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Abstract

We study without-replacement SGD for solving finite-sum optimization prob-
lems. Specifically, depending on how the indices of the finite-sum are shuffled,
we consider the RANDOMSHUFFLE (shuffle at the beginning of each epoch) and
SINGLESHUFFLE (shuffle only once) algorithms. First, we establish minimax
optimal convergence rates of these algorithms up to poly-log factors. Notably, our
analysis is general enough to cover gradient dominated nonconvex costs, and does
not rely on the convexity of individual component functions unlike existing optimal
convergence results. Secondly, assuming convexity of the individual components,
we further sharpen the tight convergence results for RANDOMSHUFFLE by remov-
ing the drawbacks common to all prior arts: large number of epochs required for
the results to hold, and extra poly-log factor gaps to the lower bound.

1 Introduction

Stochastic gradient descent (SGD) [8, 16] is a widely used optimization method for solving finite-sum
optimization problems that arise in many domains such as machine learning:

. 1
minimize F(x):= - Zfl(a:) (1.1)

Given an initial iterate @, at iteration ¢ > 1, SGD samples a component index i(t) and updates the
current iterate using the (sub)gradient g; ;) of fi(;) at @;—1:

Ty = XT1—1 — Mgi(y) for some step size 1, > 0.

There are two versions of SGD, depending on how we sample the index i(t): with-replacement
and without-replacement. With-replacement SGD samples (¢) uniformly and independently from
the set of indices {1, ..., n}; hereafter, we use SGD to denote with-replacement SGD. For without-
replacement SGD, there are two popular versions in practice. Calling one pass over the entire set
of n components an epoch, one version randomly shuffles the indices at each epoch (which we call
RANDOMSHUFFLE), and the other version shuffles the indices only once and reuses that order for all
the epochs (which we call SINGLESHUFFLE).

In modern machine learning applications, RANDOMSHUFFLE and SINGLESHUFFLE are much more
widely used than SGD, due to their simple implementations and better empirical performance [2, 3].
However, most theoretical analyses have been devoted to SGD for its easy-to-analyze setting: each
stochastic gradient is an i.i.d. unbiased estimate of the full gradient. Whereas for RANDOMSHUFFLE
and SINGLESHUFFLE, not only is each stochastic gradient a biased estimate of the full gradient,
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Table 1: A summary of existing convergence rates and our results for RANDOMSHUFFLE. All the convergence
rates are with respect to the suboptimality of objective function value. Note that since the function classes
become more restrictive as we go down the table, the noted lower bounds are also valid for upper rows, and the
upper bounds are also valid for lower rows. In the “Assumptions” column, inequalities such as K 2 £ mark the
requirements K > C'k® log(nK) for the bounds to hold, and (A1) denotes the assumption that all the iterates
remain in a bounded set (see Assumption 1). Also, (LB) stands for “lower bound.” For SINGLESHUFFLE, please
see Table A in Section F.

Convergence rates for RANDOMSHUFFLE
Settings | References Convergence rates Assumptions
- Haochen and Sra [7]f O (10(%?}?)’; ) 4 log (K )) K > 12 & (Al)
satisfies Nguyen et al. [13] (@] (%) K>1
PL fi smooth log? (nK)
condition Ours (Thm 1) O (7n yoos ) K>k
Rajput et al. [14] 0 (#) (LB) const. step size
fi smooth | Ours (Thm 1) (@) (bg:‘(T@K)) K>k
o F Nagaraj et al. [11] O(lefe) K 2 1% & (Al)
strongly fi smooth | Mishchenko et al. [10] O(e*£ + log:(T"ZK)) K>1
convex convex
Ours (Thm 3) O(n}@) K >1&(Al)
Rajput et al. [14] Q0 (nTl@) (LB) const. step size
f; smooth Giirbiizbalaban et al. [5] 0] (ﬁ) + 0(%) asymptotic
. quadratic | gypg (Thm 2) O (105}(?)2() 4 log: %K)) K>k
3) log®(nK) log® (nK) >
strongly Haochen and Sra [7] (@) Rz T RS K 2 k & (Al)
convex ; th . * log?(nK) | log®(nK) > .2
quadratic (J;uzg;zgc Rajput et al. [14] Otz + s K Z k? & (Al)
convex Ours (Thm 4)° O(i(nll()z + #) K >1&(Al)
Safran and Shamir [17] (s + ks ) (LB)  const. siep size

f They additionally assume that the hessian is Lipschtiz continuous. Note that the lower bound
construction [14] does not require the hessian to be Lipschitz continuous; hence, their result does not
contradict the lower bound when K 2 n.

