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A Analysis for PŁ costs (Proofs of Theorem 1 and Corollary 1)

A.1 Proof outline

In this section, we present the proof of Theorem 1 and Corollary 1. We first show the existence of the
following quantity that will be used throughout the proof:

G := sup
x: F (x)≤F (x0)

max
i∈[n]
‖∇fi(x)‖ .

With this quantity, as long as all the iterates stay within the sublevel set Sx0
:= {x : F (x) ≤ F (x0)},

one can regard each component function fi as being G-Lipschitz. This motivates us to consider the
following two cases:

1. In the first case, we assume that all the end-of-epoch iterates xk0 stay in the sublevel set Sx0 .

2. In the second case, we assume that there exists an end-of-epoch iterate xk0 /∈ Sx0
.

In both cases, we will show that the best end-of-epoch iterate satisfies

min
k∈[K+1]

F (xk0)− F ∗ ≤ F (x0)− F ∗

nK2
+O

(
L2G2

µ3

log2(n1/2K) log nK
δ

nK2

)
,

with high probability.

Existence of G. Recall that the function F : Rd → R is µ-PŁ, and the set X ∗ of the global optima
of F is nonempty and compact. Also, it is a standard fact [4, Theorem 2] that µ-PŁ functions also
satisfy the following quadratic growth: Denoting by x∗ the closest global optimum to the point x
(i.e., the projection of x onto the solution set X ∗),

F (x)− F ∗ ≥ 2µ ‖x− x∗‖2 .

Then, due to the quadratic growth property, it is easy to verify:

Sx0 = {x ∈ Rd | F (x) ≤ F (x0)} ⊂
{
x ∈ Rd | ‖x− x∗‖2 ≤ F (x0)− F ∗

2µ

}
.

Indeed, the inclusion follows since for any x ∈ Sx0
, F (x0)− F ∗ ≥ F (x)− F ∗ ≥ 2µ ‖x− x∗‖2,

which implies x is also in the latter set. Since we assumed that X ∗ is compact, Sx0
is also bounded

and hence compact. Since ∇fi is continuous on a compact set Sx0
, there must exist a constant

0 ≤ G <∞ such that ‖∇fi(x)‖ ≤ G for all i ∈ [n],x ∈ Sx0
.

What if the bounded iterates assumption holds? As noted in Remark 1, if we have the bounded
iterates assumption (Assumption 1), one can prove the same bound for the last iterate xK+1

0 , modulo
leading constants. This is because if we have Assumption 1, we have a compact set S which all the
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end-of-epoch iterates xk0 lie in, which corresponds to the first case of the proof. More specifically,
there exists a constant 0 ≤ G′ <∞ such that

‖∇fi(x)‖ ≤ G′ for all i ∈ [n],x ∈ S.
Thus, the proof for the first case stated in Sections A.2–A.4 goes through, modulo G replaced by G′.
We remark that since we already have a compact set S , we no longer need the additional compactness
assumption on X ∗.

A.2 The 1st case: characterizing aggregate update over an epoch

We start by recursively applying the update equations over an epoch. The key idea in doing so is to
decompose the gradient∇fσk(i)(xki−1) into the “signal”∇fσk(i)(xk0) and a noise term:

∇fσk(i)(x
k
i−1) = ∇fσk(i)(x

k
0) +∇fσk(i)(x

k
i−1)−∇fσk(i)(x

k
0)

= ∇fσk(i)(x
k
0)︸ ︷︷ ︸

=:gσk(i)

+

[∫ 1

0

∇2fσk(i)(x
k
0 + t(xki−1 − xk0))dt

]
︸ ︷︷ ︸

=:Hσk(i)

(xki−1 − xk0)

= gσk(i) + Hσk(i)(x
k
i−1 − xk0),

where ∇2fi(x) denotes the Hessian of fi at x, whenever it exists. We remark that the integral
Hσk(i) exists, due to the following reason. Since we assumed that each fσk(i) ∈ C1

L(Rd), its
gradient ∇fσk(i) is Lipschitz continuous, and hence absolutely continuous. This means that ∇fσk(i)
is differentiable almost everywhere (i.e.,∇2fσk(i)(x) exists a.e.), and the fundamental theorem of
calculus for Lebesgue integral holds; hence the integral exists. Note that ‖Hσk(i)‖ ≤ L due to
L-smoothness of fi’s. We now substitute this decomposition to the update equations. First,

xk1 = xk0 − ηgσk(1).

