
7 Appendix

7.1 Detailed Background

Let D = (V, E) be a directed acyclic graph on the set of vertices V = {V1, V2, . . . , Vn} with directed
edge set E . Each directed edge ek ∈ E is a tuple ek = (Vi, Vj). Let P be a joint distribution over a set
of variables labeled by V . D is called a valid Bayesian network for the distribution P, if P factorizes
with respect to the graph D as P(V1, V2, . . . Vn) =

∏
i P(Vi|pai), where pai are the set of parents of

vertex Vi in graph D. In a Bayesian network D that is valid for P, if three vertices X,Y, Z satisfy a
graphical criterion called the d-separation on D, then X ⊥⊥ Y |Z in P. The faithfulness assumption
allows us to infer dependence relations based on d-separation: P is said to be faithful to graph D
when the following holds: Any three variables X,Y, Z that are not d-separated are conditionally
dependent, i.e., X 6⊥⊥ Y |Z in P.

Note that the edges in a Bayesian network do not carry a physical meaning: They simply indicate how
a joint distribution can be factorized. Causal Bayesian networks (or causal graphs) [38] on the other
hand capture the causal relations between variables: They extend the notion of Bayesian networks to
different experimental, the so called interventional settings. An intervention is an experiment that
changes the workings of the underlying system and sets the value of a variable, shown as do(X = x).
Causal Bayesian networks allow us to calculate the joint distributions under these experimantal
conditions, called the interventional distributions2.

In this paper, we work with the causal graphs given in Figure 1. From the d-separation principle, we
see that the latent graph satisfies X ⊥⊥ Y |Z , whereas under the faithfulness condition, X 6⊥⊥ Y |Z
in the triangle graph or the direct graph. Checking the existence of such a latent variable can help
us recover the true causal graph as we discover in the next sections. We work with discrete ordinal
or categorical variables. Suppose the support sizes of the observed variables X and Y are m and n,
respectively. The joint distribution can be represented with an m × n non-negative matrix whose
entries sum to 1. We assume that we have access to this joint distribution.

We use [n] to represent the set {1, 2, . . . , n} for any n ∈ N. Capital letters represent random
variables, lowercase letters represent realizations3. Letters X,Y are reserved for the observed
variables, whereas Z is used for the latent variable. To represent the probability mass function
over three variables X,Y, Z, we use p(x, y, z) := P(X = x, Y = y, Z = z) and similarly for any
conditional p(z|x, y) := P(Z = z|X = x, Y = y). For a function q(x, y, z) that is understood to be
a probability mass function, we use shorthand notation for marginals and conditionals such as q(x, y)
and q(x|z) to represent the functions obtained from q(x, y, z) via standard operations on probability
distributions. Lowercase boldface letters are used for vectors and uppercase boldface letters are used
for matrices. We also use p(Z|x, y) to represent the conditional distribution P(Z|X = x, Y = y)
(Similarly for p(Z|x), p(Z|y)). card(X) stands for the support size of X . Rényi entropy of order
α of a random variable X is defined as Hα(X) = 1

1−α log
∑
i p
α
i . Rényi entropy of order 0 gives

the support size of a random variable. It can be shown that in the limit as α → 1, Rényi entropy
becomes Shannon entropy, defined as H1(X) = −

∑
x p(x) log2(p(x)) in bits. In a graph D with

nodes labeled as {Xi}i, pai stands for the set of parents of Xi in D. Dir(α) stands for Dirichlet
distribution with parameter α.

7.2 Detailed Related Work

Latent Variable Discovery: Latent variables have been used to model and explain dependence
between observed variables in different communities under different names. Probabilistic latent
semantic analysis (pLSA) [19] aims at constructing a variable that explains dependence. However the
objective is not to minimize entropy of the constructed variable. Latent Dirichlet allocation (LDA) is
another framework which is widely used in topic modeling [4, 2]. Although LDA encourages sparsity
of topics, this does not correspond to minimizing the support size of the constructed latent variable.
Factorizing the joint distribution matrix between two observed variables via NMF with generalized
KL divergence loss recovers solutions to the pLSA problem [16]. Similar to pLSA, NMF does not
have an incentive to discover low-entropy latents.

2For a formal introduction to Pearl’s framework please see [47, 38].
3In some proofs, xi is used to represent the probability that the variable X takes the value i for simplicity.
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Perhaps the most relevant to ours in the machine learning literature are the two papers in the Bayesian
setting [5, 45]. They use low-entropy priors on the latent variable’s distribution while performing
inference. However their approach is different and their methods cannot be used to discover the
tradeoff between conditional mutual information and the entropy of the latent variable. In [45], the
authors use low-entropy prior as a proxy for discovering latent factors with sparse support.

Finding the latent variable with smallest entropy that renders the two observed variables conditonally
independent is closely related to some of the problems in information theory: Wyner’s common
information [53] is defined as the minimum rate of the source from which the observed variables
X,Y can be reconstructed using additional random bits. Wyner allows multiple channel uses and is
interested in the approximate reconstruction of the observed joint distribution. This can be seen as
approximate reconstruction of the joint distribution when we raise the dimension of X and Y via
cartesian product with itself. [31] considers finding the source with the minimum rate for the exact
recovery of the observed joint distribution, but still in the asymptotic regime of multiple channel uses.
They also introduce the notion of common entropy and obtain an analytical expression for binary
variables, which we utilize in this work.

Learning Causal Graphs with Latents: Learning causal graphs with latent variables has been
extensively studied in the literature. In graphs with many observed variables, some of the edges can
be recovered from the observational data (for example through algorithms that employ conditional
independence (CI) tests such as IC* [38] and FCI [47]). However, latent variables make the CI tests
less informative, by inducing spurious correlations between the observed variables. For example for
the graphs in Figure 1 CI tests on the observed variables is not informative of the causal structure.

