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Abstract

Algorithm configuration procedures optimize parameters of a given algorithm to
perform well over a distribution of inputs. Recent theoretical work focused on the
case of selecting between a small number of alternatives. In practice, parameter
spaces are often very large or infinite, and so successful heuristic procedures
discard parameters “impatiently”, based on very few observations. Inspired by
this idea, we introduce IMPATIENTCAPSANDRUNS, which quickly discards less
promising configurations, significantly speeding up the search procedure compared
to previous algorithms with theoretical guarantees, while still achieving optimal
runtime up to logarithmic factors under mild assumptions. Experimental results
demonstrate a practical improvement.

1 Introduction

Solvers for computationally hard problems (e.g., SAT, MIP) often expose many parameters that only
affect runtime rather than solution quality. Choosing values for these parameters is seldom easy or
intuitive, and different settings can lead to drastically different runtimes—days versus seconds—for
a given input instance. Such parameters are exposed in the first place because they do not have
known, globally optimal settings, instead typically expressing tradeoffs between different heuristic
mechanisms or implicit assumptions about problem structure. In practice, solver end-users typically
need to repeatedly solve similar problems: e.g., integer programs modeling airline crew scheduling
problems; or SAT formulae used to formally verify a sequence of related hardware or software designs.
This gives rise to the problem of algorithm configuration: finding a joint setting of parameters for
a given algorithm so that it performs well on input instances drawn from a given distribution. We
make no restrictions on the space of possible parameters or its structure: they may be continuous,
categorical, subject to arbitrary constraints, and may contain jump discontinuities. We refer to a
joint setting of all the algorithm’s parameters as a configuration to stress this generality. A common

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



metric of performance for a configuration, and the one we consider in this work, is mean runtime: we
prefer configurations that are faster, on average, on the problems we care about solving. An algorithm
configuration method can sample instances from the distribution underlying an application and can
run any configuration (possibly also sampled from the set possible configurations) on any sampled
instance until a timeout of its choice, and the goal is to find a configuration with nearly optimal mean
runtime while using the least amount of time during the search.1

Heuristic methods for algorithm configuration such as ParamILS [18, 19], GGA [2, 3], irace [11, 29]
and SMAC [21, 22] have been used with great success for more than a decade, but they do not
come with any rigorous performance guarantees. More recently, algorithm configuration has also
been considered from a theoretical perspective. Kleinberg et al. [24] introduced a framework to
analyze algorithm configuration methods theoretically, and presented the first configuration procedure,
STRUCTURED PROCRASTINATION (SP), which is guaranteed to find an approximately optimal
solution with a non-trivial worst-case runtime bound. Since then algorithms with better theoretical
guarantees have been developed [35, 36, 25]. Overall, these theoretically-motivated configuration
procedures have nice properties, such as achieving near-optimal asymptotic worst-case running times.
However, none of them yet achieves competitive performance on practical problem benchmarks,
for two key reasons: (i) heuristic methods usually iteratively select candidate configurations that
appear likely to perform well given previous samples from the configuration space (e.g., leveraging
structure in the parameter space, such as smoothness or low pseudodimension [20, 30]), whereas the
theoretical algorithms select configurations randomly; and (ii) heuristic methods often impatiently
discard less promising configurations based on just a few runtime observations, while the theoretical
algorithms are more conservative and continue evaluating them until they demonstrate, with high
probability, that another configuration is better. Such early discard strategies are particularly effective
when the configuration space contains one or a few configurations that drastically outperform all
others. This “needle-in-a-haystack” scenario is common in practice, perhaps in part explaining the
success of these heuristic methods.

In this paper we take a significant step towards theoretically grounded and practical algorithm con-
figuration by addressing the second problem. We build on CAPSANDRUNS (CAR) [36], a simple
and intuitive algorithm that continuously discards configurations that perform poorly relative to a
global upper bound on the best achievable mean runtime. Here we introduce IMPATIENTCAPSAN-
DRUNS (ICAR), which equips CAR with the ability to quickly discard less-promising configurations
by applying an initial “precheck” mechanism that allows poorly performing configurations to be
discarded quickly. Additionally, via a more careful analysis we are able speed up a key subroutine
from CAR. While ICAR retains the favorable optimality and runtime guarantees of CAR under mild
assumptions, it is also provably faster in needle-in-a-haystack scenarios where most configurations
are considerably weaker than the best ones (these are the cases where good algorithm configuration
procedures are the most useful, because identifying a good configuration is the most consequential.)
Because of its precheck procedure, ICAR is able to examine more configurations than CAR, and
hence finds configurations with better mean runtime. Furthermore, not wasting time on examining
bad configurations, the total runtime of ICAR is significantly smaller than that of CAR and any other
existing procedure with theoretical guarantees, making a step towards closing the performance gap
relative to heuristic procedures.

