
We are grateful for all comments and suggestions. Below we address questions raised by individual reviewers.1

Suggestions on adding or revising qualitative results and figures. (R1, R2, R4) We are thankful for these sugges-2

tions and will add qualitative results on non-human shapes in the next version. This includes adding qualitative results3

for non-human shapes and cumulative error curves for Table 1 and adjusting color mapping in Figures 2 and 3.4

Comparison to LES [9], DeepGeoFunc [10], 3DCODED [11] on Partial-to-full task. (R1) DeepGeoFunc requires5

a triangular mesh as input, while 3DCODED and LES require a point cloud sampled from a full triangular mesh. In6

other words, none of these methods ([9], [10], [11]) applies to partial depth scan input. Therefore, we only compared7

our approach with these methods for the full-to-full task in the appendix (Table 2).8

Comparison to the SHOT descriptor. (R1) We used the code from the original SHOT paper to generate SHOT9

descriptors for the template mesh vertices and used them to train our descriptor module for three days. The resulting10

average correspondence errors on SURREAL/FAUST/SHREC19 are 5.97cm/6.66cm/11.04cm, respectively. Our results11

(1.71cm/1.90cm/4.81cm) are significantly better.12

Investigating unsupervised setting. (R1) The major contribution of our paper is the transformation propagation13

module, which learns from the error distribution of point-wise transformations to detect and rectify incorrect correspon-14

dences that violate local rigidity. This strategy differentiates our approach from other methods based on hand-crafted15

heuristics. Similar to other approaches, we can use the distance-preserving loss to train the transformation predictions.16

MPI FAUST Results. (R1) Most results that report on FAUST leaderboard use additional training data that signifi-17

cantly impacted the results. In contrast, we compared all the methods under the same setup. We also plan to release the18

code and data so that other methods can be compared under the same training/testing setup.19

Generalization from minimal clothing to clothing. (R2) Our approach is motivated by the piece-wise rigidity20

assumption. Enforcing such an assumption is learned, meaning it can be adaptive to rigidity at different levels. For21

clothing, it means more rigidity at the coarse level and less rigidity at the fine level.22

End-to-end Training. (R2) The descriptor module is pre-trained in order to generate initial transformations. Then23

the whole pipeline (including the descriptor module) is trained end-to-end.24

Robustness of feature descriptors. (R3) We will add a visualization of the distribution of feature descriptors in the25

revision. Note that the 10-cm recall of the correspondences derived from feature descriptors are above 95% for all26

datasets. They provide a good foundation for the transformation synchronization module to rectify the error.27

Motivation of iteratively reweighted least squares (IRLS). (R3) IRLS is a popular method for solving regression28

problems that involve robust objective functions, where the final solution is insensitive to a fraction of noisy measure-29

ments. Suppose the noise ratio is below some constant (described in the main theorem). In that case, IRLS can be30

proven to suppress such errors and converge to the underlying ground-truth. The paper’s contribution is a learning31

approach that leverages side information to reduce the input noise ratio (e.g., by reweighting) so that such a condition32

holds.33

Ablation study on number of transformation propagation layers. (R4) The average correspondence error before34

transformation propagation and after the first/second/third layer is 2.19cm/1.80cm/1.73cm/1.71cm for SURREAL,35

2.59cm/1.97cm/1.89cm/1.90cm for FAUST, and 5.84cm/5.02cm/4.86cm/4.81cm for SHREC19. Most of the improve-36

ment comes from the first layer. After the third layer, the effect of transformation propagation becomes marginal.37

Learn canonical descriptors freely. (R4) In our approach, canonical descriptors only provide initialization. We38

first train our descriptor module to match Laplacian embedding descriptors. Then in the next phase of Training, the39

descriptor module is fine-tuned with the transformation propagation module. Laplacian embedding descriptors worked40

well. Since they are used only for the initialization, there was not much need to learn alternatives.41

What if no down-sampling/up-sampling. (R4) Down-sampling and up-sampling layers enable efficient computa-42

tion. Empirically, these layers can provide 10x to 20x speedup without noticeable loss of performance.43

Transformation becomes invalid after interpolation. (R4) We allow the transformations after propagation to be44

outside SE(3). This approach adds flexibility to encode local deformation. The same strategy was used in Sumner et al.45

07. We will clarify this in the revision.46

Questions about equations. (R2, R3) The point distance version of Eq. 3 is much more complicated compared47

to merely enforcing neighboring transformations to be equal. The weights are generated by a network that takes48

transformations of neighboring points as input. In Eq. 11, vci should refer to a point on the template mesh. In Eq. 12, Φ49

should be removed.50