 They also present a better convergence rate during the initial epochs (KX < k) assuming strongly
convex f;’s.

* These results do not require that f;’s are quadratic.

but each sample i(t) is also dependent on the previous samples within the epoch. This depen-
dence poses significant challenges toward analyzing shuffling based SGD. Recently, several works
have (in part) overcome such challenges and initiated theoretical studies of RANDOMSHUFFLE and
SINGLESHUFFLE [5-7, 10, 11, 13, 14, 17, 19].

1.1 What is known so far?

We provide in Table 1 a comprehensive summary of the known upper and lower bounds for conver-
gence of RANDOMSHUFFLE. For a similar summary of SINGLESHUFFLE, please refer to Table A in
Section F. There are three classes of differentiable functions " := 1 3" | f; considered in the table,
in decreasing order of generality: (1) F' satisfies the Polyak-f.ojasiewicz (PL) condition and f;’s are
smooth; (2) F is strongly convex and f;’s are smooth; (3) F' is strongly convex quadratic and f;’s are
quadratic. Many existing results additionally assume that the component functions f;’s are convex
and/or all the iterates are bounded.

In this paper, n denotes the number of component functions, K denotes the number of epochs, and
r denotes the condition number of the problem: i.e., x := L/, where L is the smoothness constant



and p is the strong convexity or PL constant. All the convergence rates are with respect to the
suboptimality of objective function value (i.e., F'(x) — F'(z*) for a suitable iterate x). In our notation
the well-known optimal convergence rate of SGD is O (1/nK), which we will refer to as the baseline.

Initial progress. One of the first works to report progress is due to by Giirbiizbalaban, Ozdaglar, and
Parrilo [5, 6] for strongly convex F' and smooth quadratic f;’s. They prove an asymptotic convergence
rate of O (1/k?) for K epochs when 7 is treated as a constant, both for RANDOMSHUFFLE and
SINGLESHUFFLE. This is indeed an asymptotic improvement over the convergence rate of O (1/nk)
achieved by SGD. The scope of the inspiring result in [5], however, does not match the scope of
modern machine learning applications for its asymptotic nature and its treatment of n as a constant'.
Indeed, in modern machine learning, n cannot be regarded as a constant as it is equal to the number
of data items in a training set, and the non-asymptotic convergence rate is of greater significance as
the algorithm is only run a few epochs in practice.

First non-asymptotic results. Subsequent recent efforts seek to characterize non-asymptotic con-
vergence rates in terms of both n and K. For the same setting as [5], Haochen and Sra [7] develop the
first non-asymptotic convergence rate of O (108" (nK)/(nk)? + log" (nK)/k*) for RANDOMSHUFFLE
under the condition K 2 klog(nK). They extend this result also to smooth functions satisfying
the PL condition and show the same convergence rate, albeit with an additional Lipschtiz Hessian
assumption and a more stringent requirement K > k2 log(nK). These rates, however, improve upon
the baseline rate O (1/nk) only after w(+/n) epochs.

Tight upper and lower bounds. The non-asymptotic results in [7] are strengthened in follow-up
works. Nagaraj, Jain, and Netrapalli [11] consider a setting where F is strongly convex and the f;’s
are no longer assumed to be quadratic, just convex and smooth. They introduce coupling arguments
to prove a non-asymptotic convergence rate of O (los*(nK)/nx?) for RANDOMSHUFFLE, under the

epoch requirement K > 2 log(nK). Note that this rate is better than the baseline O (1/nk) as soon
as the condition K > k2 log(nK) is fulfilled.

