

∏J
j=1 qj(zj) and f -function’s homogeneity decomposition f ∈ F{0,1}.

D.1 Deviation of update rules

We first show the detailed steps for deriving the coordinate-wise update rules (15) and (16) in mean-
field f -VI. For conciseness, we define p = p(z,D) and q = q(z) = qj(zj) ·

∏
` 6=j q`(z`) = qj · q−j .

The update rules are then derived by singling out the term qj from f -variational bounds (8) or (18)
while fixing all the other terms that consist of q−j . For f -divergences with f ∈ F1 or f∗ ∈ F0, such
as KL divergence, we have f(tt̃) = tγf(t̃) + f(t)t̃ and f∗(tt̃) = t1−γf∗(t̃) + f∗(t). Hence, the
f -variational bound (8) can be reformulated as

Lf (qj , q−j ,D) = Eq
[
p

q
· f
(
q

p

)]
= Eq

[
f∗
(

1

qj
· p

q−j

)]
= Eq

[
qγ−1j · f∗

(
p

q−j

)]
+ Eq

[
f∗
(

1

qj

)]
= Eqj

[
qγ−1j · Eq−j

[
f∗
(

p

q−j

)]]
+ Eqj

[
f∗
(

1

qj

)]
= Eqj

[
qγ−1j · f∗ ◦ f∗−1

(
Eq−j

[
f∗
(

p

q−j

)])
+

1

qj
· f(qj)

]
= Eqj

[
mj

qj
·
(
qγj · f

(
1

mj

)
+ f(qj) ·

1

mj

)]
= Eqj

[
mj

qj
· f
(
qj
mj

)]
= Eqj

[
f∗
(
mj

qj

)]
,

where mj = f∗−1(Eq−j [f
∗(p/q−j)]) can be regarded as an unnormalized probability distribution.

After normalizing mj into a probability distribution m̃j with normalization constant c > 0, the
f -variational bound then becomes Lf (qj , q−j ,D) = c ·Df∗(m̃j‖qj), which attains its minimum at
m̃j = qj . Therefore, to minimize the f -variational bound when f ∈ F1, the marginal distribution qj
should be updated in accordance with (15):

qj ∝ mj = f∗−1
(
Eq−j

[
f∗

(
p(z,D)

q−j(z−j)

)])
.
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For f -divergences with f ∈ F0 or f∗ ∈ F1, such as χ- and Rényi’s α-divergences, we have identity
f(tt̃) = tγf(t̃) + f(t), and the coordinate-wise update rule for these divergences is derived by
singling out qj from the variational bound of forward f -divergence VI (18) introduced in Section A.5.
Hence, the f -variational bound (18) can be reformulated as

Lf (qj , q−j ,D) = Eq
[
f

(
p

q

)]
= Eq

[
f

(
1

q
· p
)]

= Eq
[(

1

qj · q−j

)γ
· f(p) + f

(
1

qj · q−j

)]
= Eq

[(
1

qj

)γ (
1

q−j

)γ
f(p) +

(
1

qj

)γ
f

(
1

q−j

)
+ f

(
1

qj

)]
= Eqj

[(
1

qj

)γ
· Eq−j

[(
1

q−j

)γ
f(p) + f

(
1

q−j

)]
+ f

(
1

qj

)]
= Eqj

[(
1

qj

)γ
· f ◦ f−1

(
Eq−j

[
f

(
p

q−j

)])
+ f

(
1

qj

)]
= Eqj

[(
1

qj

)γ
f(mj) + f

(
1

qj

)]
= Eqj

[
f

(
mj

qj

)]
,

where mj = f−1(Eq−j [f(p/q−j)]) can be regarded as an unnormalized probability distribution.
After scaling and normalizing mj into a probability distribution m̃j with normalization constant
c > 0, we have Lf (qj , q−j ,D) = c ·Df (m̃j‖qj), which attains its minimum at m̃j = qj . Therefore,
to minimize the f -variational bound when f ∈ F0, the marginal distribution qj should be updated
with (16):

qj ∝ mj = f−1

(
Eq−j

[
f

(
p(z,D)

q−j(z−j)

)])
. (34)

D.2 Mean-field f -variational inference under KL divergence

For mean-field f -VI, we only show an example associated with KL divergence. For KL divergence,
consider the f -function f(t) = t log t ∈ F1 with f∗(t) = − log t and f∗−1(t) = exp(−t). Hence,
the coordinate-wise update rule (15) takes the form

q∗j ∝ exp
(
Eq−j [log p(z,D)]− Eq−j

[
log q−j

])
∝ exp

(
Eq−j [log p(z,D)]

)
,

which is in accordance with the update rule of CAVI algorithm [15]. Demonstrations and experimental
results of this update rule can be easily found in the early developments of KL-VI [11, 15, 23]. An
analytic update rule requires conditionally conjugate models, while some recent advances tried to
extend mean-field VI to non-conjugate models [4, 5]. Mean-field f -VI subject to other divergences
are left to the interested readers to explore.