Substituting this to xk2 gives

xk2 = xk1 − η∇fσk(2)(x
k
1) = xk1 − ηgσk(2) − ηHσk(2)(x

k
1 − xk0)

= xk0 − ηgσk(1) − ηgσk(2) + η2Hσk(2)gσk(1) = xk0 − η(I − ηHσk(2))gσk(1) − ηgσk(2).

Repeating this process until xkn = xk+1
0 , we get

xk+1
0 = xk0 − η

n∑
j=1

(
j+1∏
t=n

(I − ηHσk(t))

)
gσk(j)

= xk0 − ηn∇F (xk0)− η

[
n∑
j=1

(
j+1∏
t=n

(I − ηHσk(t))

)
gσk(j) − n∇F (xk0)

]
.

Due to summation by parts, the following identity holds:
n∑
j=1

ajbj = an

n∑
j=1

bj −
n−1∑
i=1

(ai+1 − ai)
i∑

j=1

bj .

We apply this to the last term, by substituting aj =
∏j+1
t=n(I − ηHσk(t)) and bj = gσk(j):

n∑
j=1

(
j+1∏
t=n

(I − ηHσk(t))

)
gσk(j) − n∇F (xk0)

=

n∑
j=1

gσk(j) −
n−1∑
i=1

(
i+2∏
t=n

(I − ηHσk(t))−
i+1∏
t=n

(I − ηHσk(t))

)
i∑

j=1

gσk(j) − n∇F (xk0)

= − η
n−1∑
i=1

(
i+2∏
t=n

(I − ηHσk(t))

)
Hσk(i+1)

i∑
j=1

gσk(j)︸ ︷︷ ︸
=:rk

.
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Therefore, we have xk+1
0 = xk0 − ηn∇F (xk0) + η2rk. By smoothness of F , we have

F (xk+1
0 )− F (xk0)

≤
〈
∇F (xk0),xk+1

0 − xk0
〉

+
L

2

∥∥xk+1
0 − xk0

∥∥2
≤ − ηn

∥∥∇F (xk0)
∥∥2 + η2

∥∥∇F (xk0)
∥∥ ‖rk‖+

Lη2

2

∥∥n∇F (xk0) + ηrk
∥∥2

≤ (−ηn+ η2n2L)
∥∥∇F (xk0)

∥∥2 + η2
∥∥∇F (xk0)

∥∥ ‖rk‖+ Lη4 ‖rk‖2 , (A.1)

where the last inequality used ‖a + b‖2 ≤ 2 ‖a‖2 + 2 ‖b‖2.

A.3 The 1st case: bounding noise term using Hoeffding-Serfling inequality

It is left to bound ‖rk‖. We have

‖rk‖ =

∥∥∥∥∥∥
n−1∑
i=1

(
i+2∏
t=n

(I − ηHσk(t))

)
Hσk(i+1)

i∑
j=1

gσk(j)

∥∥∥∥∥∥
≤
n−1∑
i=1

∥∥∥∥∥∥
(
i+2∏
t=n

(I − ηHσk(t))

)
Hσk(i+1)

i∑
j=1

gσk(j)

∥∥∥∥∥∥
≤ L(1 + ηL)n

n−1∑
i=1

∥∥∥∥∥∥
i∑

j=1

gσk(j)

∥∥∥∥∥∥ . (A.2)

Where the last step used ‖Hσk(j)‖ ≤ L. Recall from the theorem statement that K ≥
10κ log(n1/2K), and η = 2 log(n1/2K)

µnK . This means that

ηL =
2κ log(n1/2K)

nK
≤ 1

5n
,

which implies (1+ηL)n ≤ e1/5. Now, we use the Hoeffding-Serfling inequality for bounded random
vectors, which is taken from [13, Theorem 2]. Note that for any epoch k, the permutation σk is
independent of the first iterate xk0 of the epoch. Therefore, we can apply the following bound for
partial sums of gσk(i) := ∇fσk(i)(xk0):

Lemma A.1 ([13, Theorem 2]). Suppose n ≥ 2. Let v1,v2, . . . ,vn ∈ Rd satisfy ‖vj‖ ≤ G for all j.
Let v̄ = 1

n

∑n
j=1 vj . Let σ ∈ Sn be a uniform random permutation of n elements. Then, for i ≤ n,

with probability at least 1− δ, we have∥∥∥∥∥∥1

i

i∑
j=1

vσ(j) − v̄

∥∥∥∥∥∥ ≤ G
√

8(1− i−1
n ) log 2

δ

i
.