The result in [11] has motivated researchers to revisit the quadratic finite-sum case and obtain a
convergence rate that has a better dependency on n than that of [7]. The first set of results in this
direction are given by Safran and Shamir [17], who develop a lower bound of Q (1/(nK)? + 1/nK?)
for RANDOMSHUFFLE under the assumption of constant step size. They also prove a lower bound of
Q) (1/nk?) for SINGLESHUFFLE” under constant step size, and establish matching upper bounds for
the univariate case up to poly-logarithmic factors, evidencing that their lower bounds are likely to be
tight. For RANDOMSHUFFLE, the question of tightness is settled by Rajput, Gupta, and Papailiopou-
los [14] who establish the non-asymptotic convergence rate of O (log” (nK)/(nk)? + log” (nK)/nk?)
under the condition K > x?log(nK) by building on the coupling arguments in [11]. Assuming
constant step size, they also prove the lower bound 2 (1/nk?) for strongly convex F', showing the
tightness (up to poly-logarithmic factors) of the result in [11].

Moreover, there is a concurrent work by Mishchenko et al. [10], which establishes a refined analysis
and improves upon the epoch requirement of [11] (see Table 1). They also show better convergence
rates during the initial epochs (K < k) by additionally assuming that individual components are
strongly convex. Notably, their analysis for strongly convex individual components applies to
SINGLESHUFFLE as well, and guarantees the same rate. We note that [10] also provides analyses of
general convex and nonconvex costs.

Other related works. Nguyen et al. [13] provide a unified analysis for both RANDOMSHUFFLE
and SINGLESHUFFLE, and prove O (1/k?) convergence rates for F satisfying the PE condition or
strong convexity. Although these results do not have epoch requirements, they do not beat the baseline
rate O (1/nk) of SGD unless K 2 n. Lastly, Shamir [19] considers the case where F is a generalized
linear function and shows that without-replacement SGD is not worse than SGD. His proof techniques
use tools from transductive learning theory, and as a result, his results only cover the first epoch.

' Although one can actually deduce the asymptotic convergence rate of O (1/(nk)?) + o(1/x?) closely
following their arguments [5, (58)], the lower order term does not show the exact dependence on n.
Note that these lower bounds hold for more general function classes as well.



1.2 Limitations of the prior arts

Despite such noticeable progress, there are two primary limitations shared by many existing results,
including the minimax optimal upper bounds [11, 14]:

« The convergence results assume that the component functions f;’s are convex, which is not
necessarily the case in practical applications.® For example, the tight rates on strongly convex F'
[11] and quadratic F' [14] are obtained using coupling arguments showing that each iterate of
RANDOMSHUFFLE makes progress on par with SGD, which crucially exploits the convexity of
individual f;’s. This dependence limits one from extending their results to nonconvex functions.

« The upper bounds require that the number of epochs be of the form K > k* log(nkK) for some
constant « > 1, and have extra poly-logarithmic factors of n/. In many cases, these limitations
stem from choosing a constant step size 7 in the analysis. More specifically, it turns out that
one needs to choose a step size of order 1 < «log(nK)/nk, while in order to ensure a sufficient
progress during each epoch, one also needs to choose 7 < (k% 1n)~!. From these conditions,
the requirement K > k* log(nK) and poly-log factors arise (see Section 6.1 for details).

1.3 Summary of our contributions

We overcome the limitations pointed out above. Our theorems can be put into three groups: (i) using
techniques that do not require individual convexity, we extend the tight convergence bounds of
RANDOMSHUFFLE to the more general class of nonconvex PL functions, importantly, while also
improving the epoch requirements of existing results (Theorems 1 and 2); (ii) by adopting varying
step sizes, we prove convergence bounds of RANDOMSHUFFLE that are free of epoch requirements
and poly-log factors, this time with convexity (Theorems 3 and 4); and (iii) we also prove a tight
convergence bound of SINGLESHUFFLE for strongly convex functions without individual convexity
(Theorem F.1)—see Tables 1 and A for a quick comparison with other results. Since the majority
of our results are on RANDOMSHUFFLE, we defer our SINGLESHUFFLE result to Section F of the
appendix, to better streamline the flow of the paper.