Finally, we briefly survey some less closely related work. Gupta & Roughgarden [14] initiated the
study of algorithm configuration from a learning-theoretic perspective. Rather than seek general
purpose configuration procedures, as we do in this work, this and subsequent approaches seek to
bound the number of training samples required to guarantee good generalization for specific classes
of problems. Examples include combinatorial partitioning problems such as max-cut and clustering
[6], branching strategies in tree search algorithms [7], and general algorithm configuration when the
runtime is piecewise-constant over its parameter space [8]. Hyperparameter-search methods based on
multi-armed bandit algorithms are also related. The main difference is that this literature focuses on
settings where every configuration run costs the same amount or where there is a tradeoff between
how long each configuration is run and the accuracy with which its performance is estimated [5, 28];
thus, these methods do not face questions like how many instances to consider and how to cap runs.

1As usual, we treat the cumulative runtime of all the configurations tried as the total search time. One could
also consider including the overhead imposed by the configuration algorithm itself. However, beyond being
difficult to model, this cost is typically negligible compared to the runtime of the configurations.
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The rest of the paper is organized as follows. The formal model of algorithm configuration is given
in Section 2. The ICAR algorithm is presented and analyzed in Section 3. Experiments on some
algorithm configuration benchmarks are given in Section 4. Proofs and additional experimental
results are deferred to the appendix.

2 The Model

Following Kleinberg et al. [24], the algorithm configuration problem is defined by a triplet (⇧,�, R),
where ⇧ is a distribution over possible configurations, � is a distribution over input instances, and
R(i, j) is the runtime of a configuration i on a problem instance j. For example ⇧ and � may simply
be uniform distributions, respectively over the space of hyperparameters and the set of past problem
instances seen. The mean runtime of a configuration i is defined as R(i) = Ej⇠�[R(i, j)], and the
ultimate goal of an algorithm configuration method is to find a configuration i minimizing R(i).

During this search the configuration method needs to explore new configurations, which can be
sampled from ⇧.2 The configuration method can also sample problem instances from � and run a
configuration i on an instance j until it finishes, or the execution time exceeds a specified timeout
⌧ � 0. The use of such a timeout allows for a tradeoff between learning more about the runtime of a
single configuration–instance pair and considering a larger number of such pairs.

To this end, for any configuration i we consider the ⌧ -capped expected runtime R⌧ (i) =

Ej⇠�[min{R(i, j), ⌧}]. Furthermore, for any � 2 (0, 1), let t�(i) = inft{t : Prj⇠�(R(i, j) >

t)  �} denote the �-quantile of i’s runtime, and define R
�
(i) = Rt�(i)(i) the �-capped expected

runtime of i.3 That is, R�
(i) is the mean runtime of i if we cap the slowest �-fraction of its runtimes.

Since a globally optimal configuration may be arbitrarily hard to find, we instead seek a solution
that is competitive with the performance of the top �-fraction of the configurations for a � 2 (0, 1).
That is, instead of finding a configuration close to OPT = mini{R(i)}, we search for one close to
OPT

�
= infx2R+{x : Pri⇠⇧(R(i)  x) � �}. Additionally, since the average runtime of any

configuration, including the optimal one, could be totally dominated by a few incredibly unlikely but
arbitrarily large runtime values, we seek solutions whose expected �-capped runtime is close to the
�-capped optimum. However, it turns out that this relaxed property is still impossible to verify [35].
Following Weisz et al. [35], we address this by adding a small amount of slack to the benchmark,
comparing to the (�/2)-capped optimum rather than the �-capped optimum. Putting this together,
we seek solutions whose expected �-capped runtime is close to the (�/2)-capped optimum, after
excluding the best �-fraction of configurations: OPT

�
�/2 = infx2R+

n
x : Pri⇠⇧[R

�
2 (i)  x] � �

o
.

Definition 1 ((", �, �)-optimality). A configuration i is (", �, �)-optimal if R
�
(i)  (1 + ")OPT

�
�/2.

This definition generalizes the notion of (", �)-optimality of Weisz et al. [36] for a finite set of
configurations, where instead of the top-� portion, we aim to achieve the performance of the best
configuration (up to "): for a finite set of N configurations, configuration i is (", �)-optimal if it is
(", �, 1/N)-optimal when ⇧ is the uniform distribution over the N configurations.