Identifiability of causal structures without latent variables from data has been studied extensively in
the literature under various assumptions [20, 41, 37, 39, 40, 3, 15, 26]. Our approach can be seen
as an extension of [26]: There, the authors assume that the exogenous variables have small Rényi
entropy and suggest an algorithm to distinguish the causal graph X → Y from X ← Y . However,
their approach cannot be used in the presence of latent variables. In the presence of latents [6]
considers a setup similar to [26], where the hidden variable has small support size, however also
assumes the mapping to the hidden variable is deterministic. In [23], authors identify a condition
on p(Y |X) which implies that there does not exist any latent variable Z with small support which
can make X,Y conditionally independent. For discrete variables, this assumption implies that the
conditionals p(Y |x) lie on the boundary of the probability simplex, which corresponds to the joint
probability matrix to be sparse in a structured way. In the continuous variable setting, [43] propose
using kernel methods to detect latent confounders. [52] and [8] analyzes the discoverability of causal
structures with latents using the entropic vector of the variables. Finally, related work also includes
[21] and [33], where the authors extend the additive noise model based approach in [20] to the case
with a latent confounder. Algebraic geometry can be used to distinguish causal graphs as the set of
distributions that can be encoded by a graph correspond to different algebraic varieties. However,
these methods in general are not scalable beyond a few variables and a few number of states [32].
Authors in [22] propose using Kolmogorov complexity of the causal model and declare the graph
with smaller complexity to be the true graph. [25] uses description length as a proxy to Kolmogorov
complexity to identify the latent confounders. In [48], the authors use information inequalities to infer
which subsets of a set of observed variables must have latent confounders, along with an associated
lower bound on the entropy of these confounders. In our setting of two observed variables, this gives
the trivial bound of H(Z) ≥ I(X;Y ) for any latent confounder Z.

7.3 Proof of Theorem 1: Stationarity

In this section, we show the first part of Theorem 1, i.e., that the stationarity points of the algorithm
are also stationary points of the given loss function. We write the objective function more explicitly
in terms of the optimization variables q(z|x, y):

L(q(·|·, ·)) =
∑
x,y,z

q(x, y, z) log

(
q(x, y|z)

q(x|z)q(y|z)

)
− β

∑
z

q(z) log(q(z)) (3)

=
∑
x,y,z

p(x, y)q(z|x, y) log

(
q(z|x, y)

q(z|x)q(z|y)

)
+ (1− β)

∑
z

q(z) log(q(z)) + I(X;Y ) (4)

by Bayes rule and assuming that q(z|x, y) and p(x, y) are strictly positive.
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Our objective then is
minimize
q(z|x,y)

L(q(z|x, y))

subject to
∑
z

q(z|x, y) = 1, ∀x, y,

q(z|x, y) ≥ 0, ∀z, x, y.

(5)

We can write the Lagrangian, which we represent with L̄, as

L̄ =
∑
x,y,z

p(x, y)q(z|x, y) log

(
q(z|x, y)

q(z|x)q(z|y)

)
+ I(X;Y ) + (1− β)

∑
z

q(z) log(q(z))

+
∑
x,y

δx,y

(∑
z

q(z|x, y)− 1

)
(6)

In order to find the stationary points of the loss, we take its first derivative and set it to zero. To
compute the partial derivatives, notice that q(z|x), q(z|y), q(z) are linear functions of q(z|x, y) (use
Bayes rule and marginalization). We can then easily write the partial derivatives of these quantities
with respect to q(z|x, y) as follows:

∂q(z|x)

∂q(z|x, y)
=

∂
∑
y′
q(z|x, y′)p(y′|x)

∂q(z|x, y)
= p(y|x),

∂q(z|y)

∂q(z|x, y)
=

∂
∑
x′
q(z|x′, y)p(x′|y)

∂q(z|x, y)
= p(x|y)

∂q(z)

∂q(z|x, y)
=

∂
∑
x′,y′

q(z|x′, y′)p(x′, y′)

∂q(z|x, y)
= p(x, y).

Using these expressions we have the following.

∂L̄
∂q(z|x, y)

= p(x, y) [1 + log(q(z|x, y)) − (1 + log(q(z|x)))

− (1 + log(q(z|y))) +(1− β)(1 + log(q(z))) + δx,y]

= p(x, y)

[
−β + δx,y + log

(
q(z|x, y)q(z)1−β

q(z|x)q(z|y)

)]
Assuming p(x, y) > 0, any stationary point then satisfies

q(z|x, y) =

(
1

2

)δx,y−β q(z|x)q(z|y)

q(z)1−β (7)

Since q(z|x, y) is a probability distribution, we have∑
z

q(z|x, y) =

(
1

2

)δx,y−β∑
z

q(z|x)q(z|y)

q(z)1−β = 1 (8)

Defining F (x, y) :=
(

1
2

)δx,y−β , we have

F (x, y) =
1∑

z

q(z|x)q(z|y)
q(z)1−β

. (9)

From the algorithm description, any stationary point of Algorithm 1 should satisfy

q(z|x, y) = F (x, y)
q(z|x)q(z|y)

q(z)1−β , (10)

for the same F (x, y) defined above. Therefore a point is a stationary point of the loss function if and
only if it is a stationary point of LatentSearch (Algorithm 1).
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7.4 Proof of Theorem 1: Convergence

In this section, we show the latter statement in Theorem 1, i.e., LatentSearch converges to a local
minimum or a saddle point. We can rewrite the loss as

L(q(·|·, ·)) =
∑
x,y,z

q(x, y, z) log

(
q(x, y|z)

q(x|z)q(y|z)

)
− β

∑
z

q(z) log(q(z)) (11)

=
∑
x,y,z

p(x, y)q(z|x, y) log

(
q(z|x, y)

q(z|x)q(z|y)

)
+ I(X;Y ) + (1− β)

∑
z

q(z) log(q(z)), (12)

If we substitute β = 1, we obtain

L(q(·|·, ·)) =
∑
x,y,z

p(x, y)q(z|x, y) log

(
q(z|x, y)

q(z|x)q(z|y)

)
+ I(X;Y ). (13)

Our optimization problem can be written as

minimize
q(z|x,y)

L(q(z|x, y))

subject to
∑
z

q(z|x, y) = 1,∀x, y.
(14)

Notice that L(q(z|x, y)) is not convex or concave in q(z|x, y). However we can rewrite the mini-
mization as follows:

minimize
q(z|x,y)

minimize
r(z|x),s(z|y)

∑
x,y,z

p(x, y)q(z|x, y)

log

(
q(z|x, y)

r(z|x)s(z|y)

)
+ I(X;Y )

subject to
∑
z

q(z|x, y) = 1,∀x, y∑
z

r(z|x) = 1,∀x,∑
z

s(z|y) = 1,∀y.

