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Abstract

This paper investigates the geometrical properties of real world games (e.g. Tic-Tac-
Toe, Go, StarCraft IT). We hypothesise that their geometrical structure resembles a
spinning top, with the upright axis representing transitive strength, and the radial
axis representing the non-transitive dimension, which corresponds to the number
of cycles that exist at a particular transitive strength. We prove the existence of
this geometry for a wide class of real world games by exposing their temporal
nature. Additionally, we show that this unique structure also has consequences for
learning — it clarifies why populations of strategies are necessary for training of
agents, and how population size relates to the structure of the game. Finally, we
empirically validate these claims by using a selection of nine real world two-player
zero-sum symmetric games, showing 1) the spinning top structure is revealed and
can be easily reconstructed by using a new method of Nash clustering to measure
the interaction between transitive and cyclical strategy behaviour, and 2) the effect
that population size has on the convergence of learning in these games.

1 Introduction

Game theory has been used as a formal framework to describe and analyse many naturally emerging
strategic interactions [30, 10, 9, 28, 20, 11, 6]. It is general enough to describe very complex
interactions between agents, including classic real world games like Tic-Tac-Toe, Chess, Go, and
modern computer-based games like Quake, DOTA and StarCraft II. Simultaneously, game theory
formalisms apply to abstract games that are not necessarily interesting for humans to play, but were
created for different purposes. In this paper we ask the following question: Is there a common
structure underlying the games that humans find interesting and engaging?

Why is it important to understand the geometry of real world games? Games have been used
as benchmarks for the development of artificial intelligence for decades, starting with Shannon’s
interest in Chess [27], through to the first reinforcement learning success in Backgammon [31], IBM
DeepBlue [5] developed for Chess, and the more recent achievements of AlphaGo [29] mastering
the game of Go, FTW [13] for Quake III: Capture the Flag, AlphaStar [34] for StarCraft II, OpenAl
Five [23] for DOTA 2, and Pluribus [3] for no-limit Texas Hold ’Em Poker. We argue that grasping any
common structures to these real world games is essential to understand why specific solution methods
work, and can additionally provide us with tools to develop Al based on a deeper understanding of the
scope and limits of solutions to previously tackled problems. The analysis of non-transitive behaviour
has been critical for algorithm development in general game theoretic settings in the past [15, 1, 2].
Therefore a good tool to have would be the formalisation of non-transitive behaviour in real world
games and a method of dealing with notion of transitive progress built on top of it.
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We propose the Game of Skill hypothesis (Fig. 1) where strategies exhibit a geometry that resembles a
spinning top, where the upright axis represents the transitive strength and the radial axis corresponds
to cyclic, non-transitive dynamics. We focus on two aspects. Firstly, we theoretically and empirically
validate whether the Games of Skill geometry materialises in real world games. Secondly, we unpack
some of the key practical consequences of the hypothesis, in particular investigating the implications
for training agents.
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Figure 1: High-level visualisation of the geometry of Games of Skill. It shows a strong transitive
dimension, that is accompanied by the highly cyclic dimensions, which gradually diminishes as skill
grows towards the Nash Equilibrium (upward), and diminishes as skill evolves towards the worst
possible strategies (downward). The simplest example of non-transitive behaviour is a cycle of length
3 that one finds e.g. in the Rock Paper Scissors game.

Some of the above listed works use multi-agent training techniques that are not guaranteed to
improve/converge in all games. In fact, there are conceptually simple, yet surprisingly difficult
cyclic games that cannot be solved by these techniques [2]. This suggests that a class of real world
games might form a strict subset of 2-player symmetric zero-sum games, which are often used
as a formalism to analyse such games. The Game of Skill hypothesis provides such a class, and
makes specific predictions about how strategies behave. One clear prediction is the existence of
tremendously long cycles, which permeate throughout the space of relatively weak strategies in each
such game. Theorem 1 proves the existence of long cycles in a rich class of real world games that
includes all the examples above. Additionally, we perform an empirical analysis of nine real world
games, and establish that the hypothesised Games of Skill geometry is indeed observed in each of
them.

Finally, we analyse the implications of the Game of Skill hypothesis for learning. In many of the
works tackling real world games [13, 34, 23] some form of population-based training [12, 15] is
used, where a collection of agents is gathered and trained against. We establish theorems connecting
population size and diversity with transitive improvement guarantees, underlining the importance of
population-based training techniques used in many of the games-related research above, as well as
the notion of diversity seeking behaviours. We also confirm these with simple learning experiments
over empirical games coming from nine real world games.