Recall the mean v̄ = ∇F (xk0) for our setting. Using this concentration inequality, with probability at
least 1− δ, we have∥∥∥∥∥∥

i∑
j=1

gσk(j)

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥

i∑
j=1

gσk(j) − i∇F (xk0)

∥∥∥∥∥∥+ i
∥∥∇F (xk0)

∥∥ ≤ G√8i log
2

δ
+ i
∥∥∇F (xk0)

∥∥ .
We apply the union bound for all i = 1, . . . , n − 1 and k = 1, . . . ,K. After this, we have with
probability at least 1− δ,

n−1∑
i=1

∥∥∥∥∥∥
i∑

j=1

gσk(j)

∥∥∥∥∥∥ ≤ G
√

8 log
2nK

δ

n−1∑
i=1

√
i+
∥∥∇F (xk0)

∥∥ n−1∑
i=1

i
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≤ G
√

8 log
2nK

δ

∫ n

1

√
ydy +

n2

2

∥∥∇F (xk0)
∥∥

≤ 4
√

2n3/2G

3

√
log

2nK

δ
+
n2

2

∥∥∇F (xk0)
∥∥ , (A.3)

for each k ∈ [K]. This then leads to

‖rk‖ ≤ e1/5L
n−1∑
i=1

∥∥∥∥∥∥
i∑

j=1

gσk(j)

∥∥∥∥∥∥ ≤ 4
√

2e1/5n3/2LG

3

√
log

2nK

δ
+
e1/5n2L

2

∥∥∇F (xk0)
∥∥

≤ 5n3/2LG

2

√
log

2nK

δ
+

2n2L

3

∥∥∇F (xk0)
∥∥ , (A.4)

which holds with probability at least 1− δ. By (a+ b)2 ≤ 2a2 + 2b2, we also have

‖rk‖2 ≤
25n3L2G2

2
log

2nK

δ
+

8n4L2

9

∥∥∇F (xk0)
∥∥2 . (A.5)

A.4 The 1st case: getting a per-epoch progress bound

Substituting the norm bounds (A.4) and (A.5) to (A.1) and arranging the terms, we get

F (xk+1
0 )− F (xk0) ≤

(
−ηn+ η2n2L+

2η2n2L

3
+

8η4n4L3

9

)∥∥∇F (xk0)
∥∥2

+
5η2n3/2LG

2

∥∥∇F (xk0)
∥∥√log

2nK

δ
+

25η4n3L3G2

2
log

2nK

δ
.

Using ab ≤ a2

2 + b2

2 , we can further decompose

5η2n3/2LG

2

∥∥∇F (xk0)
∥∥√log

2nK

δ
=

(
η1/2n1/2

2

∥∥∇F (xk0)
∥∥)(5η3/2nLG

√
log

2nK

δ

)

≤ ηn

8

∥∥∇F (xk0)
∥∥2 +

25η3n2L2G2

2
log

2nK

δ
.

Substituting these results back to the above bound and using 1 + ηnL ≤ 6/5 yields

F (xk+1
0 )− F (xk0) ≤

(
−7ηn

8
+

5η2n2L

3
+

8η4n4L3

9

)∥∥∇F (xk0)
∥∥2 + 15η3n2L2G2 log

2nK

δ
.

Now, since ηnL ≤ 1/5, we have

−7ηn

8
+

5η2n2L

3
+

8η4n4L3

9
≤ −ηn

2
,

which follows since z 7→ 3
8z −

5
3z

2 − 8
9z

4 is nonnegative when 0 ≤ z ≤ 1/5. Therefore, we have

F (xk+1
0 )− F (xk0) ≤ −ηn

2

∥∥∇F (xk0)
∥∥2 + 15η3n2L2G2 log

2nK

δ
.