To see that (15) is equivalent to (14), notice that the optimum for the inner minimization is r∗(z|x) =
q(z|x) and s∗(z|x) = q(z|y). This is due to the fact that (15) is convex in r(z|x) and s(z|y) and
concave in t(z), which can be seen through the partial derivatives of the Lagrangian:

min
q(z|x,y)

min
r(z|x),s(z|y)

∑
x,y,z

p(x, y)q(z|x, y) + log

(
q(z|x, y)

r(z|x)s(z|y)

)
+ I(X;Y ) (15)

+
∑
x,y

δx,y

(∑
z

q(z|x, y)− 1

)
+
∑
x

ηx

(∑
z

r(z|x)− 1

)
(16)

+
∑
x

νy

(∑
z

s(z|y)− 1

)
(17)

Let L̄ be defined as

L̄ =
∑
x,y

δx,y

(∑
z

q(z|x, y)− 1

)
+
∑
x

ηx

(∑
z

r(z|x)− 1

)
+
∑
x

νy

(∑
z

s(z|y)− 1

)
(18)
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For fixed q(z|x, y), s(z|y), we have

∂L̄
∂r(z|x)

= −p(x)q(z|x)

r(z|x)
+ ηx

∂2L̄
∂r(z|x)

2 =
p(x)q(z|x)

r(z|x)2
.

Therefore L̄ is convex in r(z|x) and the optimum can be obtained by setting the first derivative to
zero. Then we have

r∗(z|x) =
p(x)q(z|x)

ηx
,∀x, z. (19)

Since we have
∑
z
r∗(z|x) = p(x)

ηx

∑
z
q(z|x) = 1, we obtain r∗(z|x) = q(z|x). Similarly, we can

show that s∗(z|x) = q(z|y). Notice that this inner minimization is exactly the same as the first update
of Algorithm 1.

We can also show that L is convex in the variables r, s jointly: This can be seen through the fact that
∂2

∂r(z|x)s(z|y)L = 0 and the Hessian is positive definite.

This concludes that (15) is equivalent to (5). Moreover, since the objective function is convex in
q(z|x, y) and also jointly convex in r(z|x), s(z|y), we can switch the order of the minimization terms.
Therefore, we can equivalently write

min
r(z|x),s(z|y)

min
q(z|x,y)

∑
x,y,z

p(x, y)q(z|x, y) log

(
q(z|x, y)

r(z|x)s(z|y)

)
+ I(X;Y ) + L̄ (20)

Let us analyze the inner minimization in this equivalent formulation for fixed r(z|x), s(z|x). Similarly,
we can take the partial derivative as follows:

∂L̄
∂q(z|x, y)

= p(x, y) [1 + log(q(z|x, y))− log(r(z|x))− log(s(z|x)) + δx,y]

= p(x, y)

[
1 + δx,y + log

(
q(z|x, y)

r(z|x)s(z|y)

)]
∂2L̄

∂q(z|x, y)
2 = p(x, y)

[
1

q(z|x, y)

]
.

Notice that ∂2L̄
∂q(z|x,y)2

> 0. Hence L̄ is convex in q(z|x, y). Then the optimum can be obtained by
setting the first derivative to zero. We have

p(x, y)

[
1 + δx,y + log

(
q(z|x, y)

r(z|x)s(z|y)

)]
= 0, (21)

or equivalently

q(z|x, y) =

(
1

2

)1+δx,y

r(z|x)s(z|y). (22)

Note that if we define
F (x, y) :=

∑
z

r(z|x)s(z|y),

since
∑
z
q(z|x, y) =

(
1
2

)1+δx,y∑
z
r(z|x)s(z|y) = 1, we can write

q(z|x, y) =
1

F (x, y)
r(z|x)s(z|y). (23)

This is exactly the same as the second update of LatentSearch (Algorithm 1) if r(z|x) =
q(z|x), s(z|y) = q(z|y).

Therefore, if qi(z|x, y) is the current conditional at iteration i, the next update of LatentSearch
(Algorithm 1) is equivalent to first solving the inner minimization of (15) thereby assigning r(z|x) =
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qi(z|x), s(z|y) = qi(z|y), then switching the order of the minimization operations, and solving the
inner minimization of (20), therefore assigning qi+1(z|x, y) = 1

F (x,y)qi(z|x)qi(z|y). In each of this
two-step optimization iteration, either loss function goes down, or it does not change. If it does not
change, the algorithm has converged. Otherwise, it cannot go down indefinitely since loss (2) is lower
bounded as I(X;Y |Z) ≥ 0 and H(Z) ≥ 0 and therefore has to converge. This proves convergence
of the algorithm to either a local minimum or a saddle point. The converged point cannot be a local
maximum since it is arrived at after a minimization step.

7.5 Proof of Theorem 2

We first show the result for distinguishing latent graph from the triangle graph.

Since X,Y are discrete variables, we can represent the joint distribution of X,Y in matrix form. Let
M = [p(x, y)](x,y)∈[m]×[n]. With a slight abuse of notation, let z := [z1, z2, . . . zk] be the probability
mass (row) vector of variable Z, i.e., P [Z = i] = z[i] = zi. Similarly, let xz := [xz,1, xz,2, . . . xz,k]
be the conditional probability mass vector of X conditioned on Z = z, i.e., P [X = i|Z = z] =
xz[i] = xz,i. Finally, let yz,x := [yz,x,1, yz,x,2, . . . yz,x,n] be the conditional probability mass vector
of Y conditioned on X = x and Z = z. We can write the matrix M as follows:

M =

k∑
i=1

zi


xi,1yi,1
xi,2yi,2

...
xi,myi,m

 (24)

Now suppose for the sake of contradiction that there exists such a q(x, y, z) such that
∑
z q(x, y, z) =

p(x, y) and X ⊥⊥ Y |Z . Then M admits a factorization of the form

M =

k∑
i=1

z′i


x′i,1y

′
i,1

x′i,2y
′
i,2

...
x′i,my′i,m

 , (25)

where x′i,j ,y
′
i,j , z

′
i are due to the joint q(x, y, z) and are potentially different form their counterparts

in (24). Notice that since X ⊥⊥ Y |Z , we have y′i,j = y′i,l,∀(j, l) ∈ [k] × [m]. Therefore the
matrices 

x′i,1y
′
i,1

x′i,2y
′
i,2

...
x′i,my′i,m

 , (26)

are rank 1 ∀i ∈ [k]. Therefore, M has NMF rank at most k. Since matrix rank is upper bounded by
the NMF rank, rank(M) ≤ k. Therefore, there exists a q(x, y, z) such that

∑
z
q(x, y, z) = p(x, y)

and X ⊥⊥ Y |Z only if rank(M) ≤ k. In fact, it is easy to show that this is an if and only if relation:
Any NMF of the joint distribution corresponds to a latent confounder and and latent confounder
corresponds to an NMF of the joint distribution. Next, we show that under the generative model
described in the theorem statement, this happens with probability zero.

