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Abstract

Triplet loss with batch hard mining (TriHard loss) is an important variation of triplet
loss inspired by the idea that hard triplets improve the performance of metric leaning
networks. However, there is a dilemma in the training process. The hard negative
samples contain various quite similar characteristics compared with anchors and
positive samples in a batch. Features of these characteristics should be clustered
between anchors and positive samples while are also utilized to repel between
anchors and hard negative samples. It is harmful for learning mutual features
within classes. Several methods to alleviate the dilemma are designed and tested.
In the meanwhile, an element-weighted TriHard loss is emphatically proposed to
enlarge the distance between partial elements of feature vectors selectively which
represent the different characteristics between anchors and hard negative samples.
Extensive evaluations are conducted on Market1501 and MSMT17 datasets and
the results achieve state-of-the-art on public baselines. The implementation of this
work is available at https://github.com/LvWilliam/EWTH-Loss.

1 Introduction

Person re-identification (ReID) is an important branch of computer vision. Many successful designs of
classification networks [1][2][3] are applied as backbones of ReID networks to extract global features
of samples [4][5][6][7]. It is efficient to train such networks as a multi-class classification task taking
ids or other attributes as labels [8][9][10], which enhances the capability of networks to obtain more
specific features. Some works focus on learning local features of samples, such as separated blocks
of images [11][12], different semantical key points of bodies [13][14][15]. When more information
is provided, such as ids of cameras [16][17] or viewpoints [18][19], networks can be trained to adapt
the differences of inputs from multiple domains, which will improve the portability among different
datasets. Other works concentrate on metric learning methods of ReID which are widely used in
images retrieval area [20][21][22]. The key point is to learn distances between pairs of similar or
dissimilar inputs [23]. Loss functions are essential for metric learning to realize the effect of metrics.
Many works combine contrastive loss with softmax cross-entropy loss [11][24][25] to improve the
performance with the advantage of metric and feature representation learning. Triplet loss was first
proposed in FaceNet [26] and has applied in many works [27][28][29]. It’s a preferable function to
make the distances of anchors and positive samples closer than anchors and negative samples by a
margin. FaceNet [26] also proposes an idea to calculate triplet loss by hard samples to extract more
meaningful and intrinsic features, which has been studied widely [30][31][32]. Triplet loss with batch
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hard mining (TriHard loss) was proposed in [31] which improves the way of generating hard triplets
during training. It is applied as the metric loss in many SOTA baselines of ReID[26][33][34].

However, there is a dilemma in TriHard loss during training, which will hamper the result of clustering
within classes. That is proved both theoretically and experimentally in this paper. And three ways to
alleviate the dilemma are proposed:

1) Half TriHard loss. To transform the Euclidean distances between anchors and hard negative
samples into a constant within a batch in TriHard loss.

2) TriHard loss with feature normalization. To make the gradients more stable during training.

3) Half TriHard loss with average negative samples. To reduce the obstruction of hard negative
samples.

In this paper, we emphatically propose an element-weighted TriHard loss adapted from TriHard loss
to eliminate the dilemma as much as possible. The weights are element-wise to output feature vectors
of network:

T i
a,nh

= f(|W i
a −W i

nh
|)(i ∈ [1, q]) (1)

where q is the dimension of output feature vectors, a is the anchors and nh is the hard negative
samples of anchors. T i

a,nh
is the weight of i th element in feature vector. W i

a, W i
nh

are the i th
elements of weight vectors corresponding to the ids of a and nh in fully connected layers of classifier
in ReID networks.

The frameworks of networks are not influenced that makes EWTH loss convinient to be used in
existing metric learning methods of ReID. All the proposed losses are evaluated on Market 1501
[35] and MSMT17 [36] datasets, which shows remarkable improvements towards TriHard loss. The
baselines in this paper are published works named reid-strong-baseline [37] and AGW [33].