3 The Algorithm
Recent theoretically-sound algorithm configuration procedures make several runtime measurements
for every configuration in a finite pool N , and stop when they can confirm, with high probability, that
one configuration is close enough to the best one. The main challenge is to avoid wasting time on
(a) hard input instances with large runtimes; and (b) bad configurations that will be eliminated later.
To this end, STRUCTURED PROCRASTINATION (SP) [24] and its improved version STRUCTURED
PROCRASTINATION WITH CONFIDENCE (SPC) [25] gradually increase the runtime cap for every
configuration-instance pair, while carefully determining an order to evaluate these pairs, depending
on the configurations’ empirical average runtime (SP) or empirical confidence bounds on the mean
runtimes (SPC). LEAPSANDBOUNDS (LAB) [35], which introduced empirical confidence bounds to

2We can see ⇧ as reflecting beliefs about the distribution of good configurations in the parameter space. This
implicitly neglects any search procedure that leverages structural assumptions about the parameter space.

3With a slight abuse of terminology, throughout we use the same expression for capping with timeouts (⌧ )
and quantiles (�), when the interpretation is clear from the context; we specify the type of capping otherwise.
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the algorithm configuration problem, works with a much simpler schedule, and tests all configurations
for a given time budget, which is increased gradually.

On the other hand, CAPSANDRUNS (CAR) [36] first measures the runtime cap for each configuration
guaranteeing that at least a (1� �)-portion of the instances can be solved within that cap, then runs a
racing algorithm (based on continuously recomputing confidence bounds on the mean runtimes) to
select which capped configuration is the best. During the race, all configurations are run in parallel
on more and more problem instances, and their mean runtime is continuously estimated. This makes
it possible to maintain a high-probability upper bound T on the optimal capped runtime, and any
configuration with a runtime lower bound above T can be eliminated. The algorithm stops when it
can prove that a configuration is (", �)-optimal.

To apply any of the above methods to an infinite pool of configurations, one can simply select a
pool of

l
log(⇣)

log(1��)

m
configurations randomly from ⇧ to ensure that with probability at least 1� ⇣ it

contains a configuration that belongs to the top �-fraction of all the configurations. Thus the above
methods can select (", �, �)-optimal configurations from an infinite pool, with attractive theoretical
guarantees. Our focus in this paper is on extending CAR, due to its conceptual simplicity and good
practical performance. However, in contrast to LAB and SPC, which try to assign little runtime
to bad configurations from the very beginning, at the start CAR spends the same amount of time
testing all configurations. This is because the estimation of the runtime caps is done in parallel, so
every configuration is run for an equally long time until the first cap is found for any configuration
(only after this can the algorithm start eliminating configurations with large mean runtimes). As a
result, CAR spends more time testing the worst configurations than LAB or SPC. Appendix B further
compares these methods and their runtime bounds.

IMPATIENTCAPSANDRUNS (ICAR) addresses this problem, introducing a “precheck” mechanism
to ensure that bad configurations are eliminated early. The PRECHECK function estimates the mean
capped runtime (up to a constant multiplicative factor) needed by a configuration to solve at least
a constant fraction of the problem instances (less than 1 � �/2). If this capped runtime is large
compared to the upper bound T on the (", �, �)-optimal runtime (maintained similarly as in CAR),
the configuration is rejected and eliminated from further analysis. This procedure is very similar
to the CAR algorithm (with some fixed, constant " and �); only the specific rejection conditions
differ mildly. Note that the runtime estimated by PRECHECK is a lower bound to the �/2-capped
runtime, ensuring that good configurations are unlikely to be rejected. The efficiency of PRECHECK
crucially depends on the quality of the bound T on the optimal runtime. Therefore, similarly to
SPC, ICAR gradually introduces more and more configurations in batches Nk, k = K � 1, . . . , 0:
if a configuration passes PRECHECK, a (rough) estimate of its capped runtime is calculated (up to
a multiplicative constant, for a cap slightly larger than the � quantile), again by first measuring the
runtime cap, then estimating the mean runtime using the measured cap. This runtime estimate is then
used to reduce the bound T , which improves the performance of PRECHECK for the next batch of
configurations, Nk�1. The size of batch Nk is of order 1/�k with �k = 2

k
�, ensuring that with high

probability it contains an (", �, �k)-optimal configuration (whose mean runtime is then bounded by
OPT

�k

�/2). As a consequence, after batch Nk, T is at most 2OPT
�k

�/2, gradually reducing towards
2OPT

�
�/2. Finally, the racing part of CAR is run over all surviving configurations, further reducing

T towards OPT
�
�/2, and stopping when an (", �, �)-optimal configuration is found.