Now let us apply the µ-PŁ inequality on
∥∥∇F (xk0)

∥∥2. This yields

F (xk+1
0 )− F ∗ ≤ (1− ηnµ)(F (xk0)− F ∗) + 15η3n2L2G2 log

2nK

δ
.

Recursively applying this inequality over k = 1, . . . ,K and substituting η = 2 log(n1/2K)
µnK give1

F (xK+1
0 )− F ∗ ≤ (1− ηnµ)K(F (x0)− F ∗) + 15η3n2L2G2 log

2nK

δ

K−1∑
k=0

(1− ηnµ)k

1Note that since we have already taken the union bound over all i = 1, . . . , n − 1 and k = 1, . . . ,K in
Section A.3, additional union bounds are not needed.
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≤ F (x0)− F ∗

nK2
+

15η2nL2G2

µ
log

2nK

δ

=
F (x0)− F ∗

nK2
+O

(
L2G2

µ3

log2(n1/2K) log nK
δ

nK2

)
.

Note that this bound certainly holds for the best iterate.

A.5 The 2nd case: escape implies desired best iterate suboptimality

Now consider the case where some end-of-epoch iterates xk0 escape the F (x0)-sublevel set Sx0
.

First, note that by definition of sublevel sets, if F (xk0) is monotonically decreasing with k, then
there is no way xk0 can escape Sx0

. Thus, xk0 escaping Sx0
implies that F (xk0) is not monotonically

decreasing. Let k′ ∈ [2 : K + 1] be the first k such that xk
′

0 /∈ Sx0 . This means that for the previous
epoch k′ − 1, we must have

−ηnµ(F (xk
′−1

0 )− F ∗) + 15η3n2L2G2 log
2nK

δ
> 0 (A.6)

because otherwise

F (xk
′

0 )− F ∗ ≤ (1− ηnµ)(F (xk
′−1

0 )− F ∗) + 15η3n2L2G2 log
2nK

δ
≤ F (xk

′−1
0 )− F ∗,

which means xk
′

0 ∈ Sx0
. Then, from (A.6), we get

min
k∈[K+1]

F (xk0)− F ∗ ≤ F (xk
′−1

0 )− F ∗

<
15η2nL2G2

µ
log

2nK

δ
= O

(
L2G2

µ3

log2(n1/2K) log nK
δ

nK2

)
.

A.6 Proof of Corollary 1

Let E be the event that the bound (A.3) holds for all k ∈ [K], which happens with probability at least
1− δ. The high probability result (Theorem 1) showed that given this event happens, we have

min
k∈[K+1]

F (xk0)− F ∗ ≤ F (x0)− F ∗

nK2
+O

(
L2G2

µ3

log2(n1/2K) log nK
δ

nK2

)
.

We now choose δ = 1/n. Given the event Ec, we will get a similar bound, worse by a factor of n:

min
k∈[K+1]

F (xk0)− F ∗ ≤ F (x0)− F ∗

nK2
+O

(
L2G2

µ3

log2(nK)

K2

)
,

without using the concentration inequality. Taking expectation gives

E
[

min
k∈[K+1]

F (xk0)− F ∗
]

= E
[

min
k∈[K+1]

F (xk0)− F ∗ | E
]
P[E] + E

[
min

k∈[K+1]
F (xk0)− F ∗ | Ec

]
P[Ec]

≤ 3(F (x0)− F ∗)
2nK2

+O
(
L2G2

µ3

log3(nK)

nK2

)
,

as desired. The rest of the proof derives the bound for Ec.