In summary, our contributions are three-fold: i) we define a game class that models real world games,
including those studied in recent Al breakthroughs (e.g. Go, StarCraft II, DOTA 2); ii) we show both
theoretically and empirically that a spinning top geometry can be observed; iii) we provide theoretical
arguments that elucidate why specific state-of-the-art algorithms lead to consistent improvements
in such games, with an outlook on developing new population-based training methods. Proofs
are provided in Supplementary Materials B, together with details on implementations of empirical
experiments (E, G, H), additional data (F), and algorithms used (A, C, D, I, J).

2 Game of Skill hypothesis

We argue that real world games have two critical features that make them Games of Skill. The first
feature is the notion of progress. Players that regularly practice need to have a sense that they will
improve and start beating less experienced players. This is a very natural property to keep people
engaged, as there is a notion of skill involved. From a game theory perspective, this translates to a
strong transitive component of the underlying game structure.

A game of pure Rock Paper Scissors (RPS) does not follow this principle and humans essentially
never play it in a standalone fashion as a means of measuring strategic skill (without at least knowing
the identity of their opponent and having some sense of their opponent’s previous strategies or biases).

The second feature is the availability of diverse game styles. A game is interesting if there are
many qualitatively different strategies [7, 17, 37] with their own strengths and weaknesses, whilst on
average performing on a similar level in the population. Examples include the various openings in
Chess and Go, which work well against other specific openings, despite not providing a universal
advantage against all opponents. It follows that players with approximately the same transitive skill
level, can still have imbalanced win rates against specific individuals within the group, as their game
styles will counter one another. This creates interesting dynamics, providing players, especially at
lower levels of skill, direct information on where they can improve. Crucially, this richness gradually
disappears as players get stronger, so at the highest level of play, the outcome relies mostly on skill
and less on game style. From a game theory perspective, this translates to non-transitive components
that rapidly decrease in magnitude relative to the transitive component as skill improves.

These two features combined would lead to a cone-like shape of the game geometry, with a wide,
highly cyclic base, and a narrow top of highly skilled strategies. However, while players usually play
the game to win, the strategy space includes many strategies whose goal is to lose. While there is
often an asymmetry between seeking wins and losses (it is often easier to lose than it is to win), the
overall geometry will be analogous - with very few strategies that lose against every other strategy,
thus creating a peaky shape at the bottom of our hypothesised geometry. This leads to a spinning top
(Figure 1) — a geometry, where, as we travel across the transitive dimension, the non-transitivity first
rapidly increases, and then, after reaching a potentially very large quantity (more formally detailed
later), quickly reduces as we approach the strongest strategies. We refer to games that exhibit such
underlying geometry as Games of Skill.

3 Preliminaries

We first establish preliminaries related to game theory and assumptions made herein. We refer to
the options, or actions, available to any player of the game as a strategy, in the game-theoretic
sense. Moreover, we focus on finite normal-form games (i.e. wherein the outcomes of a game are
represented as a payoff tensor), unless otherwise stated.

We use II to denote the set of all strategies in a given game, with m; € II denoting a single pure
strategy. We further focus on symmetric, deterministic, zero sum games, where the payoff (outcome of
a game) is denoted by f(m;, 7;) = —f(m;, ;) € [—1, 1]. We say that 7; beats 7; when f (7;, 7;) > 0,
draws when f(7;,7;) = 0 and loses otherwise. For games which are not fully symmetric (e.g. all
turn based games) we symmetrise them by considering a game we play once as player 1 and once
as player 2. Many games we mention have an underlying time-dependent structure (e.g. chess);
thus, it might be more natural to think about them in the so-called extensive-form, wherein player
decision-points are expressed in a temporal manner. To simplify our analysis, we conduct our analysis
by casting all such games to the normal-form, though we still exploit some of the time-dependent
characteristics. Consequently, when we refer to a specific game (e.g. Tic-Tac-Toe), we also analyse
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Figure 2: Left — extensive form/game tree representation of a simple 3-step game, where in each
state a player can choose one of two actions, and after exactly 3 moves one of the players wins.
Player 1 takes actions in circle nodes, and player 2 in diamond nodes. Outcomes are presented from
the perspective of player 1. Middle — a partial normal form representation of this game, presenting
outcomes for 4 strategies, colour coded on the graph representation. Right — a symmetrised version,
where two colours denote which strategy one follows as player 1 and which as player 2.