2 Related works

Contrastive loss [38][24] is proposed based on the idea that person re-identification is a combination
of feature representation and metric relation. Therefore, it is designed to enlarge or narrow the
distances between samples with the different or same ids to force the clustering within classes. Triplet
loss [26] contains an extra relation between the distances of positive and negative sample pairs
compared with contrastive loss. That adds more freedom to the function so as to achieve better
performance. Triplet center loss [39]combines triplet loss [26] and center loss [40] for object retrieval.
It helps the features cluster to their centers of classes and enlarge the distance between samples and
centers of other classes. Adaptive weighted triplet loss [41] is proposed to give different weights to
different triplets. The weights are obtained by difficulty levels of triplets reflexed by the Euclidean
distance. That makes the network focus on harder triplets. Quadruplet loss [42] improves triplet
loss by raising the threshold of clustering within classes.The additional term forces the distances of
positive pairs to be closer than random negative pairs in training dataset. Quadruplet loss has a severer
condition than triplet loss which improves the performance. Triplet loss with batch hard mining
(TriHard) loss [31] is a variation of triplet loss which solves a practical problem that the quantity
of hardest triplets in the whole training set is much fewer than the remaining samples. Therefore,
TriHard loss selects the hardest samples of each anchor online within batches instead of the whole
training set. Margin sample mining loss (MSML) [43] combines quadruplet loss and TriHard loss. It
selects a hardest triplet in a batch. It has a harder condition than TriHard loss.

3 Formulation

3.1 Triplet loss and TriHard loss

Triplet loss [26] makes Euclidean distances between feature vectors from different classes larger than
that from the same class by a constant :

LT =
∑

a,p,n∈D
[d(a, p)− d(a, n) + α]+ (α > 0) (2)
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where a, p, n ∈ Rq are feature vectors of anchors, positive and negative samples. d(x, y) is the
Euclidean distance between x and y. D can be the whole training dataset or mini-batch during
training.

TriHard loss [31] adapts the triplet selection method to obviously compress the size of mini-batch
compared with [26] to make the training of large datasets practical:

LTH =
∑

a,ph,nh

[d(a, ph)− d(a, nh) + α]+ (α > 0) (3)

where a are all the vectors of samples in the mini-batch D, ph and nh are vectors of the hardest
positive and negative samples towards anchors within D. D contains P × K samples which is
composed of P randomly selected ids of persons in training data and K samples of each id. That
makes the hardest triplets more soft and various, which avoids overfitting on a few hardest triplets of
the whole dataset. It solved the problem mentioned in [26] that the hardest samples on the whole
dataset towards anchors are easy to cause the convergence to local minima.

3.2 Dilemma in TriHard loss

The core idea of TriHard loss [31] is sensible. However, it omits a key point that hard negative
samples share certain characteristics in common with anchor samples and hard positive samples. The
elements of feature vectors extracted from these characteristics are forced to be away from each other
by (a, nh) pairs but close to each other by (a, ph) pairs. Fig.1 shows 3 hard triplets with the order
a− ph − nh. The appearance of clothes are the most obvious characteristics of persons which cover
most areas of pictures and will be reflected by some certain elements of the feature vectors. But hard
negative samples also share quite similar appearance of clothes that hamper these elements to cluster.
According to equation 3, take only one triplet (a,ph,nh) as example, TriHard loss can be formulated
as:

LTH = [‖a− ph‖2 − ‖a− nh‖2 + α]
+
(α > 0) (4)

Calculate partial derivative of LTH with respect to the Ok,c,h,w which is a cell of Fl at the position
(k, c, h, w), where Fl is the last layer of convolutional filters:

∂LTH

∂Ok,c,h,w
=

part1︷ ︸︸ ︷
ak − pkh
‖a− ph‖2

(
∂ak

∂Ok,c,h,w
− ∂pkh
∂Ok,c,h,w

)−

part2︷ ︸︸ ︷
ak − nkh
‖a− nh‖2

(
∂ak

∂Ok,c,h,w
− ∂nkh
∂Ok,c,h,w

) (5)

where xk ∈ R, x is a, ph, nh and k ∈ [1, q]. xk is the result of global average pooling on channel k of
the last layer of feature maps in the network. Ok,c,h,w is related to the kth element of vector a, ph and
nh. It shows the influence of ph and nh are totally opposite towards equation 5. ∂xk

∂Ok,c,h,w
= δx

′

k ∈ R
where x

′

k is the result of global average pooling on channel k of the second last layer of feature maps
in the network. δ ∈ R is a constant. And each channel of feature maps represents a same class of
characteristics of inputs in a network [44]. Therefore, when channel k of the last and channel c of
the second last layer of feature maps are both sensitive toward similar characteristics, such as colors
of shirts or jeans shown in Fig.1, ∂xk

∂Ok,c,h,w
will be close and xk will also be close in value. And

‖a− ph‖2, ‖a− nh‖2 are chosen to be near in value by TriHard loss on Euclidean distance. So,
part1 and part2 will be close in value. That may cause instability of ∂LTH

∂Ok,c,h,w
which may fluctuate

near zero during training. It’s harmful for Ok,c,h,w to learn features from these characteristics which

Figure 1: Anchors, the hardest positive and negative sample selections in mini-batch during training
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obstructs the clustering within classes. That will also happen to other elements of feature vectors that
are sensitive towards similar characteristics in hard triplets. According to chain derivative law, filters
in lower layers will be influenced as well.