The first case. The proof goes the same way as in E. We first consider the case where all the
iterates stay in Sx0

, which corresponds to the first case in the proof of Theorem 1. We unroll the
updates xki and obtain the bound (A.1). Then, we bound ‖rk‖ directly, without the concentration
inequality. From (A.2), we have

‖rk‖ ≤ ηL(1 + ηL)n
n−1∑
i=1

∥∥∥∥∥∥
i∑

j=1

gσk(j)

∥∥∥∥∥∥ ≤ e1/5ηn2LG

2
≤ ηn2LG.
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Substituting this bound to (A.1), we get

F (xk+1
0 )− F (xk0) ≤ (−ηn+ η2n2L)

∥∥∇F (xk0)
∥∥2 + η

∥∥∇F (xk0)
∥∥ ‖rk‖+ Lη2 ‖rk‖2

≤ (−ηn+ η2n2L)
∥∥∇F (xk0)

∥∥2 + η2n2LG
∥∥∇F (xk0)

∥∥+ η4n4L3G2

≤
(
−7ηn

8
+ η2n2L

)∥∥∇F (xk0)
∥∥2 + 2η3n3L2G2 + η4n4L3G2,

where the last inequality used ab ≤ a2

2 + b2

2 for a = η1/2n1/2

2

∥∥∇F (xk0)
∥∥ and b = 2η3/2n3/2LG.

Now, since ηnL ≤ 1/5, we have

−7ηn

8
+ η2n2L ≤ −ηn

2
,

because z 7→ 3
8z − z

2 is nonnegative when 0 ≤ z ≤ 1/5. In conclusion, we have

F (xk+1
0 )− F (xk0) ≤ −ηn

2

∥∥∇F (xk0)
∥∥2 + 3η3n3L2G2.

Applying the µ-PŁ inequality, we have

F (xk+1
0 )− F ∗ ≤ (1− ηnµ)(F (xk0)− F ∗) + 3η3n3L2G2.

Unrolling the inequalities and substituting η = 2 log(n1/2K)
µnK , we get

min
k∈[K+1]

F (xk0)− F ∗ ≤ F (xK+1
0 )− F ∗

≤ F (x0)− F ∗

nK2
+

3η2n2L2G2

µ
≤ F (x0)− F ∗

nK2
+O

(
L2G2

µ3

log2(nK)

K2

)
.

The second case. Now consider the case where some end-of-epoch iterates satisfy xk0 /∈ Sx0 . We
can apply the same argument as the second case of Theorem 1 here.

Let k′ be the first such index. Then, this means that F (xk
′

0 ) is greater than F (xk
′−1

0 ), which holds
only if

−ηnµ(F (xk
′−1

0 )− F ∗) + 3η3n2L2G2 > 0.

Then, this implies that

min
k∈[K+1]

F (xk0)− F ∗ ≤ F (xk
′−1

0 )− F ∗ < 3η2n2L2G2

µ
= O

(
L2G2

µ3

log2(nK)

K2

)
.

B Analysis on RANDOMSHUFFLE for quadratics (Proof of Theorem 2)

B.1 Additional notation on matrices

Prior to the proofs, we introduce additional notation on matrices. For a matrix A, ‖A‖ denotes its
spectral norm. For matrices indexed M1,M2, . . . ,Mk and for any 1 ≤ i ≤ j ≤ k, we use the
shorthand notation for products Mj:i = MjMj−1 . . .Mi+1Mi. In case where i > j, we define
Mj:i = I . Similarly, MT

j:i denotes the product MT
i M

T
i+1 . . .M

T
j−1M

T
j .

The proofs of Theorems 2 and C.1 involve polynomials of matrices. We define the following
noncommutative elementary symmetric polynomials, which will prove useful in the proof. For a
permutation σ : [n]→ [n] and integers l, r and m satisfying 1 ≤ l ≤ r ≤ n and m ∈ [0 : n],

em(A1, . . . ,An;σ, l, r) :=
∑

l≤t1<t2<···<tm≤r

Aσ(tm)Aσ(tm−1) · · ·Aσ(t1). (B.1)

Whenever it is clear from the context that the arguments are A1, . . . ,An and permutation is σ, we
use a shorthand Aσ[n]. Also, the default value of l and r are l = 1 and r = n; so, em(Aσ[n]) :=
em(A1, . . . ,An;σ, 1, n).
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B.2 Proof outline

Recall the definitions

fi(x) := 1
2x

TAix + bTi x, F (x) :=
1

n

n∑
i=1

fi(x) = 1
2x

TAx,

where fi’s are L-smooth and F is µ strongly convex. This is equivalent to saying that ‖Ai‖ ≤ L
and A := 1

n

∑n
i=1 Ai � µI . Also note that F is minimized at x∗ = 0 and

∑n
i=1 bi = 0. We let

G := maxi∈[n] ‖bi‖.
The proof goes as follows. We first recursively apply the update equations over all iterations and
obtain an equation that expresses the last iterate xK+1

0 in terms of the initialization x1
0 = x0. Using

such an equation, we will directly bound E[‖xK+1
0 − x∗‖2] = E[‖xK+1

0 − 0‖2] to get our desired
result.