We have the following lemma:
Lemma 1. Let {xi : i ∈ [n]} be a set of vectors sampled independently, uniformly randomly from
the simplex Sn−1 in n dimensions. Then, {xi : i ∈ [n]} are linearly independent with probability 1.

Proof. If xi are linearly dependent, then there exists a set {αi : i ∈ [n]} such that
n∑
i=1

αixi = 0. Let

j = arg max{i ∈ [n] : αi > 0}. Equivalently xj is in the range of the set of vectors {xi : i ∈ [j−1]}.
Therefore, we can write

P [{xi : i ∈ [n]} are linearly independent ]

≤
n∑
i=2

P [xi ∈ R(x1, . . . ,xi−1)] , (27)
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where R(x1, . . . ,xi−1), is the range of the vectors x1, . . . ,xi−1, i.e., the vector space spanned by
x1, . . . ,xi−1.

Notice that dim(R(x1, . . . ,xi−1)) < n−1,∀i ≤ n−1. Therefore, codimension of R(x1, . . . ,xi−1)
with respect to the simplex is non-zero ∀i ≤ n − 1. Therefore, the Lebesgue measure
of R(x1, . . . ,xi−1) ∩ Sn−1 is zero with respect to the uniform measure over Sn−1. Hence,
P [xi ∈ R(x1, . . . ,xi−1)] = 0,∀i ≤ n− 1.

The above argument does not hold for the last term in the summation in (27). However, intersection
of any n− 1 dimensional vector space with the simplex Sn−1 is an n− 2 dimensional slice of the
simplex [51]. Therefore, it has Lebesgue measure zero with respect to the uniform measure over the
simplex.

Corollary 3. Let {xi : i ∈ [n]} be a set of vectors sampled independently, uniformly randomly from
the simplex Sn−1 in n dimensions. Let {ci 6= 0 : i ∈ [n]} be arbitrary real scalars that are non-zero.
Then, {cixi : i ∈ [n]} are linearly independent with probability 1.

Proof. The proof of Lemma 1 goes through since the span of a set of vectors does not change with
scaling of the vectors.

M is rank deficient if and only if its determinant is zero, i.e., det(M) = 0. The determinant is
a polynomial in {zi : i ∈ [k]}. By induction, one can show that if a finite degree multivariate
polynomial is not identically zero, the set of roots has zero Lebesgue measure (for example, see [7]).
The uniform measure over the simplex is absolutely continuous with respect to Lebesgue measure.
Hence, the set of roots of a finite degree multivariate polynomial has measure zero with respect to the
uniform measure over the simplex.

To show that det(M) is not identically zero, it is sufficient to choose a set of z′is for which determinant
is non-zero. First, observe that by Corollary 3, each matrix

xi,1yi,1
xi,2yi,2

...
xi,myi,m

 (28)

is full rank with probability 1. Let z1 = 1 and zj ,∀j ∈ {2, 3, . . . , k}. Then det(M) 6= 0 since M is
full rank. Therefore, the determinant, which is a polynomial in {zi : i ∈ [k]} is not identically zero.
This concludes the proof that with probability 1, rank(M) = n > k.

If the distribution is generated from the direct graph, from Lemma 1, we know that the rows of
conditional probability matrix are linearly independent. Since joint probability matrix can be obtained
by scaling each row of this matrix with the probability values of X , and this operation does not
change rank, joint probability matrix obtained from the direct graph is full rank with probability 1.
Therefore non-negative rank of this matrix has to be n, concluding the proof.

7.6 Proof of Corollary 1

The statement follows from the fact that the proposed generative model induces a non-zero probability
measure on every joint distribution, which is the set of distributions that can be encoded from the
triangle graph and any distribution that can be encoded by the latent graph requires X ⊥⊥ Y |Z ,
which we show in Theorem 2 happens with probability zero.

7.7 Proof of Theorem 3

We give the proof for binary Z. The argument can be extended to when Z has any finite number of
states.

We overload the notation and use z for the probability that random variable Z is 0. We have

p(Z = 0) = z, p(Z = 1) = 1− z (29)
p(X = 0|Z = z) = xz (30)
p(Y = 0|X = x, Z = z) = yx,z (31)
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The conditional distributions from UGM can be sampled uniformly from the simplex via normalized
exponential random variables, however in the case of binary variables, this is equivalent to sampling
uniformly. Hence, we can assume xz, yx,z are uniform random variables with support [0, 1]. Based
on this generative model, we can calculate p(x) and p(y|x) as follows:

p(X = 0) = x0z + x1(1− z), (32)
p(X = 1) = (1− x0)z + (1− x1)(1− z)

p(Y = 0|X = 0) =
y0,0x0z + y0,1x1(1− z)

x0z + x1(1− z)
(33)

p(Y = 0|X = 1) =
y1,0(1− x0)z + y1,1(1− x1)(1− z)

(1− x0)z + (1− x1)(1− z)
(34)

We use the characterization of [31] for the minimum entropy Z that can make X,Y conditionally
independent. Let t = p(X = 0) and let α := p(Y = 0|X = 0), β := p(Y = 0|X = 1). We re-state
their theorem for self-containment of our paper:
Theorem 4 ([31]). Consider two binary random variables X,Y . Define t := p(X = 0), α :=
p(Y = 0|X = 0), β := p(Y = 0|X = 1). Let α′ = min{α, β}, β′ := max{α, β}. Then of all
q(x, y, z′) where q(x, y) = p(x, y) and X ⊥⊥ Y |Z minimum entropy Z ′ has entropy

LB := min{Hb(A), Hb(B)}, (35)

A = t

(
1− α′

β′

)
, B = (1− t)

(
1− 1− β′

1− α′

)
(36)

Note that in the generative model we are considering, the entries of p(x, y) are random variables,
which implies that LB is a random variable.