3.3 Several mitigation strategies of TriHard loss dilemma

3.3.1 Half TriHard loss

To solve the problem formulated in equation 5, it is necessary to eliminate the obstruction of hard
negative samples during features clustering within classes. TriHard loss can be adapted as:

LHTH =
∑

a,ph,nh∈D
[d(a, ph)− β + α]+ (α > 0) (6)

where β = d(a, nh) is calculated online in each batch. Therefore, it is constant within batches but
variable between batches.Take only one triplet (a,ph,nh) as example, the partial derivative of LHTH

with respect to Ok,c,h,w is

∂LHTH

∂Ok,c,h,w
=

ak − pkh
‖a− ph‖2

(
∂ak

∂Ok,c,h,w
− ∂pkh
∂Ok,c,h,w

) (7)

where the influence of hard negative samples is eliminated in gradient and the network can focus on
learning features from mutual characteristics within classes. There is still a margin α. Half TriHard
loss improves the performance of clustering obviously compared with TriHard loss.

But LHTH abandons the term of repelling which may harm the performance of network when the
distances among feature vectors of different clusters are originally close. That should be considered
case by case.

3.3.2 TriHard loss with feature normalization

Feature normalization (FN) is widely used in face recognition [45][46]:

F̂ =
γF

‖F‖2
(γ > 0) (8)

where F ∈ Rm is a feature vector and γ is an amplitude parameter to control the norm of vectors.
Equation 8 is often applied before softmax [45][46] operation in face recognition area. That makes
the equivalence of Euclidean distance and cosine distance.

To utilize FN before calculating TriHard loss can also alleviate the dilemma. With FN (γ = 1) in
equation 8, equation 5 can be transformed as:

∂LTH

∂Ok,c,h,w
=−k1

[(
pkh

‖a‖2 ‖ph‖2
−ak cos(a, ph)

‖a‖22

)
∂ak

∂Ok,c,h,w
+

(
ak

‖a‖2 ‖ph‖2
−p

k
h cos(a, ph)

‖ph‖22

)
∂pkh

∂Ok,c,h,w

]

+k2

[(
nkh

‖a‖2 ‖nh‖2
−ak cos(a, nh)

‖a‖22

)
∂ak

∂Ok,c,h,w
+

(
ak

‖a‖2 ‖nh‖2
−n

k
h cos(a, nh)

‖nh‖22

)
∂nkh

∂Ok,c,h,w

]
(9)

where k1 =
√
2
2

1√
1−cos (a,ph)

, k2 =
√
2
2

1√
1−cos (a,nh)

Even ph and nh are still the hardest ones before FN, they are selected by Euclidean distance which
indicates cos(a, ph) and cos(a, nh) are uncertain. Therefore, terms of equation 9 are more random in
value compared with equation 5, which makes the result more stable instead of fluctuating around zero
before convergence during training. That alleviates the dilemma in Section 3.2. In the meanwhile,
FN unifies the norm of vectors, which reduces the risk of overfitting and makes the network more
robust on different domains of training and testing datasets.

According to equation 8, FN will limit all the ends of feature vectors onto the surface of a m-
dimensional hypersphere. That will cause the distortion of relative Euclidean distance between a, p
and n. It’s proved in supplementary material. Therefore, the performance of networks with FN may
even poorer, which is also a case-by-case problem.
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3.3.3 Half TriHard loss with average negative samples

According to equation 5, when channel k of the last layer of feature maps is sensitive toward a kind
of characteristics that exists in a and ph but not in nh, such as different colors of clothes or figures
on shirts between different persons but the same among images of one person, part2 tends to be
dominant during training which will make kth element of feature vectors repel others between a and
nh. That extends the distances among different clusters. But in TriHard loss, samples of nh have
more similar characteristics than common ones. That harms the clustering within classes more than
repelling among different classes. Therefore, a compromise can be adopted:

LHNTH =

part1︷ ︸︸ ︷∑
a,ph,nh∈D

[d(a, ph)− β1 + α1]+ +

part2︷ ︸︸ ︷∑
a,ph,n∈D

[β2 − d(a, n) + α2]+(α1, α2 > 0) (10)

where β1 = d(a, nh), β2 = d(a, ph), d(a, n) = 1
N

∑
a,n∈D d(a, n). Part1 is half TriHard loss that

focuses on the clustering within classes and part2 emphasizes repelling between different classes.
Part2 of equation 10 reduces the influence of nh on clustering within classes in a batch and retains
the function of repelling features away among different classes.

But the dilemma of TriHard loss [31] will be obviously residual when quite a few negative samples
are hard to anchors. In this case, the dilemma of TriHard loss are still severe. And the average
negative samples are intrinsically weaker to enlarge the gaps between anchors and negative samples
compared with the hardest negative samples in a batch. Therefore, LHNTH may perform poorer
which is also a case-by-case problem.

4 Element-weighted TriHard loss

4.1 Why elements of feature vectors need to be weighted

Fig.2 shows attention levels of a ReID network on several images, which are obtained through the
weights in the classifier of the network and the last layer of feature maps [44]. The network tends to
focus on most parts of persons in images. That is effecient for common samples which account for the
majority of training and testing sets. But for hard samples, it is not enough. In Fig.1, those differences
between samples of anchors and hardest negative samples cover only small areas of images, which
are used to tell 2 persons apart. But a single network cannot pay much attention on these tiny areas
which will decrease the diversity of feature vectors, so that the performance on common samples
will turn worse. TriHard loss aims to improve the capacity of networks on hard samples but faces a
dilemma discussed in this paper. To solve the problem, an important idea is proposed that vectors of
anchors and hardest negative samples could also have similar elements. Only elements in features
sensitive to different characteristics between samples of a and nh are trained to repel. The mistake
that TriHard loss makes is to repel the whole vectors between a and nh ignoring the similarity in the
original images and also feature vectors. That leads to the dilemma mentioned above. To realize this
idea, elements of feature vectors are weighted before calculating Euclidean distance. But to locate
the different areas in samples of a, nh and find which elements of feature vectors reflect them is a
hard work. We utilize a simple method with the help of classification part in ReID network.

4.2 Element-weighted TriHard loss

In networks of person re-identification, triplet and classification loss are usually employed together.
The ids of input samples are labels. Wc ∈ Rg×q is the weights of fully connected layer, where q
is the dimension of feature vectors and g is the number of classes in training set. rgi = W gi,all

c v
is the score of vector v belonging to class gi where W gi,all

c ∈ R1×q and v ∈ Rq. And sgn(W gi,qi
c )

indicates the positive or negative belief of characteristic reflected by element qi of features belonging
to class gi [44]. Equation 11 indicates the degree of difference between 2 classes of samples on each
element of feature vectors.

Wg1,g2 =
∣∣W g1,all

c −W g2,all
c

∣∣ (11)

where g1, g2 are the labels of samples1 and sample2, | · | is absolute value. When g1, g2 are the ids of
a and nh in a batch, we obtain the degree of difference in feature vectors of them. That is visualized
in Fig.3 by method of [44] with Wg1,g2 . The uniqueness compared with the other image is shown.
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Figure 2: The attention level of network visualized on the input samples

(a1) (a2) (b1) (b2) (c1) (c2) (d1) (d2)

Figure 3: The uniqueness level visualized on the pairs of input samples

For example, in image (a1), his shoulder and the stuff he carries, in image (a2), the bag, her skirt and
hair, are most unique to the other image. Therefore, it is meaningful to roughly locate the different
areas in a pair of samples though the weights of classifier in the network.