Compute the update equation of xk1 in terms of the initial iterate xk0 of the k-th epoch:

xk1 = xk0 − η∇fσk(1)(x
k
0) = xk0 − η(Aσk(1)x

k
0 + bσk(1))

= (I − ηAσk(1))x
k
0 − ηbσk(1).

Substituting this to the update equation of xk2 , we get

xk2 = xk1 − η∇fσk(2)(x
k
1)

= (I − ηAσk(1))x
k
0 − ηbσk(1) − η(Aσk(2)((I − ηAσk(1))x

k
0 − ηbσk(1)) + bσk(2))

= (I − ηAσk(2))(I − ηAσk(1))x
k
0 − ηbσk(2) − η(I − ηAσk(2))bσk(1).

Repeating this, one can write the last iterate xkn (or equivalently, xk+1
0 ) of the k-th epoch as the

following:

xk+1
0 =

[
1∏
t=n

(I − ηAσk(t))

]
︸ ︷︷ ︸

=:Sk

xk0 − η

 n∑
j=1

(
j+1∏
t=n

(I − ηAσk(t))

)
bσk(j)


︸ ︷︷ ︸

=:tk

= Skx
k
0 − ηtk. (B.2)

Note that Sk and tk are random variables that solely depend on the k-th permutation σk. Now,
repeating this K times, we get the equation for the iterate after K epochs, which is the output of the
algorithm we consider in Theorem 2:

xK+1
0 =

(
1∏

k=K

Sk

)
x1
0 − η

K∑
k=1

(
k+1∏
t=K

St

)
tk = SK:1x

1
0 − η

K∑
k=1

SK:k+1tk.

We aim to provide an upper bound on E[
∥∥xK+1

0

∥∥2], where the expectation is over the randomness of
permutation σ1, . . . , σK . To this end, using ‖a + b‖2 ≤ 2 ‖a‖2 + 2 ‖b‖2,

∥∥xK+1
0

∥∥2 ≤ 2
∥∥SK:1x

1
0

∥∥2 + 2η2

∥∥∥∥∥
K∑
k=1

SK:k+1tk

∥∥∥∥∥
2

where the second term on the RHS can be further decomposed into:∥∥∥∥∥
K∑
k=1

SK:k+1tk

∥∥∥∥∥
2

=

K∑
k=1

‖SK:k+1tk‖2+ 2
∑

1≤k<k′≤K

〈SK:k+1tk,SK:k′+1tk′〉 .

The remaining proof bounds each of the terms, which we state as the following three lemmas. The
proofs of Lemmas B.1, B.2, and B.3 are deferred to Sections B.3, B.4, and B.5, respectively.

8



Lemma B.1 (1st contraction bound). For any 0 ≤ η ≤ 3
16nL min{1,

√
n
κ} and k ∈ [K],∥∥E [STk Sk]∥∥ ≤ 1− ηnµ.

Lemma B.2. For any 0 ≤ η ≤ 3
16nL min{1,

√
n
κ} and k ∈ [K],

E
[
‖SK:k+1tk‖2

]
≤ 18(1− ηnµ)K−kη2n3L2G2 log n.

Lemma B.3. For any 0 ≤ η ≤ 3
16nL min{1,

√
n
κ} and k, k′ ∈ [K] (k < k′),

E [〈SK:k+1tk,SK:k′+1tk′〉] ≤ 40
(

1− ηnµ

2

)2K−k′−k−1
η2n2L2G2.