« In Theorem 1, we prove that if F’ satisfies the PL condition and has a nonempty and compact
solution set, and f;’s are smooth, then RANDOMSHUFFLE converges at the rate O (10%3(711( )/nK2).
This bound holds as soon as K 2 klog(nK), and they match the lower bounds up to poly-log
factors. Remarkably, Theorem 1 improves upon the epoch requirement K > k2 log(nK) of
an existing bound [11] for RANDOMSHUFFLE on smooth strongly convex functions, without
needing convexity of f;’s.

o In Theorem 2, we prove a tight upper bound on RANDOMSHUFFLE for strongly convex
quadratic functions that improves the existing epoch requirement K > 2 log(nK) of [14]
to K 2 rmax{1,/E}log(nK), without assuming the f;’s to be convex. We develop a
fine-grained analysis on the expectation over random permutations to overcome issues posed
by noncommutativity; for instance, we prove contraction bounds for small step sizes which
circumvent the need for a conjectured (now false, see [9]) matrix AM-GM inequality of [15].

« Under the additional assumption that the f;’s are convex, we establish the same convergence
rates of RANDOMSHUFFLE for smooth strongly convex functions (Theorem 3) and strongly
convex quadratic functions (Theorem 4) without epoch requirements; i.e., for all K > 1. The
key to obtaining this improvement is to depart from constant step sizes analyzed in most prior
works and consider varying step sizes. To analyze such varying step sizes, we develop a variant
of Chung’s lemma (Lemma D.5) that can handle our case where the convergence rate depends
on two parameters n and K; this lemma may be of independent interest. Notably, our approach
also removes the extra poly-logarithmic factors in the convergence rates.

« Finally, we provide a tight convergence analysis for SINGLESHUFFLE, again without requiring
the convexity of individual component functions. Theorem F.1 shows that for smooth strongly
convex functions, SINGLESHUFFLE converges at the rate O (log”(nK)/nk?) as soon as K 2>

k2 log(nK). We remark that this rate matches (up to poly-log factors) the existing lower bound
Q (Y/nk?) [17] proven for a subclass, namely, strongly convex quadratic functions.

3For instance, in nonconvex optimization problems such as neural network training, the function F' would
behave like a convex function in a neighborhood around a local minimum, while each component function f;
could be highly nonconvex in the neighborhood.



2 Problem setup and notation

We first summarize the notation used in this paper. For a positive integer a, we define [a] :=
{1,2,...,a}; and for integers a, b satisfying a < b, we let [a : b] := {a,a+1,...,b— 1,b}. For
a vector v, ||v|| denotes its Euclidean norm. Given a function h(x), we use X7 C R to denote its
solution set (the set of its global minima). We omit the subscript & when it is clear from the context.

For solving the finite-sum optimization (1.1) with more than one component (n > 2), we consider
RANDOMSHUFFLE and SINGLESHUFFLE over K epochs, i.e., K passes over the n component
functions. The distinction between these two methods lies in the way we shuffle the components
at each epoch. For RANDOMSHUFFLE, at the beginning of the k-th epoch, we pick a random
permutation oy, : [n] — [n] and access component functions in the order f,, (1), fo,(2)s -+ - for(n)-
We initialize x := ¢, and call =¥ the i-th iterate of k-th epoch. Then, we update the iterate using
the stochastic gradient V f;;, (;) as follows:

@ x g — 0V fo (1) @D
where 7% is the step size for the i-th iteration of the k-th epoch. We start the next epoch by setting

xp ™! .= x . For SINGLESHUFFLE, we randomly pick a permutation o : [n] — [n] at the first epoch,
and use the same permutation over all epochs, i.e., o, = o for k € [K].

Next, we introduce a standard assumption for analyzing incremental methods, extensively used in the
prior works [6, 7, 11, 14, 20] (see e.g. [6, Assumption 3.8]):

Assumption 1 (Bounded iterates assumption). We say the bounded iterates assumption holds if all
the iterates {,xk, ... @}, >1 are uniformly bounded, i.e., stay within some compact set. We only
use this assumption for Theorems 3 and 4.

We remark that the bounded iterates assumption is not stringent as one can enforce this assumption
by explicit projections [11] or by adopting adaptive stepsizes [20] if projection is undesirable.