the rules of the game itself, which might provide additional properties and insights into the geometry
of the payoffs f. In such situations, we explicitly mention that the property/insight comes from game
rules rather than its payoff structure f. This is somewhat different from a typical game theoretical
analysis (for normal form games) that might equate game and f. We use a standard tree representation
of temporally extended games, where a node represents a state of the game (e.g. the board at any
given time in the game of Tic-Tac-Toe), and edges represent what is the next game state when the
player takes a specific action (e.g. spaces where a player can mark their x or o). The node is called
terminal, when it is an end of the game and it provides an outcome f. In this view a strategy is a
deterministic mapping from states to actions, and an outcome between two strategies is simply the
outcome of the terminal state they reach when they play against each other. Figure 2 visualises these
views on an exemplary three step game.

We call a game monotonic when f(m;, ;) > 0 and f(7;, 7;) > 0 implies f(7;, 1) > 0. In other
words, the relation of one strategy beating another is transitive in the set theory sense. We say that a
set of strategies {; }._, forms a cycle of length [ when for each i > 1 we have f(7;41,7;) > 0 and
f(my,m;) > 0. For example, in the game of Rock Paper Scissors we have f(m,, 75) = f(7s, mp) =
f(mp, m) = 1. There are various ways in which one could define a decomposition of a given game
into the transitive and non-transitive components [2]. In this paper, we introduce Nash clustering,
where the transitive component becomes an index of it, and non-transitivity corresponds to the size of
this cluster. We do not claim that this is the only nor the best way of thinking about this phenomena,
but we found it to have valuable mathematical properties.

The manner in which we study the geometry of games in this paper is motivated by the structural
properties that Al practitioners have exploited to build competent agents for real world games [34, 29,
23], using reinforcement learning (RL). Specifically, consider an empirical game-theoretic outlook
on training of policies in a game (e.g. Tic-Tac-Toe), where each trained policy (e.g. neural network)
for a player is considered as a strategy of the empirical game. In other words, an empirical game is a
normal-form game wherein Al policies are synonymous with strategies. Each of these policies, when
deployed on the true underlying game, yields an outcome (e.g. win/loss) captured by the payoff in the
empirical game. Thus, in each step of training, the underlying RL algorithm produces an approximate
best response in the actual underlying (multistep, extensive form) game; this approximate best
response is then added to the set of policies (strategies) in the empirical game, iteratively expanding
it.

This Al training process is also often hierarchical — there is some form of multi-agent scheduling
process that selects a set of agents to be beaten at a given iteration (e.g. playing against a previous
version of an agent in self-play [29], or against some distribution of agents generated in the past [34]),
and the underlying RL algorithm used for training new policies performs optimisation to find an
agent that satisfies this constraint. There is a risk that the RL algorithm finds very weak strategies that



satisfy the constraint (e.g. strategies that are highly exploitable). Issues like this have been observed
in various large-scale projects (e.g. exploits that human players found in the Open Al Five [23] or
exploiters in League Training of AlphaStar [34]). This exemplifies some of the challenges of creating
Al agents, which are not the same that humans face when they play a specific game. Given these
insights, we argue that algorithms can be disproportionately affected by the existence of various
non-transitive geometries, in contrast to humans.

4 Real world games are complex

The spinning top hypothesis implies that at some relatively low level of transitive strength, one should
expect very long cycles in any Game of Skill. We now prove that, in a large class of games (ranging
from board games such as Go and Chess to modern computer games such as DOTA and StarCraft),
one can find tremendously long cycles, as well as any other non-transitive geometries.

We first introduce the notion of n-bit communicative games, which provide a mechanism for lower
bounding the number of cyclic strategies. For a given game with payoff f, we define its win-draw-loss
version with the same rules and payoffs f = sign o f, which simply removes the score value, and
collapses all wins, draws, and losses onto +1, 0, and -1 respectively. Importantly, this transformation
does not affect winning, nor the notion of cycles (though could, for example, change Nash equilibria).

Definition 1. Consider the extensive form view of the win-draw-loss version of any underlying game;
the underlying game is called n-bit communicative if each player can transmit n € Ry bits of
information to the other player before reaching the node whereafter at least one of the outcomes ‘win’
or ‘loss’ is not attainable.