Remark B.1 (Our contraction bounds and the matrix AM-GM inequality conjecture). Before we
continue with the proof, a side remark on the contraction bounds is in order. In this paper, we
prove a number of contraction bounds (Lemmas B.1, B.4, and C.2) that circumvents the need for
the conjectured matrix AM-GM inequality [11], which was proven to be false [5]. The bounds we
provide can be seen as “weaker” versions of the AM-GM inequalities, which hold for any number
n of matrices but with η diminishing with n. Whether these weak AM-GM inequalities hold for a
broader range of η (e.g. η ≤ 1/L) or not is left to future investigation.

By Lemma B.1, we have 0 � E[STk Sk] � (1− ηnµ)I for appropriately chosen step size η. Since
any STk Sk is independent of σ1, . . . , σk−1, we have

E
[∥∥SK:1x

1
0

∥∥2] = E
[(
SK:1x

1
0

)T (
SK:1x

1
0

)]
= E

[(
SK−1:1x

1
0

)T E
[
STKSK

] (
SK−1:1x

1
0

)]
≤ (1− ηnµ)E

[(
SK−1:1x

1
0

)T (
SK−1:1x

1
0

)]
≤ (1− ηnµ)2E

[(
SK−2:1x

1
0

)T (
SK−2:1x

1
0

)]
≤ · · · ≤ (1− ηnµ)K

∥∥x1
0

∥∥2 .
By Lemma B.2, we have

K∑
k=1

E
[
‖SK:k+1tk‖2

]
≤ 18η2n3L2G2 log n

K∑
k=1

(1− ηnµ)K−k ≤ 18ηn2L2G2 log n

µ
,

and Lemma B.3 implies that∑
1≤k<k′≤K

E [〈SK:k+1tk,SK:k′+1tk′〉] ≤ 40η2n2L2G2
∑

1≤k<k′≤K

(
1− ηnµ

2

)2K−k′−k−1
≤ 160L2G2

µ2
.

Putting the bounds together, we get

E[
∥∥xK+1

0

∥∥2] ≤ 2(1− ηnµ)K
∥∥x1

0

∥∥2 +
36η3n2L2G2 log n

µ
+

640η2L2G2

µ2
.

Substituting the step size η = 2 log(nK)
µnK into the bound gives

E[
∥∥xK+1

0

∥∥2] ≤
2
∥∥x1

0

∥∥2
n2K2

+O
(
L2G2

µ4

(
log4(nK)

nK3
+

log2(nK)

n2K2

))
,

and in terms of the cost values,

E[F (xK+1
0 )− F ∗] ≤

2L
∥∥x1

0

∥∥2
n2K2

+O
(
L3G2

µ4

(
log4(nK)

nK3
+

log2(nK)

n2K2

))
.

Recall that these bounds hold for η ≤ 3
16nL min{1,

√
n
κ}, so K must be large enough so that

2 log(nK)

µnK
≤ 3

16nL
min

{
1,

√
n

κ

}
.

This gives us the epoch requirement K ≥ 32
3 κmax{1,

√
κ
n} log(nK).
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B.3 Proof of the first contraction bound (Lemma B.1)

B.3.1 Decomposition into elementary polynomials

For any permutation σk, note that we can expand Sk in the following way:

Sk =

1∏
t=n

(I − ηAσk(t)) =

n∑
m=0

(−η)m
∑

1≤t1<···<tm≤n

Aσk(tm) · · ·Aσk(t1) =:

n∑
m=0

(−η)mem(Aσk[n]),

where the noncommutative elementary symmetric polynomial em was defined in (B.1). Using this,
we can write

STk Sk =

2n∑
m=0

(−η)m
∑

0≤m1≤n
0≤m2≤n
m1+m2=m

em1
(Aσk[n])

T em2
(Aσk[n])

︸ ︷︷ ︸
=:Cm

. (B.3)

Note E[STk Sk] =
∑2n
m=0(−η)mE[Cm]. In what follows, we will examine the expectation E[Cm]

closely, and decompose E[STk Sk] into the sum of
∑n
m=0

(−2ηnA)m

m! and remainder terms. By
bounding the spectral norm of

∑n
m=0

(−2ηnA)m

m! and the remainder terms, we will get the desired
bound on the spectral norm of E[STk Sk].