D.3 Mean-field f -variational inference algorithm

A reference algorithm to implement mean-field f -VI is given in the following table.

Algorithm 2: Mean-field f -VI

Input: Dataset D = {xn}Nn=1, mean-field variational family q(z, θ) =
∏J
j=1 qj(zj , θj), model

p(z, x), f -function f(·), and f -variational bound Lf (qθ,D).
Initialize: Variational parameters θ in recognition model q(z, θ).
while Lf (qθ,D) has not converged do

Update parameters θj in qj(zj , θj) for j ∈ {1, · · · , J} with update rule (15) or (16);
Compute f -variational bound Lf (qθ,D).

end
Return: Recognition distribution q(z, θ).
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E Experiments

Detailed descriptions on the experimental settings and the supplementary empirical results are
provided in this section.

E.1 Synthetic example

For the synthetic example in the original paper, we consider a batch of i.i.d. datapoints generated by
the latent variable model x = sin(z) +N (0, 0.01), z ∼ UNIF(0, π). To estimate the true evidence
p(D) and f -variational bounds, we posit a prior distribution p(z) = UNIF(0, π), a likelihood
distribution p(z|x) = N (sin(z), 0.01), and an approximate model qθ(z) = UNIF( 1−θ

2 π, θ+1
2 π),

which is a uniform distribution centered at z = π/2 with width θπ. The true evidence p(D) is
approximated by a naive MC estimator p̂(x) =

∑K
k=1 p(x|zk) with K = 5 × 105, and all the

other (importance-weighted) f -variational bounds in Figure 1 and Figure 3 are estimated by their
corresponding MC estimators with L = 8 and K = 5× 104. Fixing θ = 1.1, we approximate the
importance-weighted f -variational bound subject to total variation distance (IW-TVB) in Figure 3,
which verifies (31) and Corollary 2.
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Figure 3: Evdience and IW-TVB.

However, it is still worth noting that numerical issues and biased estimators can contaminate the
empirical results or cause the violations of theory, despite the fact that the importance-weighted
technique can attenuate these flaws by improving the tightness of bounds and their estimators. The
estimation of IW-RVB in Figure 1 and IW-TVB on x ∈ [−0.5, 0] in Figure 3 are some examples.
More discussions and examples on these problems can be found in [2, 10].

E.2 Bayesian neural network

Our Bayesian regression framework is developed on the basis of [2]. The regression model is a single
ReLU layer with 50 hidden units for small datasets and 100 hidden units for large datasets (Protein).
The likelihood function is selected as p(y|x, z) = N (y;Fz(x), σ2), where σ is a hyper-parameter and
Fz(x) is the prediction or output of the neural network with weights z. We posit a standard normal
prior z ∼ N (0, I) for network weights and a Gaussian approximation q(z) = N (µθ, diag(σ2

θ)) to the
true posterior, where the variational parameters µθ and σθ are to be optimized. Importance-weighted
f -variational bounds and their gradients are approximated by MC estimators with L = 5, K = 50
for small datsets and K = 10 for large datasets. Twelve datasets from the UCI Machine Learning
Repository [36] are employed, in which six datasets (Boston, CCPP, Concrete, Protein, Wine and
Yacht) are the benchmarks previously tested in [2, 10, 20], while the other six datasets6 are new
benchmarks for VI testing. Each dataset is randomly split into 90%/10% for training and testing.
The test RMSE and test negative log-likelihood reported in Table 2 are collected from 20 trials with
500 training epochs in each trial for small datasets and 5 trials with 200 training epochs in each trial

6(full name, #instances, #attributes) of six new benchmarks are provided: Airfoil (Airfoil Self-Noise, 1503,
6), Aquatic (QSAR Aquatic Toxicity, 546, 9), Building (Residential Building Data Set, 372, 105), Fish Toxicity
(QSAR Fish Toxicity, 908, 7), Real Estate (Real Estate Valuation Data Set, 414, 7), and Stock (Stock Portfolio
Performance, 315, 12).
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for large datasets. For dataset Building, we predict the sale prices and scale the test RMSE by 0.01
for uniform representation. For dataset Stock, we only use the 5-year data to predict the annual return,
and the test RMSEs are scaled by 100.