Consider a sequence zn. Let Zn be the binary random variable where P(Zn = 0) = zn. Notice that
H(zn) converges to zero if and only if zn converges to either 0 or 1. Since the generative model is
symmetric with respect to the conditionals p(x|z = 0) compared to p(x|z = 1) and p(y|x, z = 0)
compared to p(y|x, z = 1), without loss of generality we can consider the case where zn goes to 0.

Now suppose 0 < z0 < 0.5 and zn is a monotonically decreasing sequence. When we substitute zn
for z in the generative model, we use the symbols in Theorem 4 with subscript n to distinguish them
for different values of n.

The event that there does not exist a latent variable with small entropy that can make the observed
variables independent is equivalent to the event that the lower bound is strictly greater than the entropy
of the true latent variable:

P(Qp = ∅) = P(p(x, y) : @q(x, y, z′) (37)

s.t.
∑
z′

q(x, y, z′) = p(x, y), (38)

X ⊥⊥ Y |Z ′ , H(Z ′) ≤ H(Z)) (39)
= P(LB > H(Z)) (40)

We want to show that
lim
n→∞

P(LBn > H(Zn)) = 1. (41)

Define the following events:

εAzn := {Event that Hb(An) ≤ Hb(zn)}. (42)

εBzn := {Event that Hb(Bn) ≤ Hb(zn)}. (43)

By union bound

P(LBn ≤ H(Zn)) ≤ P(εAzn) + P(εBzn) (44)

We first investigate the term limn→∞ P(εAz ). By conditioning on the event that An ≤ 0.5 and
An > 0.5, we can reduce the comparison between Hb(a), Hb(c) to a comparision between a and c.
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Due to first applying the law of total probability and then Bayes rule, we have

P(εAzn) = P
(
εAzn |An ≤ 0.5

)
P(An ≤ 0.5) + P

(
εAzn |An > 0.5

)
P(An > 0.5)

= P (An ≤ zn|An ≤ 0.5)P(An ≤ 0.5) + P (An ≥ 1− zn|An > 0.5)P(An > 0.5)

= P (An ≤ zn)P(An ≤ 0.5|An ≤ zn) + P (An ≥ 1− zn)P(An > 0.5|An ≥ 1− zn)

= P (An ≤ zn) + P (An ≥ 1− zn)

Define the following random variable:

SAn := −zn + tn

(
1− α′n

β′n

)
, (45)

where the terms on the right hand side are as defined in Theorem 4. Then P (An ≤ zn) = P
(
SAn ≤ 0

)
and P (An ≥ 1− zn) = P

(
SAn ≥ 1

)
. We have

P
(
SAn ≤ 0

)
=

∫ 0

−∞
SAn dµ, (46)

where µ is the probability measure induced by the generative model. Note that tn ∈ [0, 1], zn ∈
(0, 0.5),

α′n
β′n
∈ (0, 1], we have |Sn| ≤ 1. Then from the dominated convergence theorem since∫

1dµ = 1 <∞, we have

lim
n→∞

∫ 0

−∞
SAn dµ =

∫ 0

−∞
lim
n→∞

SAn dµ. (47)

We have

lim
n→∞

SAn = lim
n→∞

−zn + tn

(
1− α′n

β′n

)
(48)

Both αn and βn are random variables supported on [0, 1]. Moreover, since limit exists for αn, βn, it
also exists for α′n := min{αn, βn}, similarly it exists for β′n. Therefore,

lim
n→∞

−zn + tn(1− α′n
β′n

) = x1

(
1− limn α

′
n

limn β′n

)
(49)

= x1

(
1− limn min{αn, βn}

limn max{αn, βn}

)
(50)

= x1

(
1− min{limn αn, limn βn}

max{limn αn, limn βn}

)
(51)

= x1

(
1− min{y0,1, y1,1}

max{y0,1, y1,1}

)
(52)

where the last equation follows from the equations (32)-(34). Finally, we have that∫ 0

−∞
x1

(
1− min{y0,1, y1,1}

max{y0,1, y1,1}

)
dµ (53)

= P
(
x1

(
1− min{y0,1, y1,1}

max{y0,1, y1,1}

)
≤ 0

)
(54)

= P
(
x1

(
1− min{y0,1, y1,1}

max{y0,1, y1,1}

)
= 0

)
= 0 (55)

(56)

where the last two equations follow from the fact that x1

(
1− min{y0,1,y1,1}

max{y0,1,y1,1}

)
is supported in the

interval [0, 1] and has an absolutely continuous measure, which implies that measure of a single point
is zero.

Similarly, we can calculate

P
(
SAn ≥ 1

)
=

∫ ∞
1

SAn dµ = 0, (57)
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which leads to P
(
εAzn
)

= 0.

Next, we consider the same analysis for P
(
εBzn
)
. One difference is the replacement of tn with 1− tn

which does not affect the derivation except for the replacement of x1 with 1− x1. Moreover, in the
numerator within the paranthesis in (55, min{y0, 1, y1,1} is replaced with 1−max{y0, 1, y1,1} and
similarly in the denominator max{y0, 1, y1,1} is replaced with 1−min{y0, 1, y1,1}. It follows that
P
(
εBzn
)

= 0. This implies that limn→∞ P (LBn ≤ H(Zn)) = 0 concluding the proof.

7.7.1 Comments on Distinguishing Direct Graph from Latent Graph with Entropy

Consider the uniform generative model for the triangle graph. It is easy to see that in this case, in
(36), t, α′, β′ become independent and uniformly distributed random variables with the compact
support [0, 1]. One can calculate the distribution of this lower bound accordingly. This can be used to
obtain the probability of identifiability between direct graph and the latent graph for a given upper
bound on the entropy of the latent variable. We do not pursue this calculation here.