Now we are ready to present the main theoretical result of the paper, a performance guarantee for
ICAR. The components of the algorithm are presented in Algorithms 1–5. We then discuss each and
present a proof sketch for the theorem (the detailed proof is given in Appendix A).

Theorem 1. For input parameters " 2 (0, 1/3), � 2 (0, 0.2), � 2 (0, 1), integer K � 1, and failure

parameter ⇣ 2 (0, 1/12), with probability at least 1 � 12⇣, IMPATIENTCAPSANDRUNS finds an

(", �, �)-optimal configuration with total work
4

bounded by
5

Õ

 
OPT

�
�/2

"2��
· F (38OPT

�
�/2) +

K�2X

k=0

OPT
�k

�/2

�k

 
1 +

F (38OPT
�k+1

�/2 )

�

!
+

OPT
�K�1

�/2

��K�1

!
, (1)

where �k = 2
k
�, and F (x) = Pri⇠⇧(R

0.35
(i)  x) + 4⇣/K.

4We use “total work” and “total runtime” interchangeably; both sum over all parallel threads.
5We use the standard O and Õ notation, where the latter hides poly-logarithmic factors.
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Global variables
1: Instance distribution �

2: Phase I measurements count b
3: T  1 . Upper bound on OPT

�
�/2, updated

continuously by all parallel processes
4: Set N of algorithm configurations

Algorithm 1 IMPATIENTCAPSANDRUNS

1: Inputs: Precision parameter " 2 (0,
1

3
), Quan-

tile parameter � 2 (0,
1

7
), Optimality quantile

target parameter �, Failure probability parameter
⇣ 2 (0,

1

12
), Number of iterations K, Instance

distribution �, Configuration distribution ⇧

2: Nk  Sample
l

log(⇣/K)

log(1��k)

m
�

l
log(⇣/K)

log(1��k+1)

m

many configurations from ⇧ for k 2 [0,K � 1]

3: b 

l
26

� log

⇣
2n
⇣

⌘m

4: Reset T  1
5: N  

SK�1

k=0
Nk

6: for k = K � 1 downto 0 do
7: N k  PRECHECK (Nk, ⇣/K)

8: for configurations i 2 N k in parallela do
9: Pi  CAPSANDRUNS (i, ", �, ⇣) thread

10: Start running Pi

11: Pause Pi when b runs of RUNTIMEEST
finished

12: end for
13: end for
14: N  PRECHECK (N , ⇣/K)

15: Continue runing Pi for i 2 N

16: // CAPSANDRUNS eliminates the threads
17: Wait until all threads finish, abort if |N | = 1

18: return i
⇤
= argmini2N Ȳ (i) and ⌧i⇤

Algorithm 2 CAPSANDRUNS thread
1: Inputs: Configuration i, precision ", quantile

parameter �, failure probability parameter ⇣
2: // Phase I:
3: Run ⌧i  QUANTILEEST (i, �)

4: // Phase II:
5: if QUANTILEEST (i, �) aborted then
6: Remove i from N

7: else
8: Ȳ (i) RUNTIMEEST(i, ⌧i, ", �, ⇣)
9: if RUNTIMEEST rejected i then

10: Remove i from N

11: end if
12: end if

Algorithm 3 QUANTILEEST

1: Inputs: i, �
2: Initialize: m 

⌃
(1�

3

4
�)b
⌥

3: Run configuration i on b instances, in parallel,
until m of these complete. Abort and return
abort if total work � 1.5Tb.

4: ⌧  runtime of mth completed instance
5: return ⌧

aWhen running CAPSANDRUNS threads in parallel, we
allocate the same amount of time for every running thread,
regardless of the number of parallel tasks they themselves
may be performing.