Six f -VIs, including three well-established f -VIs (KL-VI, Rényi’s α-VI with α = 3, and χ-VI with
n = 2) and three new f -VIs (VIs subject to total variation distance and two custom f -divergences), are
tested and compared in this Bayesian regression example and the following f -VAE example. The total
variation bound is defined as TVB = Eq(z) [|p(z,D)/q(z)− 1|], and since p(z,D)/q(z) ∈ (0, 1)
always holds in Section 4.2 and Section 4.3, we optimize the objective function log(TVB− 1) for
numerical stability. Meanwhile, we also consider i) a custom f -VI induced by the dual function
f∗c1(t) = f̃∗(t)− f̃∗(1), where f̃∗(t) = −1/6 · (log t+ t0)3 − 1/2 · (log t+ t0)2 − (log t+ t0)− 1,
t = p(z,D)/q(z), and t0 ∈ R is a parameter to be optimized, and ii) a custom f -VI induced by
the dual function f∗c2(t) = log2 t + log t, which is convex on t ∈ (0, 1) and can be modified to be
a valid f -function by reassigning the mapping on t ∈ [1,+∞). More feasible f∗-functions can be
generated from the known f∗-functions via the operations that preserve convexity, e.g. non-negative
weighted sums. While the f -VI framework applies to arbitrary valid f -functions in theory, the
empirical implementations require the f -functions and the corresponding estimators to have good
numerical properties such that the optimization algorithms can converge. To meet this requirement,
we sometimes have to compromise the unbiasedness of estimators, for example, while the CUBO
(n = 2) employed for regression in Table 2 should be an upper bound of evidence in theory, the
empirical CUBO approximated by a biased estimator in [2] behaves like a lower bound in the training
processes, despite the augmentation of importance-weighted technique.

Table 2a: Average test error.

Dataset Test RMSE (lower is better)

KL-VI χ-VI α-VI TV-VI fc1-VI fc2-VI

Airfoil 2.16±.07 2.36±.14 2.30±.08 2.47±.15 2.34±.09 2.16±.09
Aquatic 1.12±.06 1.20±.06 1.14±.07 1.23±.10 1.14±.06 1.14±.06
Boston 2.76±.36 2.99±.37 2.86±.36 2.96±.36 2.87±.36 2.89±.38
Building 1.38±.12 2.82±.51 1.83±.22 2.57±.59 1.80±.21 1.36±.15
CCPP 4.05±.09 4.14±.11 4.06±.08 4.19±.12 4.33±.12 4.33±.12
Concrete 5.40±.24 3.32±.34 5.32±.27 5.27 ±.24 5.26±.21 5.32±.24
Fish Toxicity .885±.037 .905±.043 .891±.037 .878±.044 .883±.034 .862±.040
Protein 1.93±.19 2.45±.42 1.87±.17 2.91±.89 1.97±.21 1.97±.20
Real Estate 7.48±1.41 7.51±1.44 7.46±1.42 8.02±1.58 7.52±1.40 7.99±1.55
Stock 3.85±1.12 3.90±1.09 3.88±1.13 4.33±.43 3.82±1.11 4.18±.42
Wine .642±.018 .640±.021 .638±.018 .645±.014 .643±.019 .637±.016
Yacht 0.78±.12 1.18±.18 0.99±.12 1.03±.14 1.00±.18 0.82±.16

Table 2b: Average negative log-likelihood.

Dataset Test negative log-likelihood (lower is better)