Function classes studied in this paper. Let i : R? — R be a differentiable function. We say A is
L-smooth if h(y) < h(z) + (Vh(z),y — ) + £ ||ly — «|” for all z,y € R?. We use C}(R) to
denote the class of differentiable and L-smooth functions on R?. A function h is p-strongly convex if
h(y) > h(z) + (Vh(z),y —x) + § |ly — x| for all &,y € RY. Lastly, a function A satisfies the
p-Polyak-Lojasiewicz condition (also known as gradient dominance) if 5 ||V h(x MNZ > pu(h(z) —h*)
for any € RY, where h* = min,, h(x); we say h is a u-PL function.

3 Tight convergence analysis of RANDOMSHUFFLE for PL. functions

To prove fast convergence rates of RANDOMSHUFFLE, we need to characterize the aggregate progress
made over one epoch as a whole. A general property of without-replacement SGD is the following
observation due to Nedi¢ and Bertsekas [12, Chapter 2]: for an epoch k, assuming that the iterates
{z¥}7_| stay close to =¥, the aggregate update direction will closely approximate the full gradient at
xk ie.,

Z“me) k) Z”_lvf”k()wo Z Vii(xh) =nVF(xh).  (3.1)

Making this heuristic approximation (3.1) rigorous, we prove the followmg theorem:

Theorem 1 (PL class). Assume that F is -PL and its solution set X* is nonempty and compact.
Also, assume each f; € C} (R%). Consider RANDOMSHUFFLE for the number of epochs K satisfying
K > 10k log(n'/2K), step size nf =1 := %;fm, and initialization x. Then, with probability
at least 1 — 6, the following bound holds with G := SUD,. (4)<F(a) MaXic[n] ||V fi(2)|| and some

constant ¢ = O(k3)*:

F(xzo) — F* ¢ G? log’(nK)log &
F <
ker[r;ér-il-l] (wO) - nk? + nk?

Proof: See Section 6.1 for a proof sketch and Section A for the full proof. O

*Throughout this paper, we adopt the convention that £ = O(1/u), used in prior works [7, 11].



Optimality of convergence rate. It is important to note that Theorem 1 matches the lower bound
Q (1/nk?) [14] for strongly convex costs, up to poly-logarithmic factors. What is somewhat surprising
is that our upper bound holds for a broader class of (nonconvex) PL functions compared to this lower
bounds. Since Theorem 1 applies to subclasses of PL functions, it also gives the minimax optimal
rates (up to log factors) for smooth strongly convex functions (see Table 1). Notably, Theorem 1
improves the epoch requirement K > x2log(nK) of the prior work [11] to K > s log(n'/?K),
without requiring the convexity of f;’s. Note that in [11], convexity is crucial in the coupling argument
to achieve the tight convergence rate.

Remark 1 (Best iterate v.s. last iterate). Note that Theorem 1 is a guarantee for the best iterate, not
the last iterate. However, the best iterate is needed only in pathological cases where some early iterate
xk is already too close to the optimum, so that the “noise” dominates the updates and makes the last
iterate have worse optimality gap than z§. By assuming bounded iterates (Assumption 1) in place of
the compactness of X'*, the convergence rate in Theorem 1 holds for the last iterate (see Section A.1
for details). Conversely, for an existing last-iterate bound (e.g., [14]), one can prove a corresponding
best-iterate bound without Assumption 1 if X'* is compact.

Remark 2 (Similar bound for SINGLESHUFFLE). In Section F, we show a similar convergence
bound O (1053(nK )/nKz) for SINGLESHUFFLE on smooth strongly convex functions (Theorem F.1).
Interestingly, Theorems 1 and F.1 together demonstrate that the optimal dependences on n and K
are identical for RANDOMSHUFFLE and SINGLESHUFFLE on smooth strongly convex costs; in other
words, for this function class, there is no additional provable gain from reshuffling in terms of the
dependence on n and K.

From the high-probability bound in Theorem 1, we can derive a corresponding expectation bound.

Corollary 1 (PL class). Under the same setting as Theorem 1, the following bound holds:

3(F(xg) — F*)  ¢-G?-log?(nK)
2nK? nk? '

E{ min F(:BIS)} —F* <
ke[K+1]

So far, we have developed the optimal convergence rate of RANDOMSHUFFLE for PL costs, which
turn out to be also optimal for smooth strongly convex costs. However, there is one case which
Theorem 1 does not match the lower bound, namely RANDOMSHUFFLE for quadratic costs: the
lower bound of Q(1/(nK)? + 1/nk?) is proved in [17]. Although Rajput et al. [14] actually obtain this
rate, they assume the convexity of each component. In light of Theorem 1, it is therefore natural to
ask if we can close the gap without assuming convexity of each component.