Algorithm 4 PRECHECK

1: Inputs: Configurations M, error parameter ⇣/K
2: M

0
 {} . empty set

3: b
0
 

l
32.1 log

⇣
2K
⇣

⌘m

4: if T =1 then
5: return M

6: end if
7: for i 2M do
8: if T last set when evaluating i then
9: append i to M

0
. Add automatically

10: Continue
11: end if
12: // Phase I:
13: Run i on b

0 instances in parallel until d0.8b0e
complete. Abort if total work � 1.9Tb

0.
14: if not aborted then
15: ⌧

0
 runtime of d0.8b0eth completed instance

16: // Phase II:
17: for l = 1, l  b

0 do
18: Yl  runtime of configuration i on

instance j ⇠ �, with timeout ⌧ 0

19: if
Pl

m=1
Ym > 2.99Tb

0 then
20: // Stop measuring if total work too large
21: Break
22: end if
23: end for
24: Sample mean Ȳ  

1

|Y |
P

y2Y y

25: Sample variance �̄
2
 

1

|Y |
P

y2Y (y � Ȳ )
2

26: Confidence C  �̄

q
2 log(

3K
⇣ )

l +
3⌧ 0

log(
3K
⇣ )

l

27: if Ȳ � C  T then
28: append i to M

0

29: end if
30: end if
31: end for
32: return M

0

Algorithm 5 RUNTIMEEST

1: Inputs: i, ⌧i, ", �, ⇣
2: Initialize: j  0

3: while True do
4: Sample j

th instance J from �

5: Yi,j  runtime of configuration i on instance J ,
with timeout ⌧i

6: Sample mean Ȳ (i) 
1

j

Pj
j0=1

Yi,j0

7: Sample variance �̄
2

i  
1

j

Pj
j0=1

(Yi,j0 � Ȳ (i))
2

8: // Calculate confidence:

9: Ci  �̄i

r
2 log(

3nj(j+1)
⇣ )

j +
3⌧i log(

3nj(j+1)
⇣ )

j

10: if Ȳ (i)� Ci > T then
11: return reject i
12: end if
13: if j=b then
14: T  min{T, 2Ȳ (i)}.
15: end if
16: T  min{T, Ȳ (i) + Ci} . upper confidence
17: if Ci 

"
3
(2Ȳ (i)� Ci) then

18: return accept i with runtime estimate Ȳ (i).
19: end if
20: j  j + 1

21: end while
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Discussion. (i) To illustrate the advantages captured by the theorem, consider a situation where
configuration runtimes are distributed exponentially, with their mean distributed uniformly over an
interval [A,A + B]. When the number of near-optimal configurations is small (i.e., B/A is large
enough), the bound on the fraction of configurations surviving PRECHECK, F (38OPT

�
�/2), roughly

scales with �, resulting in a runtime OPT
�
�/2/("

2
�), providing a �-factor speedup over typical bounds

in other work (which scale with OPT
�
�/2/("

2
��)). (Details are given in Appendix C.)

(ii) The first term in the bound corresponds to the work done in the final racing part of ICAR. The
other terms correspond to the work done for each batch Nk (except that the cost of the last precheck
is included in the k = 0 term).

(iii) Kleinberg et al. [24] showed that to find an (", �)-optimal configuration out of a pool of size n,
the worst-case minimum total runtime is ⌦̃(nOPT

"2� ).6 Since we need to test ⌦(1/�) configurations, in

the worst case the total runtime needed to find an (", �, �)-optimal configuration is about
OPT

�
�/2

"2�� . The
first term in our bound matches this, except that it is multiplied by (an upper bound on) the fraction
of configurations surviving PRECHECK, F (38OPT

�
�/2). Under typical parameter settings, this is the

main term of the bound—the only one scaling with 1/("
2
��)—and the performance improvement of

ICAR over CAR comes from this additional factor of F (38OPT
�
�/2). Note that this term, and all the

others, scale with a bound on the optimal runtime for the set of configurations they correspond to
(e.g., for batch Nk they scale with OPT

�k

�/2).

(iv) F (38OPT
�k+1

�/2 ) is an upper bound on the number of configurations surviving PRECHECK from
Nk. Due to the a worst-case nature of our analysis, the bound is conservative, and in practice the
number of surviving configurations is much smaller. In essence, this term measures how many
configurations are competitive with a very good (OPT

�k+1

�/2 -optimal) configuration. In other words, it
measures the “needle-in-a-haystack” property of the configuration task.

(v) The first term can be replaced with the problem-dependent bound of Weisz et al. [36, Equation 1]
for n = F (38OPT

�
�/2)

1

� configurations. This bound depends on the characteristics of the runtime
distributions of the configurations, and show that the algorithm can run much faster if the problem is
easy, e.g., adapting to the relative variance of the runtime distributions. However, for simplicity, we
only present the worst-case form here.