KL-VI χ-VI α-VI TV-VI fc1-VI fc2-VI

Airfoil 2.17±.03 2.27±.03 2.26±.02 2.28±.04 2.29±.02 2.18±.03
Aquatic 1.54±.04 1.60±.08 1.54±.07 1.56±.07 1.54±.06 1.55±.04
Boston 2.49±.08 2.54±.18 2.48±.13 2.51±.18 2.49±.13 2.51±.10
Building 6.62±.02 6.94±.13 6.79±.03 6.88±.08 6.74±.04 6.55±.02
CCPP 2.82±.02 2.84±.03 2.82±.02 2.83±.02 2.95±.01 2.91±.01
Concrete 3.10±.04 2.61±.18 3.09±.04 3.10±.05 3.09±.03 3.10±.04
Fish Toxicity 1.28±.04 1.27±.04 1.29±.04 1.26±.05 1.29±.03 1.26±.03
Protein 2.00±.07 2.01±.08 2.04±.08 2.04±.11 2.21±.04 2.11±.05
Real Estate 3.60±.30 3.70±.45 3.59±.32 3.86±.52 3.62±.33 3.74±.37
Stock -1.09±.04 -1.09±.04 -1.09±.04 -1.73±.15 -1.09±.04 -1.84±.12
Wine .966±.027 .965±.028 .964±.025 .969±.023 .975±.027 .959±.023
Yacht 1.70±.02 1.79±.03 1.82±.01 1.78±.02 2.05±.01 1.86±.02

E.3 Bayesian variational autoencoder

Our Bayesian VAE example is built on the basis of [41]. The encoder network downsamples from a
28 × 28 or 28 × 20 image to a 20-dimensional latent space and sequentially consists of i) a 3 × 3
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2-D convolution layer with stride 2, ii) a ReLU layer, iii) a 3× 3 2-D convolution layer with stride 2,
iv) a ReLU layer, and v) a fully connected layer. The decoder network scales up the 20-dimensional
encoding back into a 28 × 28 or 28 × 20 image and sequentially consists of i) a 7 × 7 or 7 × 5
transposed 2-D convolution layer with stride [7, 7] or [7, 5], ii) a ReLU layer, iii) a 3× 3 transposed
2-D convolution layer with stride 2, iv) a ReLU layer, v) a 3× 3 transposed 2-D convolution layer
with stride 2, vi) a ReLU layer, and vii) a 3 × 3 transposed 2-D convolution layer. The sizes of
training/testing datasets are respectively, 7803/868, 1768/197, 60000/10000, and 24345/8070 for
Caltech 101 Silhouettes, Frey Face, MNIST, and Omniglot, and the mini-batch sizes are respectively
64, 32, 512, and 256. The loss functions or the importance-weighted f -variational bounds are
approximated by single-sample MC estimators with K = 1 and L = 3. After 20 trials with 200
training epochs in each trial, the average test reconstruction errors (lower is better) measured by
cross-entropy are given in Table 3. Some reconstructed and generated images from f -VAEs are
presented in Figure 4 to Figure 8. While one can improve the quality of these images and reduce the
average reconstruction errors in Table 3 by adopting more complex encoder and decoder networks, in
this experiment, we are more interested in the relative performance of different f -VIs.

(a) (b) (c) (d) (e) (f)

Figure 4: Reconstruction of MNIST handwritten digits. Left column shows the original digits. Right column
shows the reconstructed digits. (a) is from IW-ELBO loss. (b) is from IW-CUBO (n = 2) loss. (c) is from
IW-RVB (α = 3) loss. (d) is from IW-TVB loss. (e) is from custom fc1-variational bound loss, and (f) is from
custom fc2-variational bound loss.

(a)

(d)

(b)

(e)

(c)

(g)

Figure 5: Generation of MNIST handwritten digits. (a) is from IW-ELBO loss. (b) is from IW-CUBO (n = 2)
loss. (c) is from IW-RVB (α = 3). (d) is from IW-TVB loss. (e) is from custom fc1-variational bound loss, and
(f) is from custom fc2-variational bound loss.
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(a)

(d)

(b)

(e)

(c)

(g)

Figure 6: Generation of Caltech 101 silhouettes. (a) is from IW-ELBO loss. (b) is from IW-CUBO (n = 2) loss.
(c) is from IW-RVB (α = 3). (d) is from IW-TVB loss. (e) is from custom fc1-variational bound loss, and (f) is
from custom fc2-variational bound loss.

(a)

(d)

(b)

(e)

(c)

(g)

Figure 7: Generation of Frey Face. (a) is from IW-ELBO loss. (b) is from IW-CUBO (n = 2) loss. (c) is from
IW-RVB (α = 3). (d) is from IW-TVB loss. (e) is from custom fc1-variational bound loss, and (f) is from
custom fc2-variational bound loss.

(a) (b) (c)

24



(d) (e) (g)

Figure 8: Generation of Omniglot alphabets. (a) is from IW-ELBO loss. (b) is from IW-CUBO (n = 2) loss. (c)
is from IW-RVB (α = 3). (d) is from IW-TVB loss. (e) is from custom fc1-variational bound loss, and (f) is
from custom fc2-variational bound loss.
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