4 Tight bound on RANDOMSHUFFLE for quadratic functions

We prove below a tight bound for RANDOMSHUFFLE on quadratics without the convexity of f;’s.
For simplicity, we assume (without loss) that the global optimum of F’ is achieved at the origin.

Theorem 2 (Quadratic costs). Assume that F(x) := 1 3" | f;(x) = 1a” Az and F is p-strongly

T n

convex. Let fi(x) := jxT A;x + b] @ and f; € C}(R?). Consider RANDOMSHUFELE for the

number of epochs K satisfying K > 3—32,% max{1, \/g} log(nkK), step size nf =7n:= m(;gni(’;(m, and

initialization ©o. Then for G := max;c|y ||bi|| and some constant ¢ = O(k*),

oL ||z — x*||° ¢ G2 -log?(nK)  c¢-G?-log*(nk)
K+1 *
E [F((L’O )] - < n2K?2 + n2K?2 nKk3

Proof: See Section 6.2 for a proof sketch and Section B for the full proof. O

Improvements. Theorem 2 improves the prior result [14] in many ways. Most importantly,
Theorem 2 does not require f;’s to be convex, an assumption exploited in [14] for their cou-
pling argument. Moreover, Theorem 2 imposes a milder epoch requirement: it only assumes
K > 2xmax{1,/Z}log(nk), which is better than K > 128x?log(nK) of [14]. As long as
k < n, our epoch requirement is K 2 «log(nK), matching that of the univariate case [17]. Lastly,
unlike [14], Theorem 2 does not rely on the bounded iterates assumption.



Remark 3 (Tail averaging tricks). Following [11], we can also obtain a guarantee for the tail average
of the iterates mgK/ 21 , ...,z which improves the constants appearing in the bound by a factor of k.

Due to space limitation, the statement and the proof of this improvement are deferred to Section C.

Thus far, we have established the optimal convergence rates of RANDOMSHUFFLE for PL costs,
strongly convex costs, and quadratic costs without assuming the convexity of individual components,
an assumption crucial to the analysis of prior arts [11, 14]. Due to our results, it may seem that there
is no additional gain from the convexity of the f;’s. Is it really the case?

5 Eliminating epoch requirements with varying step sizes

In this section, we show that the convexity of f;’s does lead to gains. In particular, we show how
this convexity helps one remove the epoch requirements as well as extra poly-log terms in previous
convergence bounds [7, 11, 14]. The main technical distinction of this sharper result is to depart from
constant step sizes and consider varying step sizes. We begin with the strongly convex case:

Theorem 3 (Strongly convex costs). Assume that F' is p-strongly convex, and each f; is convex
and f; € Ci(Rd). Assume that the bounded iterates assumption (Assumption 1) holds. For any

constant o > 2, let ko := « - k, and consider the step sizes 1} = i?_/:: fori € [n), and n¥ = kii/: -

fork € 2 : K| and i € [n]. Then, for any K > 1, the following convergence bound holds for
RANDOMSHUFFLE with step sizes nf, initialization o, and some ¢, = O(k*) and co = O(k®):

c1n cy - ||:c0—:1:*||2
ko +nk)? (ko + nK)e

E[F(zf™)] - F* < (
Proof: See Section 6.3 for a proof sketch and Section D.5 for the full proof. O

Removing epoch requirements. The most important feature of Theorem 3 is that its rate holds for
all K > 1. This is in stark contrast with the existing minimax optimal result [11] which requires
K = K2 log(nK). Moreover, the dependency of the leading constant ¢; on & is identical with [1 7.

Removing extra poly-log factors. Another notable feature of our bound is that it is not beset with
extra poly-log factors appearing in the previous minimax optimal result [11], and thereby it closes the
poly-log gap between the lower bound [14].