For example, the game in Figure 2 is 1-bit communicative, as each player can take one out of two
actions before their actions would predetermine the outcome. We next show that as games become
more communicative, the set of strategies that form non-transitive interactions grows exponentially.

Theorem 1. For every game that is at least n-bit communicative, and every antisymmetric win-loss
payoff matrix P € {—1,0,1}2"1%12") there exists a set of | 2" | pure strategies {71, ..., Tian ) C IO
such that P;; = £1(m;, 7)), and |z] = maxgena < z.

In particular, this means that if we pick P to be cyclic — where for each i < |2" | we have P;; =1
for j < i, Pj; = —1 and P;; = 0, and for the last strategy we do the same, apart from making it lose
to strategy 1, by putting P |5 |; = —1 — we obtain a constructive proof of a cycle of length |2" |,
since 71 beats | gn |, T 2n | beats mgn | _1, T 20 |1 beats man|_2, ..., T2 beats m1. In practise, the
longest cycles can be much longer (see the example of the Parity Game of Skill in the Supplementary
Materials) and thus the above result should be treated as a lower bound.

Note, that strategies composing these long cycles will be very weak in terms of their transitive
performance, but of course not as weak as strategies that actively seek to loose, and thus in the
hypothesised geometry they would occupy the thick, middle level of the spinning top. Since such
strategies do not particularly target winning or losing, they are unlikely to be executed by a human
playing a game. Despite this, we use them to exemplify the most extreme part of the underlying
geometry, and given that in both the extremes of very strong and very weak policies we expect
non-transitivities to be much smaller than that, we hypothesise that they behave approximately
monotonically in both these directions.

We provide an efficient algorithm to compute n by traversing the game tree (linear in number of
transitions between states) in Supplementary Materials together with derivation of its recursive
formulation. We found that Tic-Tac-Toe is 5.58-bit communicative (which means that every payoff
of size 47 x 47 is realised by some strategies). Additionally, all 1-step games (e.g. RPS) are 0-bit
communicative, as all actions immediately prescribe the outcome without the ability to communicate
any information. For games where state space is too large to be traversed, we can consider a heuristic
choice of a subset of actions allowed in each state thus providing a lower bound on 7, e.g. in Go we
can play stones on one half of the board, and show that n > 1000.

Proposition 1. The game of Go is at least 1000-bit communicative and contains a cycle of length at
least 21090,

Proposition 2. Modern games, such as StarCraft, DOTA or Quake, when limited to 10 minutes play,
are at least 36000-bit communicative.



The above analysis shows that real world games have an extraordinarily complex structure, which is
not commonly analysed in classical game theory. The sequential, multistep aspect of these games
makes a substantial difference, as even though one could simply view each of them in a normal form
way [21], this would hide the true structure exposed via our analysis.

Naturally, the above does not prove that real world games follow the Games of Skill geometry. To
validate the merit of this hypothesis, however, we simply follow the well-established path of proving
hypothetical models in natural sciences (e.g. physics). Notably, the rich non-transitive structure
(located somewhere in the middle of the transitive dimension) exposed by this analysis is a key
property that the hypothesised Game of Skill geometry would imply. More concretely, in Section 6
we conduct empirical game theory-based analysis [33] of a wide range of real world games to show
that the hypothesised spinning top geometry can, indeed, be observed.

5 Layered game geometry

The practical consequences of huge sets of non-transitive strategies are two-fold. First, building naive
multi-agent training regimes, that try to deal with non-transitivity by asking agents to form a cycle
(e.g. by losing to some opponents), is likely to fail — there are just too many ways in which one can
lose without providing any transitive improvement for other agents trained against it. Second, there
exists a shared geometry and structure across many games, that we should exploit when designing
multi-agent training algorithms. In particular, we show how these properties justify some of the
recent training techniques involving population-level play and the League Training used in Vinyals et
al. [34]. In this section, we investigate the implications of such a game geometry on the training of
agents, starting with a simplified variant that enables building of intuitions and algorithmic insights.

Definition 2 k-layered finite Game of Skill. We say that a game is a k-layered finite Game of Skill
if the set of strategies 11 can be factorised into k layers L; such that | J; L; =1L Viz;1, N L; =0
and layers are fully transitive in the sense that V< j r,c1, .z e, (7, 7;) > 0 and there exists z € N
such that for each i < z we have |L;| < |L;11| and |1;| > |Liq1| fori > z.