7.7.2 Extension to Z with k states

Consider the setting where Z has k states. We use the following notation in this section:

p(Z = i) = z(i). (58)

First, note that the characterization of [31] is still applicable since they show increasing the dimension
of Z to more than two states cannot reduce the minimum entropy. Similar to the above proof, we will
assume a sequence of random variables Zn. Let Zn be a sequence of random variables with the pmf

p(Zn = i) = z(i)
n . (59)

Note that H(Zn) → 0 if and only if ∃i ∈ [k] such that z(i)
n → 1 and (z

(j)
n )j 6=i → 0. In the

following, we show that a similar analysis to the binary case goes through irrrespective of how
(z

(j)
n )j 6=i converges to the zero vector. Suppose without loss of generality z(1)

n → 1.

Due to the grouping rule of entropy, we have

H(Zn) = Hb(z
(1)
n ) + (1− z(1)

n )H((win)2≤i≤k), (60)

where w(i)
n =

z(i)n
1−z(1)n

. Let N be such that z(1)
N ≥ 1 − ε

log2(k) . Then z(1)
n ≥ 1 − ε

log2(k) ,∀n > N .

Then we have H(Zn) ≤ Hb(z
(1)
n ) + ε,∀n ≥ N .

Now we can replicate the proof for the binary Z as follows. Let us define the events:

εAn := {Event that Hb(An) ≤ Hb(z
(1)
n )}.

εBn := {Event that Hb(Bn) ≤ Hb(z
(1)
n )}.

δAn := {Event that Hb(z
(1)
n ) < Hb(An) ≤ H(Zn)}.

δBn := {Event that Hb(z
(1)
n ) < Hb(Bn) ≤ H(Zn)}.

By union bound

P(LBn ≤ H(Zn)) ≤ P(εAn ) + P(εBn ) + P(δAn ) + P(δBn ) (61)

We can write

P(δAn ) ≤
∫ Hb(z

(1)
n )+ε

Hb(z
(1)
n )

Hb(A)dµ. (62)

It is easy to see that limn→∞ P(δAn ) = 0 since ε → 0 and the measaure induced by the generative
model is absolutely continuous in the integral.

The rest of the analysis follows similarly to the binary case: We can obtain expressions for α, β using
k terms instead of 2. In the limit, all but the term that contains z(1)

n go to zero and we can conclude
the proof using the same arguments.
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Figure 5: The measure of distributions from the triangle graph that does not fit to latent graph with a
latent at least as simple as the true latent. As the entropy of the true latent goes to 0, this fraction goes
to 1. This is precisely the measure of models which are identifiable with our entropic approach in the
case of binary X,Y, Z.
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Figure 6: Fraction of distributions from the triangle graph that does not fit to latent graph with a latent
at least as simple as the true latent for binary X,Y and ternary Z. As the entropy of the true latent
goes to 0, this fraction goes to 1. This is precisely the fraction of models which are identifiable with
our entropic approach in the case of binary X,Y, Z.

7.8 Entropic Identifiability for Binary Variables

For H(Z) > 0, we can approximate the fraction of identifiable causal models via simulations. We
sample probability distributions from the uniform generative model. For each sample we check if
the entropy of the true latent H(Z) is strictly less than the common entropy of observed variables
G1(X,Y ). These are the models from triangle graph which cannot be fit onto latent graph with a
low-entropy latent. Figure 5 shows this fraction. σc is the parameter of the Dirichlet distribution
used to sample the conditional distributions from the Triangle graph. σc = 1 corresponds to uniform
sampling model and smaller the σc more deterministic the conditional distributions are in the sampling
model.

See Figure 6 for the corresponding plot for ternary Z.

7.9 I(X;Y |Z) vs. H(Z) Tradeoff Curve

Figure 7 shows the I(X;Y |Z)-H(Z) tradeoff LatentSearch (Algorithm 1) obtains for a joint
distribution sampled as follows: The distribution of Z as well as the conditional distributions
p(X|z), p(Y |z),∀z are chosen uniformly at random over the simplex.
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Figure 7: I(X;Y |Z) vs. H(Z) tradeoff curve obtained by LatentSearch (Algorithm 1) for an arbitrary
joint p(x, y) from the graph X ← Z → Y . We observed that the curve’s shape is consistent across
many runs irrespective of the graph, although the crossing point where I(X;Y |Z) = 0 changes.

7.10 Complete Details of Experiments

In this section, we explain some of the key implementation details for the experiments in Section 5
that were left out from the main text due to space constraints.

Sampling a low-entropy latent: In many experiments, we sample distributions from either the
latent graph or the triangle graph such that entropy of the latent confounder Z is small. For example,
we enforce H(Z) ≤ θ for varying thresholds θ in Figure 2c . We use a form of rejection sampling
combined with sampling from Dirichlet distributions with low-entropy as follows:

Suppose, we need N samples where H(Z) ≤ θ. We initialize α(0) = 1 and obtain 10N samples
from Dir(α(0)). If we have at least N samples where H(Z) ≤ θ, we are done. If not, we update α
by halving it, i.e., α(1) = 0.5α(0). The lower the α value, the lower-entropy distributions we will
obtain from Dir(α). Then we repeat this process until iteration i, where at least N samples can
be obtained from 10N samples using Dir(α(i)). We conclude by analyzing the histogram plots of
H(Z) that this method not only allows us to sample distributions where H(Z) ≤ θ but also where
H(Z) ≈ θ, providing us with a better control over the entropy of the latent confounder.

Choosing number of states of latent variable in LatentSearch: Recall that LatentSearch allows
us to discover a tradeoff between H(Z) and I(X;Y |Z), which, combined with a I(X;Y |Z) for
conditional independence, can be used to approximate common entropy. Since only X,Y are
observed, we do not know how many states k Z has. As pointed out in the main text, one can try
all k ≤ mn without loss of generality, where m,n are the number of states of X,Y , respectively.
However, in practice, this takes a long time. Furthermore, we identified that this is not necessary for
the estimation of common entropy.

We observe that if we search over Z with very large number of states, e.g., k = mn, performance of
LatentSearch does not improve compared to having k = min{m,n}. This is because the number
of optimization parameters increases significantly which may require many more iterations. It also
slows down the algorithm. We observed that choosing k = max{m,n} provides the smallest entropy
latents in practice. Therefore, we set k = max{m,n} in LatentSearch for our experiments.