Remark 4. We compare our result with that of a concurrent work [10]. In particular, for the same
setting as Theorem 3, they obtain the convergence rate O(e‘K/ s 4 log?(nK)/nk?) for all K > 1.
Hence, to obtain e-approximation solution, the iteration complexity reads Q(xn - log(1/€) + /7/e).
In contrast, the iteration complexity of our result reads Q(r - e~/ + \/T/e) Hence, we expect that for
the practical setting where 7 is in a much larger scale than e~/ (note that & > 2), our bound gives a

better result. Note also that our result does not come with extra poly-log factors, which requires a
nontrivial modification of Chung’s lemma as we outlined in Section 6.3.

With a similar technique, we can also prove the tight convergence rates for the case of quadratic F':

Theorem 4 (Quadratic costs). Under the setting of Theorem 3, we additionally assume that F' is
quadratic. For any constant o > 4, consider the same varying step sizes as in Theorem 3. Then,
for any K > 1, the following convergence bound holds for RANDOMSHUFFLE with step sizes nf,
initialization o, and some c; = O(k*), ca = O(k®) and c3 = O(k%):

c1 o - n? c3 - |lzo — a*|)?

ko +nk)? + (ko +nK)3 (ko + nK)>

E[F(z{t")] - F* < (

Proof: Similar to Theorem 3. See Section D.6. O

Remark 5 (Tightness of bounds). We believe that the upper bounds developed in this section are
likely tight, though we note that this tightness is not yet guaranteed because the existing lower bounds
are all developed under the assumption of constant step sizes. Extension of the lower bounds to
varying step sizes would be an interesting future research direction.

3 Although the leading constant in [11, Theorem 1] actually reads O (n?’), it is important to note that the
result is for the tail-averaged iterate. For the last iterate, one can see that their leading constant becomes O (/@4).



6 Proof sketches

6.1 Proof sketch of Theorem 1

As we mentioned in Section 3, the key to obtaining a faster rate is to capture the per-epoch property
(3.1). By decomposing V f,, ;) (xF_,) into “signal” V f,, ;) (z§) and “noise,” we develop the
following approximate version of (3.1) by carefully expanding the updates (2.1) over the k-th epoch:

wlgﬂ = xg — nnVF(:c’g) + 0%y, (3.1)

where the error term 7, is defined as the sum 27— M; 22:1 V fou () (x6) for some matrices M;’s

of bounded spectral norm. Note that without the term 1?7y, (3.1) is precisely equal to gradient
descent update with the cost function F'. By smoothness of F', we have

F(aft') — F(ah) < (VF(ah), zbt — ab) + L |abt — 2f||”
< (= +2n2L) |[VE@E)|* + 02 | VE@E)|| il + Lo rel® . (6.1)

Therefore, it is important to control the norm || || of the aggregate error term. We seek sharp bounds
on ||| but cannot invoke a standard concentration inequality as the gradients are sampled without-
replacement. We overcome this difficulty by applying a vector-valued version of Hoeffding-Serfling®

inequality [18] to the partial sums 23:1 V for () (@f). For each of them, we have

1> Vinw @) < |20, Vo (@h) —iVF@h)| +i | VE@D| < Vi+i|VE@ED],
with high probability. Applying the union bound and summing over all i € [n — 1], we obtain
lrell € n®2 +n? [V (f)| - 6.2)

Substituting this bound (6.2) into (6.1), rearranging the terms, and applying the PL inequality on
[V F(xf)||, we obtain the following per-epoch progress bound, which holds for n < =1-:

F(ag™) = F* < (1= nnu)(F(@g) — F*) +n°n”. (6.3)
2log(n'/?K)

unK
gives the epoch requirement. See Section A for details. O

Applying (6.3) over all epochs and substituting n =

1
5nL

, the convergence rate follows.
Substituting n to n <

6.2 Proof sketch of Theorem 2

The proof builds on the techniques from [17] for one-dimensional quadratic functions. In place of the
per-epoch analysis in Theorem 1, we recursively apply (2.1) all the way from the initial iterate  to
the last iterate 2} ' and directly bound E[|| 2™ — 2*||?]. Indeed, as pointed out by Safran and
Shamir [17], the main technical difficulty in extending this approach to higher dimensions comes
from the noncommutativity of matrix multiplication which, for example, results in the absence of the
matrix AM-GM inequality [9, 15]. Through a fine-grained analysis of the expectation over uniform
permutation, we overcome the problems posed by the noncommutativity and develop a tight upper
bound. For instance, we prove the following contraction bound (Lemma B.1) as an approximate
alternative to the recently disproved matrix AM-GM inequality [9], which holds for small enough 7:

n 1
HE {Ht—l(l ~14ow) Ht:n(l a nAUk(t))} H < 1=y (6.4)