Intuitively, all the non-transitive interaction take place within each layer [;, whilst the skill (or
transitive) component of the game corresponds to a layer ID. For every finite game, there exists
k > 1 for which it is a k-layered game (though when k& = 1 this structure is not useful). Moreover,
every monotonic game has as many layers as there are strategies in the game. Even the simplest
non-transitive structure can be challenging for many training algorithms used in practise [23, 29, 13],
such as naive self-play [2]. However, a simple form of fictitious play with a hard limit on population
size will converge independently of the oracle used (the oracle being the underlying algorithm that
returns a new policy that satisfies a given improvement criterion):

Proposition 3. Fixed-memory size fictitious play initialised with C
II where at iteration t one replaces some strategy in with a new strategy m such that
Vo, e f(m,m;) > 0 converges in layered Games of Skill, if the population is not smaller than the
size of the lowest layer occupied by at least one strategy in the population |P"| > |Layg min,: 2001, 5£0]
and at least one strategy is above z. If all strategies are below z, then required size is that of |L,|.

Intuitively, to guarantee transitive improvements over time, it is important to cover all possible game
styles. This proposition also leads to a known result of needing just one strategy in the population (e.g.
self-play) to keep improving in monotonic games [2]. Finally, it also shows an important intuition
related to how modern Al systems are built — the complexity of the non-transitivity discovery/handling
methodology decreases as the overall transitive strength of the population grows. Various agent priors
(e.g. search, architectural choices for parametric models such as neural networks, smart initialisation
such as imitation learning etc.) will initialise in higher parts of the spinning top, and also restrict
the set of representable strategies to the transitively stronger ones. This means that there exists a
form of balance between priors one builds into an Al system and the amount of required multi-agent
learning complexity required (see Figure 3 for a comparison of various recent state of the art Al
systems). From a practical perspective, there is no simple way of knowing | L., | without traversing the
entire game tree. Consequently, this property is not directly transferable to the design of an efficient
algorithm (as if one had access to the full game tree traversal, one could simply use Min-Max to solve
the game). Instead, this analysis provides an intuitive mechanism, explaining why finite-memory
fictitious self-play can work well in practice.



State of the art Al MinMax No-learning
in Real World Games

Search Self-play
Reward shaping Co-play
MinMax Tree Search Any small game
o
Go, Chess, Shogi Strong priors Fictitious Play
OpenAl Five DOTA
Quake Il CTF
AlphaStar StarCraft Il Imitation init Population Play
Pluribus Poker
Algorithm Game Agent stack Multi agent stack Geometry
Initial transitive Robuesteness to Coming from the
strength in a top non-transitivity agent stack

Figure 3: Visualisation of various state of the art approaches for solving real world games, with
respect to the multi-agent algorithm and agent modules used (on the left). Under the assumption that
these projects led to the approximately best agents possible, and that the Game of Skill hypothesis
is true for these games, we can predict what part of the spinning top each of them had to explore
(represented as intervals on the right). This comes from the complexity of the multi-agent algorithm
(the method of dealing with non-transitivity) that was employed — the more complex the algorithm,
the larger the region of the top that was likely represented by the strategies using the specific agent
stack. This analysis does not expose which approach is better or worse. Instead, it provides intuition
into how the development of training pipelines used in the literature enables simplification of non-
transitivity avoidance techniques, as it provides an initial set of strategies high enough in the spinning
top.

In practise, the non-transitive interactions are not ordered in a simple layer structure, where each
strategy from one beats each from the other. We can however relax notion of transitive relation which
will induce a new cluster structure. The idea behind this approach, called Nash clustering, is to first
find the mixed Nash equilibrium of the game payoff P over the set of pure strategies I (we denote
the equilibrium for payoff P when restricted only to strategies in X by Nash(P|X)), and form a first
cluster by taking all the pure strategies in the support of this mixture. Then, we restrict our game to
the remaining strategies, repeating the process until no strategies remain.

Definition 3. Nas/ clustering C of the finite zero-sum symmetric game strategy 11 set by setting for
eachi > 1: Niy1 = supp(Nash(P|IT\ U, ; N;)) for No = D and C = (N; : j € NAN; # 0).