The weights of EWTH is formulated as:

T k
a,nh

=
W k

ga,gnh

max(Wga,gnh
)
+b (if

W k
ga,gnh

max(Wga,gnh
)
≥ t) or T k

a,nh
= 0 (if

W k
ga,gnh

max(Wga,gnh
)
< t) (12)

where k ∈ [1, q] are the indexes of elements in weight vectors of EWTH loss and feature vectors. b is
a learnable parameter, t ∈ [0, 1] is a constant. EWTH loss is formulated as:

LEWTH =

part1︷ ︸︸ ︷
LHTH +

part2︷ ︸︸ ︷∑
a,ph,nh∈D

[d(Ta,nh
×a, Ta,nh

×ph)− d(Ta,nh
×a, Ta,nh

×nh) + α]+ (13)

where × is element-wise multiplication and (α > 0). Take only one triplet (a,ph,nh) as example, the
partial derivative of EWTH loss with respect to Ok,c,h,w:

∂LEWTH

∂Ok,c,h,w
=[m1 + (T k

a,nh
)2]

ak − pkh
m1 ‖a− ph‖2

(
∂ak

∂Ok,c,h,w
− ∂pkh
∂Ok,c,h,w

)

− (T k
a,nh

)2
ak − nkh

m2 ‖a− nh‖2
(

∂ak
∂Ok,c,h,w

− ∂nkh
∂Ok,c,h,w

)

(14)

where k ∈ [1, q] and m1 = ‖a× Ta,nh
− ph × Ta,nh

‖2 / ‖a− ph‖2, m2 =
‖a× Ta,nh

− nh × Ta,nh
‖2 / ‖a− nh‖2. When the kth element of feature vectors reflects

similar characteristics between a and nh, T k
a,nh

is very likely to be zero to facilitate the clustering of
ak and pkh. On the other hand, T k

a,nh
will be positive to assist repelling ak and nkh.

When combined with LHNTH , it is formulated as:
LNEWTH = LEWTH + Lp2

HNTH (15)
Where Lp2

HNTH is part2 of LHNTH .That helps the network to enlarge the distances among different
clusters better.

5 Experiment results

The baselines in this paper are reid-strong-baseline (bags of tricks) [37] and AGW [33]. We utilize
ResNet50 [47] as the backbone. Tricks in reid-strong-baseline are warmup, random erasing aug-
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Table 1: The results of ablation study of proposed losses on testing set

Method Market1501 MSMT17 Method Market1501 MSMT17

mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1

B+TH 85.6% 94.1% 45.1% 63.9% A+TH 87.7% 95.0% 48.4% 67.9%
B+HTH 86.6% 94.6% 45.0% 63.9% A+HTH 88.1% 95.4% 48.1% 67.6%
B+HNTH 87.3% 94.9% 44.6% 63.8% A+HNTH 88.1% 95.6% 47.2% 66.4%
B+EWTH 87.7% 95.0% 48.7% 67.8% A+EWTH 88.5% 95.4% 50.4% 69.6%
B+NEWTH 88.4% 95.1% 49.7% 68.1% A+NEWTH 89.4% 95.6% 53.1% 71.5%
B+TH+FN 86.3% 94.1% 45.2% 63.8% A+TH+FN 88.0% 95.1% 47.7% 66.3%

Table 2: The the relationships among feature vectors of anchors, positive and negative samples on
training set

Method Market1501 MSMT17

dap dan dratio dap dan dratio

B+TH 12.915 27.922 2.162 16.830 32.363 1.923
B+HTH 10.150 23.110 2.277 14.616 27.978 1.914
B+HNTH 10.389 23.935 2.304 15.298 28.910 1.890
B+EWTH 10.022 25.181 2.513 13.669 29.473 2.156
B+NEWTH 10.249 25.828 2.520 13.806 29.365 2.127
B+TH+FN 12.624 28.508 2.258 15.989 32.150 2.011
A+TH 13.937 28.671 2.057 17.949 34.565 1.926
A+HTH 9.492 22.947 2.418 14.333 27.583 1.924
A+HNTH 9.610 23.671 2.463 14.874 28.367 1.907
A+EWTH 9.383 25.310 2.697 13.643 29.852 2.188
A+NEWTH 9.553 25.910 2.712 13.108 28.830 2.199
A+TH+FN 13.723 28.947 2.109 17.392 33.291 1.914

mentation [48], label smoothing [49], one last stride and BNNeck [37]. AGW contains all tricks.
All the training strategies are default in both baselines. Comparative experiments are evaluated
on dataset Market1501[35] and MSMT17 [36]. The default metric loss functions of bags of tricks
(BoT) and AGW are TriHard loss [31] and weighted regularization triplet (WRT) loss [33]. And the
classification loss is softmax cross-entropy loss. B + * and A + * denote the metric loss of BoT and
AGW are replaced by L∗ in Table 1. And there is a hyper-parameter t in LEWTH and LNEWTH

and different values of t are tested, which are listed in supplementary materials. The γ = 1 in FN and
initial value of b is 1. Table 1 shows the best results of all tested t in each method. During training,
element-weights of EWTH series losses are calculated online by equation 11 and 12. The gradients
of Wc in equation 11 is cut off to avoid having an effect on the training of classification module.