(vi) The rest of the terms represent the cost of iteratively selecting only the best configurations to
evaluate. None of these terms depends on 1/"

2. Note 1/�k is roughly the number of configurations
in batch Nk, and each configuration is run essentially as long as the best configuration in that batch
(OPT

�k

�/2). Each of these configurations is run on constantly many instances in PRECHECK, and
the surviving fraction of F (38OPT

�k+1

�/2 ) configurations is also run on 1/� instances to measure an
accurate cap and set the bound T . These terms scale with OPT

�k

�/2/�k = 2
�k

OPT
�k

�/2/�. Thus, the
bound is only meaningful when 2

�k
OPT

�k

�/2 is not too large. While in principle they can be infinite,
in realistic scenarios this is not the case. Nevertheless, this requires the practitioner to choose �K�1

such that it guarantees a small-enough optimal runtime OPT
�K�1

�/2 , which is essentially the same
task as choosing a proper �. The terms also scale with 1/�, but the effect of this is mitigated by the
success of PRECHECK: for k 6= K � 1, each term is multiplied by the upper bound F (38OPT

�k

�/2)

on the fraction of configurations surviving PRECHECK.

(vii) Our analysis shows that CAR can be sped up significantly without sacrificing any of its guarantees
from Weisz et al. [36], by measuring the runtime caps on fewer samples (i.e., replacing the original
value of b from Weisz et al. [36] with the one in Line 3 of Algorithm 1). We call this improved
algorithm CAR ++. This effect is also partly responsible for the improved performance of ICAR.

Insights into the algorithm and proof sketch We start with a brief description of the CAR
algorithm, which runs parallel threads of Algorithm 2 for all configurations it considers. As described
before, one thread, working on configuration i, has two phases: In the first phase, implemented
in QUANTILEEST (Algorithm 3), a runtime cap ⌧i is determined such that i is guaranteed, with

6Essentially this holds since we need ⌦̃(
1

"2�
) sample runs to estimate the �-capped runtime of a configuration

with accuracy ", as the maximum runtime for configuration i on some instance can be as large as R�(i)/�.
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high probability, to solve a random instance with probability between 1 � � and 1 � �/2 (i.e.
t�(i)  ⌧i < t�/2(i)).7 This is achieved by solving sufficiently many instances in parallel, and ⌧i

is selected to be the time when a (1� 3�/4)-fraction of the instances are solved. If measuring this
cap takes too long, then QUANTILEEST stops measuring and eliminates configuration i. Unless this
happens, in the second phase, the method RUNTIMEEST (Algorithm 3) is used to estimate the mean
⌧i-capped runtime R⌧i(i) of i, by solving successively selected random instances and computing
the average runtime Ȳ (i). Then the empirical Bernstein inequality [4] is used to guarantee that
R⌧i(i) 2 [Ȳ (i)�Ci, Ȳ (i)+Ci] for Ci calculated in Line 9 of Algorithm 5. This confidence interval
is used continuously in multiple ways: (i) to reduce a global upper bound T on the best possible
runtime of all the configurations (Line 16); (ii) to eliminate a configuration if it shows that R⌧i(i) > T

(Line 10); and (iii) to check if R⌧i(i) is estimated accurately enough (Line 17). The procedure (which
is an instance of a so-called Bernstein race [31]) continues until each configuration is either measured
accurately or eliminated. The continuous elimination (also in QUANTILEEST) and parallel execution
guarantees that when the procedure stops, every configuration is run for at most Õ(OPT/("

2
�))

time, and eventually an (", �)-optimal configuration is found, where OPT is the minimum mean
�/2-quantile capped runtime of the configurations.

As explained before, ICAR (Algorithm 1) starts to examine new configurations in batches. For
any batch Nk, first each configuration is quickly tested to see if it can be excluded from the set of
potentially optimal configurations. This is done by the PRECHECK function, given in Algorithm 4.
PRECHECK is very similar to CAR, but works with constant accuracy and quantile parameters
instead of " and �, ensuring that it runs quickly, in time independent of these parameters. Also,
the conditions to reject configurations are slightly different. For a configuration i, PRECHECK first
estimates a cap ⌧

0 that guarantees solving random instances with constant probability pi 2 [0.1, 0.35];
then the mean ⌧

0-capped runtime is estimated roughly up to a constant multiplicative error. Since
�/2  0.1 (the lower bound on pi), PRECHECK can compute multiplicative lower bounds on the
runtime R�/2(i). These are then used to set the rejection conditions such that at least one of the
best configurations from this batch i with R�/2(i)  T is not rejected. Combining with the fact
that