While there might be many Nash clusterings per game, there exists a unique maximum entropy Nash
clustering where at each iteration we select a Nash equlibrium with maximum Shannon entropy,
which is guaranteed to be unique [24] due to the convexity of the objective. The crucial result
is that Nash clusters form a monotonic ordering with respect to Relative Population Performance
(RPP) [2], which is defined for two sets of agents 114, 115 with a corresponding Nash equilibrium of
the asymmetric game (pa, pp) := Nash(P 4p|(A, B)) as RPP(Il4, ) = p} - Pap - p5.

Theorem 2. Nash clustering satisfies RPP(C;, C;) > 0 for each j > i.

We refer to this notion as a relaxation, since it is not each strategy in one cluster that is better than
in the other, but rather the whole cluster is better than the other. In particular, this means that in
k-layered game, the new clusters are subsets of layers (because Nash equilibrium will never contain
a fully dominated strategy). Next we show that a diverse population that spans an entire cluster
guarantees transitive improvement, despite not having access to any weaker policies nor knowledge
of covering the cluster.

Theorem 3. If at any point in time, the training population includes any full Nash cluster
Cy C P, then training against 7' by finding 7 such that V. ,cp:f(m,7;) > 0 guarantees transitive
improvement in terms of the Nash clustering dx; ™ € Cg.

Consequently, to keep improving transitively, it is helpful to seek wide coverage of strategies around
the current transitive strength (inside the cluster). This high level idea has been applied in some
multi-player games such as soccer [18] and more recently StarCraft II. AlphaStar [34] explicitly



attempts to cover the non-transitivities using exploiters, which implicitly try to expand on the current
Nash. Interestingly, same principle can be applied to single-player domains and justify seeking
diversity of the environments, so that agents need to improve transitively with respect to them. With
the Game of Skill geometry one can rely on this required coverage to be smaller over time (as agents
get stronger). Thus, forcing the new generation of agents to be the weakest ones that beat the previous
one would be sufficient to keep covering cluster after cluster, until reaching the final one.
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Table 1: (Left of each plot) Game profiles of empirical game geometries, when sampling strategies in
various real world games, such as Connect Four, Tic-Tac-Toe and StarCraft II (note that strategies in
AlphaStar come from a learning system, and not our sampling strategy, see Supplementary Materials
for details and discussion). The first three rows shows clearly the Game of Skill geometry, while
the last row shows the geometry for games that are not Games of Skill, and clearly do not follow
this geometry. The pink curve shows a fitted Skewed Gaussian highlighting the spinning top shape
(details in Supplementary Materials). (Right of each plot) Learning curves in empirical games, using
various population sizes, the oldest strategy in the population is replaced with one that beats the
whole population on average using an adversarial oracle (returning the weakest strategy satisfying
this goal). For Games of Skill there is a phase change of behaviour for most games, where once the
population is big enough to deal with the non transitivity, the system converges to the strongest policy.
On the other hand, in other games (bottom) such as the Disc game, no population size avoids cycling,
and for fully transitive games like the Elo game, even naive self play converges.

6 Empirical validation of Game of Skill hypothesis

To empirically validate the spinning top geometry, we consider a selection of two-player zero-
sum games available in the OpenSpiel library [16]. Unfortunately, even for the simplest of real
world games, the strategy space can be enormous. For example, the number of behaviourally
unique pure strategies in Tic-Tac-Toe is larger than 10°%7 (see Supplementary Materials). A full
enumeration-based analysis is therefore computationally infeasible. Instead, we rely on empirical
game-theoretic analysis, an experimental paradigm that relies on simulation and sampling of strategies
to construct abstracted counterparts of complex underlying games, which are more amenable for
analysis [35, 36, 25, 38, 26, 32]. Specifically, we look for strategy sampling that covers the strategy
space as uniformly as possible so that the underlying geometry of the game (as exposed by the



empirical counterpart) is minimally biased. A simple and intuitive procedure for strategy sampling
is as follows. First, apply a tree-search method, in the form of Alpha-Beta [22] and MCTS [4] and
select a range of parameters that control the transitive strength of these algorithms (depth of search
for Alpha-Beta and number of simulations for MCTS) to ensure coverage of transitive dimension.
Second, for each such strategy we create multiple instances, with varied random number seed, thus
causing them to behave differently. We additionally include Alpha-Beta agents that actively seek to
lose, to ensure discovery of the lower cone of the hypothesised spinning top geometry. While this
procedure does not guarantee uniform sampling of strategies, it at least provides decent coverage of
the transitive dimension. In total, this yields approximately 1000 agents per game. Finally, following
strategy sampling, we form an empirical payoff table with entries evaluating the payoffs of all strategy
match-ups, remove all duplicate agents, and use this matrix to approximate the underlying game of
interest.