Sampling DAGs for testing EntropicPC in Figure 4: We first sample Erdös-Rényi graphs with
parameter 0.2. Since there are 10 nodes, this corresponds to an average degree of 2 per node. Note
that these graphs are undirected. We need to make them directed and ensure there are no cycles. For
this, we randomly picked a total order between the nodes and directed the edges respecting that total
order. It can be easily shown that the resulting graphs have no cycles.

Sampling joint distributions for a given DAG in Figure 4: For every DAG we generate, we need
to obtain a joint distribution from which we sample a dataset. To obtain a distribution for a given
graph, we employ a method from Chickering and Meek [10]. It is known that constraint-based
methods require the data to be faithful to the graph, i.e., every pair of variables that are connected
in the graph should be dependent. This notion should also be true under any conditioning set. In
practice, this does not always hold. Specifically, nodes that are far away from each other in the graph
might be almost statistically independent. To ensure faithfulness in practice, Chickering and Meek
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use a method to sample conditional distributions for a given DAG [10]. In summary, it ensures that
parent-child relations are far from uniform. The details of their sampling method, which we also use,
are as follows:

For a variable X with m states, they define the vector v = 1
T ( 1

1 ,
1
2 , . . . ,

1
m ), T =

∑m
i=1

1
i . For the

jth instantiation of the parent set of X , pa(j)
x , they use the vector vj which is the j-shifted version of

v. The shifts are cyclic in the sense that vm = v. They later sample p(X|pa(j)
x ) from the Dirichlet

distribution with parameter vector vj . When each coordinate parameter of Dirichlet is identical, the
expected distribution is uniform. When Dirichlet is sampled with parameters vj as given above,
each coordinate has a different parameter. Indeed, the expected distribution becomes vj rather than
uniform. Therefore, this method ensures that p(x|pajx) is typically far from uniform, encouraging
strong dependence between parents and the children in the graph.

Details specific to Figure 2a: We sampled 100 distributions from the latent graph for each value
of n, where X,Y, Z all have n states. In each distribution, we ensure that H(Z) ≤ 1 using the
low-entropy sampling method described above. We use LatentSearch on 50 different values of β,
uniformly spaced in the interval [0, 0.1]. We set the latent variable for LatentSearch to n number of
states. We run LatentSearch for 500 iterations each time. We used the conditional mutual information
threshold of 0.001: In other words, of the algorithm outputs for the 50 β values used, we pick the
smallest entropy Z discovered by the algorithm among those that ensure I(X;Y |Z) ≤ 0.001. We
then compare this value with the entropy of the true latent confounder.

Details specific to Figure 2b: We sample 1000 distributions from the triangle graph. As mentioned
in the main text, we use LatentSearch output to approximate common entropy. The settings for
LatentSearch are the same as above, i.e., we use 50 β values uniformly spaced in the range [0, 0.1],
use n states for the latent and run the algorithm for 500 iterations. Entropy recovered by LatentSearch
for a pair X,Y is then compared with min{H(X), H(Y )}. The y−axis shows that fraction of times
the reconstructed latent has entropy of at least αmin{H(X), H(Y ) for different values of α.

Details specific to Figure 2c: For this figure we sample 1000 distributions from both triangle
graph and the latent graph for various upper bounds on the entropy of Z. Low-entropy sampling
is done as explained before. Finally, Algorithm 2 is used to identify the true causal graph with
θ = 0.8 min{H(X), H(Y )}. LatentSearch settings used within Algorithm 2 are as given previously.

Details specific to Figure 3a: Tuebingen dataset consists of around 100 real cause-effect pairs.
We run LatentSearch to understand whether real cause-effect pairs can be made independent by
low-entropy variables. As explained in the main text, we used different conditional independence
thresholds. Visual inspection of I −H curves suggest that 0.001 is a good threshold for this dataset.
This can be done by checking, for the given range of β values, where the curve disengages form the
x = 0 axis. We used 100 β values in the range [0, 0.1] and run the LatentSearch algorithm for 1000
iterations for this experiment.

Details specific to Figure 3b: This figure is an example of the tradeoff curve LatentSearch discovers
for various values of β. Each dot corresponds to a joint distribution p(x, y, z) constructed by
LatentSearch for a given value of β after a certain number of iterations. As can be seen from
(2), smaller β values enforce smaller I(X;Y |Z). The horizontal line indicates min{H(X), H(Y )}.
X,Y can always be separated with this much entropy since by definitionX ⊥⊥ Y |X andX ⊥⊥ Y |Y .
Ideally, i.e., with infinite samples and infinitely many β values, the point that intersects the x = 0 line
(i.e., the y− axis) should give the common entropy. To account for finite-sample effects, we use a
different horizontal line, which we call conditional mutual information threshold, as described before.

Details specific to Figure 3c: We sample from the graph X → Z → Y and investigate H(Z).
Note that Z acts as a mediator if it is not observed. Our goal is to understand if it is typical to have
low-entropy mediators. We set the dimensions of X,Y, Z to n. If Z has k states, H(Z) ≤ log(k).
Our goal is to demonstrate that unless k is a constant, H(Z) scales similar to H(X), H(Y ). Most
of the details of this experiment are provided in the main text. Note that when αDir ≤ 1

n for a
distribution with n states, a sample from Dirichlet distribution typically looks very peaked, i.e., it
has very high probability for one of the states, and very low probabilities for the rest. When such
a low αDir is used to sample the conditional of p(Z|x) for every value of x, X and Z are almost
deterministically related, i.e., there is almost no additional entropy introduced in the system. We
show that even then the entropy of the mediator scales. Larger αDir values will give distributions
that are closer to uniform, which in turn will make Z close to uniform and have log(n) entropy.
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Figure 8: [Section 5.5] Output of (a) EntropicPC and (b) PC in ADULT Data.