SK�1

j=k Nj contains a top-�k configuration, such a configuration survives PRECHECK and the
corresponding CAPSANDRUNS-thread in ICAR (Algorithm 1) ensures that T is set to at most
2OPT

�k

�/2 in Line 11 of Algorithm 1, that is, T is continuously refined as new batches are evaluated.
The number of configurations surviving PRECHECK can be bounded by looking at mean runtimes
capped at the 0.35-quantile (upper bound on pi). Together with the setting of T , this implies that
at most a Õ(F (38OPT

�k+1

�/2 ) fraction of the |Nk| = Õ(1/�k) configurations survive PRECHECK.
Considering that the number of runs carried out for each configuration is constant in PRECHECK,
Õ(1/�) in the loop of Algorithm 1, and Õ(1/("

2
�)) in the last full CAR procedure, since the average

runtime per configuration for Nk is OPT
�k

�/2 (by the analysis of CAR), the runtime bound of the
theorem follows. Correctness (i.e., the fact that the procedure finds an (", �, �)-optimal configuration)
follows from that of CAR and because PRECHECK retains good configurations, as just shown.

4 Experiments
The basic setup and main results of our experimental analysis of ICAR are given below, while details
are presented in Appendix D, along with a synthetic experiment examining ICAR’s speedup as good
configurations become increasingly rare. We compared against the best available configurators that
come with theoretical guarantees. We used the improved version of CAR (CAR++), derived in
this paper, which uses a smaller b-value than the original version, thanks to our improved analysis
(see Section 3 and Appendix A for details). Including CAR++ in the experiments allowed us to
separately examine the effects of two improvements we introduced: (i) the smaller number of samples
b needed in CAR, and (ii) the main conceptual innovation of this paper, the impatient discarding of
configurations using PRECHECK. We attempted to compare against SPC [25] as well. However, in
the experiments presented in Table 1, although SPC identified good configurations, it usually was
not able to provide the required guarantees on " and � even after running for twice as long as the
slowest alternative considered (CAR): SPC did not provide guarantees for 7 out of the 9 scenarios
while also being the slowest in the other two cases (1.56 and 1.91 times slower than CAR). Therefore,
we decided not to include SPC in our further comparisons.

7Almost all guarantees provided in this paper are based on random sampling and hence hold with high
probability. For brevity, when it is clear from the context, we often omit the ‘high-probability’ qualifier.

7



Total CPU Time (days) Number of Conf. Before/After PRECHECK R� of returned conf. (secs)

� = 0.05 � = 0.02 � = 0.01 � = 0.05 � = 0.02 � = 0.01 � = 0.05 � = 0.02 � = 0.01

Minisat
CNFuzzDD

ICAR 101 (13) 243 (15) 467 (25) 134 / 74 351 / 197 724 / 395 5.0 (0.1) 4.9 (0.1) 4.9 (0.1)
CAR++ 92 (5) 224 (16) 452 (18) 97 245 492 5.2 (0.1) 4.9 (0.1) 4.9 (0.1)

CAR 158 (18) 368 (7) 771 (22) 97 245 492 5.2 (0.1) 4.9 (0.1) 4.9 (0.1)

CPLEX
Regions200

ICAR 164 (91) 275 (101) 420 (103) 134 / 10 351 / 15 724 / 26 34.8 (4.3) 29.8 (2.2) 28.5 (1.8)
CAR++ 229 (20) 567 (28) 1098 (88) 97 245 492 35.3 (4.3) 32.0 (2.2) 29.8 (1.8)

CAR 524 (53) 1295 (64) 2549 (199) 97 245 492 35.3 (4.5) 31.9 (1.6) 29.8 (2.2)

CPLEX
RCW

ICAR 1284 (391) 2030 (302) 4072 (239) 134 / 18 351 / 44 724 / 97 156.1 (11.9) 146.5 (4.1) 143.3 (4.9)
CAR++ 1728 (375) 3644 (185) 7526 (131) 97 245 492 162.1 (11.9) 149.1 (4.1) 143.3 (4.9)

CAR 3306 (502) 7591 (192) 15658 (258) 97 245 492 160.1 (13.3) 149.1 (4.7) 143.3 (4.9)

Table 1: Total CPU time in days to find a (0.05, 0.1, �)-optimal configuration, the number of configurations before and after PRECHECK,
and the quality of the returned configurations, as measured by �-capped mean runtime with � = 0.1. For CAR and CAR++, the number of
configurations sampled is reported. Error terms (in parentheses) are standard deviations over five runs.