5.1 Ablation study

Table 1 lists the results of ablation study of proposed losses. Table 2 shows the average distances
between anchors and positive samples (dap), anchors and negative samples (dan) on training dataset
after training. In the meanwhile, the distance ratios (dratio) is defined as equation 16

dratio =
dan
dap

(16)

which evaluates the relationships among feature vectors of anchors, positive and negative samples
in the training process. High values denote lower dap which is better clustering within classes and
higher dan which is wider gaps among different classes. It reflects a pattern between training and
testing results of different losses in Table 1 and Table 2. That is the loss with higher value of dratio
on training dataset tends to perform better on testing set.

It is obvious that dataset MSMT17 is harder than Market1501 with lower mAP, rank-1 and dratio.
The dap of LHTH is lower than LTH which makes the clustering within classes better when the
dilemma of TriHard loss is mitigated. LHTH performs better than LTH on Market1501 testing set
and produces higher dratio on training set. That is the clustering within classes is better and the gaps
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Table 3: The results of different losses implemented on AGW baseline

Losses Market1501 Losses MSMT17

mAP rank-1 mAP rank-1

MSML [43] 78.4% 91.6% MSML[43] 39.2% 59.8%
ATL*[50] 85.9% 94.7% ATL[50] 42.2% 62.4%
TML[51] 86.4% 94.3% AWTL*[41] 43.9% 64.3%
AWTL*[41] 86.8% 95.3% TML[51] 45.1% 64.4%
QLL [42] 87.0% 94.5% OARTL*[52] 45.3% 65.3%
HERTL*[53] 87.3% 95.2% HERTL*[53] 45.9% 65.3%
OARTL*[52] 87.4% 95.0% WQLL*[54] 46.5% 65.3%
WQLL* [54] 87.7% 95.0% QLL[42] 47.1% 66.0%
THL [31] 87.7% 95.0% WSMTL*[54] 48.2% 66.6%
TFL[55] 87.9% 95.3% SMTL[31] 48.3% 66.9%
SMTL[31] 88.2% 95.2% THL [31] 48.4% 67.9%
WRTL* [33] 88.2% 95.2% TFL[55] 48.9% 67.5%
WSMTL* [54] 88.4% 95.2% WRTL*[33] 49.5% 68.2%
EWTH* (our) 88.5% 95.4% EWTH* (our) 50.4% 69.6%
NEWTH* (our) 89.4% 95.6% NEWTH* (our) 53.1% 71.5%

between anchors and negative samples are still wide enough. But LHTH performs poorer than LTH

on MSMT17 testing set and produces lower dratio on training set. That indicates the negative samples
tend to be more similar towards anchors with not large enough dan compared with dap. It reflects the
intrinsic difference between 2 datasets and the problem LHTH may cause. Therefore, the repelling
term is needed. In Table 2, dap and dan of LHNTH are larger than LHTH but lower than LTH . The
condition of average negative samples are weaker than LTH which mitigates the dilemma but still
affects the clustering within classes. LHNTH performs better than LHTH on Market1501 with higher
dratio but poorer on MSMT17 with lower dratio. That agrees with the comparison of LTH and
LHTH . On MSMT17, dratio becomes lower from LTH to LHTH which indicates LHTH will result
in lower dan compared with dap. That will amplify the residual dilemma of TriHard loss in LHNTH .
Therefore, the effect of LHTH and LHNTH varies among different datasets and even baselines.
LEWTH replaces part2 of equation 10 with part2 of equation 13. The overall performance is much
better than LHNTH . The dan is larger and dap is smaller. It eliminates the fights between clustering
and repelling terms in the loss. LNEWTH produces the best results among all losses. The increments
are 2.8%, 1.0% and 4.6%, 4.2% on BoT [37], 1.7%, 0.6% and 4.7%, 3.6% on AGW [33] about mAP
and rank-1 on 2 datasets. In Table 1, to observe the comparison of results between LHTH , LHNTH

and LEWTH , LNEWTH on dataset MSMT17, the average negative repelling results in the opposite
effect. In LNEWTH , those feature vectors of hardest negative samples are farther from those of
anchors with the help of LEWTH . Therefore, when calculating Lp2