Details specific to Figure 4: Our goal is to demonstrate how well output of EntropicPC approximates
a true causal graph by checking graphical distances between the skeleton and essential graph. Essential
graph is the mixed graph where undirected edges show the edges that cannot be learned whereas
directed edges show the edges that can be learned. Structural Hamming Distance counts the number
of edges that should be reverted, added or removed to change the output graph into the true graph.
For skeleton discovery, we see edge discovery as a classification problem and calculate the F-score
as an established summary of the classifier performance. The graph and distribution sampling are
described above. We sample a dataset with 100000 variables and for each figure, we subsample
varying number of samples from this dataset without replacement. This is repeated for 100 different
graphs, and their corresponding distributions.

7.11 EntropicPC and PC on ADULT Dataset

Due to space constraints in the main text, we provide the outputs of PC and EntropicPC algorithms
for the ADULT dataset in this section. The results are given in Figure 8.

Note that the bidirected edges represent undirected, i.e., unoriented edges. Even though the true
causal graph is not known, we can easily conclude that EntropicPC discovers a much more reasonable
graph: salary is caused by education,occupation whereas PC misses both edges. Both algorithms
seems to suffer from unfaithful data - sex is not required to separate marital-status and occupation
whereas we expect it to since it should be a source node. This drives both algorithms to orient sex as
a collider.

7.12 EntropicPC on Line and Collider Graphs

To demonstrate effectiveness of EntropicPC compared to PC on the simplest possible graph, we
conducted the experiments of Figure 4 on the line graph X → Y → Z and the collider graph
X → Y ← Z. The results are given in Figures 9 and 10, respectively.

7.13 Comparing LatentSearch with EM, NMF and Gradient descent

7.13.1 Comparison to gradient descent

Instead of using LatentSearch for minimizing the loss in (2), one can use gradient descent. Even
though the objective is not convex, gradient descend will still output a stationary point if it converges.
However gradient descend comes with many practical issues, as we detail in the following, and
support with experiments.
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Figure 9: Performance of EntropicPC, EntropicPC-C and PC in the graph X → Y → Z. All three
methods perform identically for 10000 samples (not shown). Both EntropicPC and EntropicPC-C
consistently outperforms baseline PC.

First, we observed that iterative update step is slightly faster than the gradient descent step: Average
time for iterative update:0.000063 seconds. Average time for gradient update: 0.000078 seconds.
More importantly, gradient descent takes much longer to converge and does not even achieve the
same performance.

As observed in Figure 11, gradient descent converges only after 350000 iterations, whereas we
observed that iterative update converges after around 200 iterations. Based on the average update
times, this corresponds to a staggering difference of 0.01 seconds for the iterative algorithm vs. 27.3
seconds for the gradient descent algorithm. Although these results are for when n = m = k = 5
states, we observed single iterative update to be faster than single gradient update, giving similar
performance comparison results for n = m = k = 80 states.

The above result is for a constant step size of 0.001. With smaller step size, convergence slows down
even further. With larger step size, gradient descent does not converge.

7.13.2 Comparison with EM algorithm

EM is the first algorithm suggested for solving the pLSA problem [19]. For the details of EM within
this framework, please see [19]. However the EM algorithm for pLSA problem does not have any
incentive to minimize the entropy of the latent factor.

In order to see how EM affects the entropy of the discovered latent variable, we run EM algorithm by
initializing it at the points that are output by LatentSearch (Algorithm 1). Results are illustrated in
Figure 12. We observe that the points obtained in the I −H plane migrate towards I(X;Y |Z) = 0
line, while staying above what we believe is a fundamental lower bound curve. This step does not
improve our algorithm, as it increases the entropy of the latent variables.

7.13.3 Comparison with NMF

Consider the joint distribution matrix M. Suppose we find an approximation to this matrix as
M ≈ UV where the common dimension of U,V is k through NMF. This is equivalent to setting the
dimension of the latent variable to k. This can be seen as a hard entropy threshold on the entropy
of the latent factor since H(Z) ≤ log(k). We can sweep through different dimensions and see how
NMF performs compared to LatentSearch (Algorithm 1). Note that NMF is in general hard to solve.
A commonly used approach is the iterative algorithm: Initialize U0,V0. Find the best U1 such that
M ≈ U1V0. Then find the best V1 such that M ≈ U1V1 and iterate. In the experiments, we used
this iterative algorithm together with l1 loss.
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Figure 10: Performance of EntropicPC, EntropicPC-C and PC in the graph X → Y ← Z. All
three methods perform identically for 10000 samples (not shown). Different from the line graph,
for collider graph in the very small sample regime, even though the proposed methods significantly
outperforms PC in terms of skeleton discovery, PC gets a slight edge in performance in terms of SHD.
Note that PC tends to declare variables independent in the small sample regime. It is likely that for
100 samples, PC often estimates empty graph, which has SHD of 2 from the essential graph. This
explains the discrepancy between the performance for F1 and SHD scores for 100 samples.
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Figure 11: Comparison of the iterative algorithm with gradient descent. Blue points show the
trajectory of gradient descent, whereas orange points show the trajectory for Algorithm 1 for 10
randomly initialized points with different β values in loss (2). Gradient descent takes 350,000
iterations to converge whereas iterative algorithm converges in about 200 iterations. Moreover, the
points achieved by iterative algorithm are strictly better than gradient descent after convergence.
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Figure 12: Applying EM to the output of iterative algorithm migrates points to I(X;Y |Z = 0) line:
(a) Latent variables discovered by LatentSearch (Algorithm 1) shown on the I(X;Y |Z) − H(Z)
plane. (b,c) After applying EM algorithm on the points in (a) after 60 and 300 iterations. Observe
that the points always remain above the line depicted by LatentSearch (Algorithm 1).
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(a) Causal Graph X ← Z → Y
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(b) Causal Graph X ← Z → Y,X → Y

Figure 13: Comparison of the iterative algorithm to NMF for when |X| = |Y | = 20, |Z| = 10. When
the true model comes from the causal graph X ← Z → Y in (a), iterative algorithm successfully
finds latent variables that with entropy at most true latent entropy (shown as blue horizontal line),
whereas NMF cannot achieve the same performance, irrespective of the dimension restriction to the
latent variable. In (b) data comes from the causal model X ← Z → Y,X → Y . Although neither
algorithm can identify a latent factor that makes X,Y conditionally independent (vertical blue line),
iterative algorithm finds strictly better latent factors in terms of both small entropy and conditional
mutual information between X,Y .
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