Datasets. We looked at two datasets from MIP and one from SAT. We considered true runtime
data from the minisat SAT solver on instances generated by CNFuzzDD (http://fmv.jku.at/
cnfuzzdd), which was examined in past work [35, 36, 25]. For the MIP scenarios, we looked at the
CPLEX integer program solver on combinatorial auction instances (Regions200 [27]) and problems
from wildlife conservation (RCW [1]). To generate sufficient MIP runtime data, following Hutter
et al. [23], we used an Empirical Performance Model (EPM)—a random forest model trained on
existing runtime data—to predict the runtime of new configurations on new instances. EPMs can
do surprisingly well at predicting individual runtimes, particularly on the MIP datasets we consider.
More importantly for our purposes, Eggensperger et al. [13] showed that such EPMs are effective
surrogates for algorithm configuration, capturing key properties of runtime distributions such as the
relative quality of configurations. We note that similar surrogates have also been used to guide search
procedures [20, 9, 34, 38], to build algorithm portfolios [32, 37], to impute missing data [10], and to
optimize hyperparameters from limited observations [33].

Main Results. Table 1 shows the total CPU time needed to find a (0.05, 0.1, �)-optimal configura-
tion on each dataset with the same total failure probability (0.05) and with different values of �. The
parameters were not specifically chosen; results for varying " and � are reported in Appendix D. ICAR
consistently outperformed CAR in all cases; ICAR outperformed CAR++ on the MIP datasets and
was competitive on the SAT one. The performance improvement was largest when the PRECHECK
mechanism managed to discard the most configurations; the MIP datasets have relatively more weak
configurations, enabling PRECHECK to filter out more configurations quickly (see Fig. 2 in the
Appendix for the distribution of configuration means). When � is relatively small, ICAR was more
likely to sample a really good configuration, making it easier to discard weak ones. In this case its
runtime was as little as half that of CAR++, a significant improvement. Despite taking less total CPU
time, ICAR actually sampled more configurations than CAR did. To understand this phenomenon
better, Fig. 1 shows the time spent running each configuration. For all datasets the plots nearly overlap
for the very best few configurations, indicating that ICAR treated these good configurations in much
the same way as CAR or CAR++. However, the effect of the PRECHECK mechanism is clear, as
ICAR ran many bad configurations for near-zero time, discarding them quickly. In cases where a
bad configuration made it past PRECHECK (largest spikes in the blue curve), ICAR ran it for an
amount of time similar to CAR++. Finally, the empirical mean �-capped runtime (R�) of the returned
configuration is reported in Table 1. All configurators returned solutions with similar quality, but
thanks to its ability to examine more configurations, ICAR often did slightly better.

5 Conclusions

This paper presented a novel algorithm configuration method, ICAR, that selects configurations
from an infinite pool with optimal theoretical guarantees up to logarithmic factors under mild
conditions. While earlier theoretically grounded methods thoroughly test all configurations, ICAR—
like successful heuristic approaches—quickly discards less promising ones. As a result, ICAR
achieves significant speedups, particularly in needle-in-a-haystack scenarios. It thus constitutes an
important step towards closing the gap between theoretical and heuristic procedures.

A key limitation is that our work focuses simply on evaluating randomly sampled configurations.
We do note that state-of-the-art heuristic methods also evaluate many random configurations to
avoid getting stuck in local optima, so analyzing such procedures is of obvious practical importance.
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Figure 1: CPU time spent on each configuration while searching for a (0.05, 0.1, 0.05)-optimal one (note the log scale on the y-axis).
CAR and CAR++ allocated a significant amount of time to evaluating bad configurations, while ICAR discarded many of these with near
minimal work via its PRECHECK routine. The large spikes in the ICAR curve are those configurations that fail to be rejected by the first call
to PRECHECK. Smaller spikes are configurations that were also rejected by PRECHECK, but the decision took more time (e.g., T was larger in
PRECHECK or the configuration was rejected in the second phase of PRECHECK).

Furthermore, ICAR can be understood as a way of weighing different candidate configurations against
each other, which could be proposed by model- or gradient-based methods as well as by random
sampling (see, e.g., an argument to this effect in [24, Theorem 7.1]).

Broader Impact

We expect that our theorems will guide the design of future algorithm configuration procedures.
We note that speeding up computationally expensive algorithms saves time, money, and electricity,
arguably reducing carbon emissions and yielding social benefit. The algorithms we study can be
be applied to a limitless range of problems and so could yield both positive and negative impacts;
however, we do not foresee our work particularly amplifying such impacts beyond the computational
speedups already discussed.
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