HNTH , the influnce of these hardest
negative samples are weaker which alleviates the dilemma in average negative samples and enlarge
the gaps between anchors and common negative samples. The values of dap of LTH with FN are
little smaller than those of LTH which shows better clustering within classes. That is what we have
proved in Chapter 3.3.2. In Table 1, LTH with FN performs better on Market1501 but poorer on
MSMT17. The reason can be the range of feature vectors. In Table 2, the distribution range of feature
vectors of MSMT17 are wider, so FN will cause more serious distortion proved in the supplementary
materials. That will harm the accuracy of metric loss during training to produce poorer results.

5.2 Comparison with different losses and SOTA results

There are 13 variations of triplet loss [26] tested on AGW [33] baseline on Market1501 [35] and
MSMT17 [36]. Losses with * improve triplet loss by weights. EWTH loss and NEWTH loss perform
top1 and top2 in Table 1 that are made comparison with other losses in Table 3. EWTH and NEWTH
loss achieve 2 highest results of mAP and rank-1 on Market1501 and MSMT17. Other weighted
loss functions in Table 3 focus on calculating the importance and difficulty of each selected triplet
though Euclidean distance [33][50][41][53], average precision (AP) [52] or additional weights [54].
These works consider relations among different triplets by giving more importance to harder samples.
Element-weighted TriHard loss proposed in this paper concentrates on relations within elements of
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Table 4: The comparison with state-of-the-art results of baselines

Method Market1501 MSMT17

mAP rank-1 mAP rank-1

BoT [37] 85.6% 94.1% 45.1% 63.9%
AGW [33] 88.2% 95.2% 49.5% 68.2%
NEWTH (our) on BoT 88.4% 95.1% 49.7% 68.1%
NEWTH (our) on AGW 89.4% 95.6% 53.1% 71.5%

feature vectors rather than relations between features. That solves the contradiction embedding in
the training of triplet loss with hard samples though semantic information learned by the network.
That performs better than those less meaningful information such as Euclidean or cosine distance.
The remaining loss functions improve selection strategies of triplets [31][51], metric conditions
[43][42][55] or abandon the margin[31].

Reid-strong-baseline (bags of tricks) [37], AGW [33] are two public state-of-the-art baselines of
person re-identification. AGW is designed above bags of tricks (BoT) with 3 extra trick: non-local
Attention Block [56], Generalized-mean (GeM) Pooling [57] and weighted Regularization Triplet
(WRT) loss [33] which achieves better results compared with BoT. The results of original baselines
and improved versions by NEWTH loss are rearranged in Table 4. Apparently, NEWTH loss on
AGW outperforms these two state-of-the-art baselines and achieve SOTA above them. That proves
the proposed element-weighted TriHard loss is more efficient.

6 Conclusion

In this paper, the dilemma of TriHard loss [31] is proved and several mitigation strategies are proposed.
In the meanwhile, an element-weighted TriHard loss is designed and combined with the mitigation
strategies. All the losses are evaluated on Market1501 [35] and MSMT17 [36] datasets and achieve
state-of-the-art results on public baselines BoT [37] and AGW [33].

Broader Impact

The shortcoming of TriHard loss [31] is proved theoretically and a series of element-weighted TriHard
losses is proposed and tested in this paper. It is strongly explainable and easy to implement, which
can be used in the existing methods of person re-identification (ReID).

The most obvious positive outcome is that improving the accuracy of results makes the automatic
person identification technology more practicable in security, autonomous driving and other fields.
That will improve efficiency and effectiveness of work or save human costs in these areas. And the
ideas proposed in this paper may inspire more valuable and innovative researches in the future.

The negative outcomes result from the increasing accuracy of person identification and more used
surveillance cameras. That may raise the risk of privacy breaches and other security issues, which
may put everyone under monitoring. In the meanwhile, The public datasets for person ReID are
usually non-consensual surveillance data, which are supposed to be an invasion of privacy. Therefore,
the collection process should be public and informed to everyone who is contained in the collection.
And the utilization of these datasets should be is subject to scrutiny and regulation.
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