Although (6.4) only holds for small 7 and is looser than the AM-GM inequality, it is remarkable that
this bound holds for any n > 2, especially given the result [9] that the matrix AM-GM inequality
conjecture breaks as soon as n = 5. Please refer to Section B for the full proof. O

SThe scalar-valued version of Hoeffding-Serfling inequality [1] was also used in [17].



6.3 Proof sketch of Theorem 3

First, due to the convexity of f;’s, it turns out that not only one can characterize the per-epoch progress
bound akin to (6.3), but also the progress made by each iteration (Proposition D.1). This per-iteration
progress bound is due to [11], which uses coupling arguments to demonstrate that with convexity,
RANDOMSHUFFLE makes progress on par with SGD.

Having such a fine control over the progress made by RANDOMSHUFFLE, one can imagine that the
varying step size choice takes aggressive steps in the initial epochs which in turn results in a warm
start. Despite this simple intuition, it turns out that the rigorous analysis is non-trivial. In fact, there is
a technical tool called non-asymptotic Chung’s lemma [4] for turning individual progress made at
each iteration/epoch into a global convergence bound. However, as we illustrate in Section D.3, the
non-asymptotic Chung’s lemma does not yield the desired convergence rate; the main issue is that for
RANDOMSHUFFLE, the convergence bound needs to capture the right order for two parameters n and
K. To overcome such a limitation, we develop a variant of Chung’s lemma (Lemma D.5) which gives
rise to the bound that captures the right order for both n and K. See Section D for the full proof. [

7 Conclusion and future work

Motivated by some limitations of the previous efforts, this paper establishes optimal convergence rates
of RANDOMSHUFFLE and SINGLESHUFFLE. Notably, our optimal convergence rates are obtained
without relying on convex component functions, which are exploited in the prior works [11, 14]. We
also show that exploiting the convexity of component functions allows for further improvements for
RANDOMSHUFFLE. By adopting time-varying step sizes and applying a variant of Chung’s lemma,
we develop sharper convergence bounds that do not come with any epoch requirement and extra
poly-log factors. We conclude this paper with several interesting open questions:

o (Extending lower bounds) As noted in Remark 5, all tight lower bounds known to date hold for
constant step sizes and last iterates. It would be interesting to extend these bounds for more
general settings, e.g., varying step size and arbitrary linear combination of iterates.

« (Optimal rates for Lipschitz Hessian class) Currently, there is a gap between the lower and upper
bounds of RANDOMSHUFFLE for the smooth, strongly convex costs with the Lipschitz Hessian
assumption: The best known lower bound is 2 (1/(nk)? + 1/nK?) [17], while the best known
upper bounds are O (1/nk?) ([11] and ours) and O (1/(nK)* 4+ 1/K?) [7]. Closing this gap would
be of interest.

o (Other cost functions) It is also worthwhile to investigate if without-replacement SGD achieves
superior convergence rates over SGD for other classes of convex or nonconvex functions.

o (Removing epoch requirements) Our varying step size technique only works under the additional
assumption that f;’s are convex (Section 5). It would be interesting to see if such improvements
can be made without relying on the convexity assumption, or for more general functions.

o (Superiority of without-replacement for the first epoch) Is without-replacement SGD faster than
SGD even during the first epoch? It is demonstrated in [7, Section 7.3] that if f;’s are strongly
convex and all f;’s share a common minimum point x*, this is indeed true. However, for
quadratic f;’s that are not strongly convex, showing this is closely tied to the matrix AM-GM
inequality [15], which was recently proven to be false [9].

Broader Impact

This work is about developing theoretical guarantees for widely used stochastic optimization methods.
Therefore, the discussion on its ethical aspects or future societal consequences is not particularly
relevant. However, this work definitely brings new insights into the practical methods, which could
possibly impact other ML researches.
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