Table 1 summarises the empirical analysis which, for the sake of completeness, includes both Games
of Skill and games that are not Games of Skill such as the Disc game [2], a purely transitive Elo
game, and the Blotto game. Overall, all real world games results show the hypothesised spinning
top geometry. More closely inspecting the example of Go (3x3) in Table 2 of the Supplementary
Materials, we notice that the Nash clusters induced payoff look monotonic, and the sizes of these
are maximal around the mid-ranges of transitive strength, and quickly decrease as transitive strength
both increases or decreases. At the level of the strongest strategies, non-trivial Nash clusters exist,
showing that even in this empirical approximation of the game of Go on a small board, one still needs
some diversity of play styles. This is to be expected due to various game symmetries of the game
rules. Moreover, various games that were created to study game theory (rather than for humans to
play) fail to exhibit the hypothesised geometry. In the game of Blotto, for example, the size of Nash
clusters keep increasing, as the number of strategies one needs to mix at higher and higher levels of
play in this game keeps growing. This is a desired property for the purpose of studying complexity of
games, but arguably not so for a game that is simply played for enjoyment. In particular, the game of
Blotto requires players to mix uniformly over all possible permutations to be unexploitable (since the
game is invariant to permutations), which is difficult for a human player to achieve.

We tested the population size claims of Nash coverage as follows. First, construct empirical games
coming from the sampling of n agents defined above, yielding an approximation of the underlying
games. Second, define a simple learning algorithm, where we start with k (size of the population)
weakest strategies (wrt. mean win-rate) and iteratively replace the oldest one with a strategy 7 that
beats the entire population 7" on average, meaning that ., f(m,7’) > 0. To pick the new
strategy, we use a pessimistic oracle that selects the weakest strategy satisfying the win-rate condition.
This counters the bias towards sampling stronger strategies, thus yielding a more fair approximation
of typical greedy learning methods such as gradient-based methods or reinforcement learning.

For small population sizes, training does not converge and cycles for all games (Table 1). As the
population grows, strength increases but saturates in various suboptimal cycles. However, when the
population exceeds a critical size, training converges to the best strategies in almost all experiments.
For games that are not real world games we observe quite different behaviour - where, despite growth
of population size, cycling keeps occuring (e.g. the Disc game), convergence is guaranteed even with
a population of size 1 (e.g. the Elo game, which is monotonic).

7 Conclusions

In this paper we have introduced Games of Skill, a class of games that, as motivated both theoretically
and empirically, includes many real world games, including Tic-Tac-Toe, Chess, Go and even
StarCraft II and DOTA. In particular we showed, that n-step games have tremendously long cycles,
and provided both mathematical and algorithmic methods to estimate this quantity. We showed, that
Games of Skill have a geometry resembling a spinning top, which can be used to reason about their
learning dynamics. In particular, our insights provide useful guidance for research into population-
based learning techniques building on League training [34] and PBT [13], especially when enriched
with notions of diversity seeking [2]. Interestingly, we show that many games from classical game
theory are not Games of Skill, and as such might provide challenges that are not necessarily relevant
to developing Al methods for real world games. We hope that this work will encourage researchers
to study real world games structures, to build better Al techniques that can exploit their unique
geometries.



Broader Impact

This work focuses on better understanding of mathematical properties of real world games and how
they could be used to understand successful Al techniques that were developed in the past. Since we
focus on retrospective analysis of a mathematical phenomenon, on exposing an existing structure,
and deepening our understanding of the world, we do not see any direct risks it entails. Introduced
notions and insights could be used to build better, more engaging Al agents for people to play with
in real world games (e.g. Als that grow with the player, matching their strengths and weaknesses).
In a broader spectrum, some of the insights could be used for designing and implementing new
games, that humans would fine enjoyable though challenges they pose. In particular it could be a
viewed as a model for measuring how much notion of progress the game consists of. However, we
acknowledge that methods enabling improved analysis of games may be used for designing products
with potentially negative consequences (e.g., games that are highly addictive) rather than positive
(e.g., games that are enjoyable and mentally developing).
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