Cases 0 ≤ m ≤ 2. It is easy to check that C0 = I and C1 = 2e1(Aσk[n]) = 2
∑n
i=1 Ai = 2nA,

regardless of σk. For C2, we have

C2 = e2(Aσk[n])
T e0(Aσk[n]) + e1(Aσk[n])

T e1(Aσk[n]) + e0(Aσk[n])
T e2(Aσk[n])

=
∑

1≤t1<t2≤n

Aσk(t1)Aσk(t2) +

(
n∑
i=1

Ai

)2

+
∑

1≤t1<t2≤n

Aσk(t2)Aσk(t1)

=
∑
i 6=j

AiAj +

(
n∑
i=1

Ai

)2

= 2

(
n∑
i=1

Ai

)2

−
n∑
i=1

A2
i = 2(nA)2 −

n∑
i=1

A2
i ,

again regardless of σk. Note that each A2
i is positive semidefinite even when Ai is not.

Cases 3 ≤ m ≤ n: decomposition of Cm. In a similar way, for m = 3, . . . , n, we will take
expectation E[Cm] and express it as the sum of (2nA)m

m! and the remainder terms. Now fix any
m ∈ [3 : n], and consider any m1 and m2 satisfying m1 +m2 = m. Then, the product of elementary
polynomials em1

(Aσk[n])
T em2

(Aσk[n]) consists of
(
n
m1

)(
n
m2

)
terms of the following form:

m1∏
i=1

Aσk(si)

1∏
i=m2

Aσk(ti), where 1 ≤ s1 < · · · < sm1
≤ n, 1 ≤ t1 < · · · < tm2

≤ n. (B.4)

Among them,
(
n
m1

)(
n−m1

m2

)
terms have the property that each of the s1, . . . , sm1

and t1 . . . , tm2
is

unique; in other words, {s1, . . . , sm1
} ∩ {t1, . . . , tm2

} = ∅. The remaining
(
n
m1

)
(
(
n
m2

)
−
(
n−m1

m2

)
)

terms have overlapping indices.

Using this observation, we decompose Cm into two terms Cm = Dm + Rm. Here, Dm is a sum
of terms in Cm with distinct indices s1, . . . , sm1

, t1, . . . , tm2
and Rm is the sum of the remaining

terms.

Dm :=
∑

0≤m1≤n
0≤m2≤n
m1+m2=m

∑
1≤s1<···<sm1

≤n
1≤t1<···<tm2

≤n
si, ti unique

E

[
m1∏
i=1

Aσk(si)

1∏
i=m2

Aσk(ti)

]
, Rm := Cm −Dm. (B.5)
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The matrix Cm is a summation of ∑
0≤m1≤n
0≤m2≤n
m1+m2=m

(
n

m1

)(
n

m2

)
=

(
2n

m

)

terms of the form in (B.4). The number of terms in Dm is∑
0≤m1≤n
0≤m2≤n
m1+m2=m

(
n

m1

)(
n−m1

m2

)
= 2m

(
n

m

)
,

and consequently, Rm consists of
(
2n
m

)
− 2m

(
n
m

)
terms.

Cases 3 ≤ m ≤ n: expectation of terms in Dm. For any s1, s2, . . . , sm1
, t1, t2, . . . , tm2

such
that each of si or ti is unique, we have

E

[
m1∏
i=1

Aσk(si)

1∏
i=m2

Aσk(ti)

]
= E

[
m∏
i=1

Aσk(i)

]
,

due to taking expectation. We can expand this expectation using the law of total expectation.

E

[
m∏
i=1

Aσk(i)

]

=
∑
j1∈[n]

Aj1E

[
m∏
i=2

Aσk(i) | σk(1) = j1

]
P[σk(1) = j1]

=
1

n

∑
j1∈[n]

Aj1E

[
m∏
i=2

Aσk(i) | σk(1) = j1

]

=
1

n(n− 1)

∑
j1∈[n]

∑
j2∈[n]\{j1}

Aj1Aj2E

[
m∏
i=3

Aσk(i) | σk(1) = j1, σk(2) = j2

]

= · · · = (n−m)!

n!

∑
j1∈[n]

∑
j2∈[n]\{j1}

· · ·
∑

jm∈[n]\{j1,...,jm−1}

m∏
i=1

Aji

=
(n−m)!

n!

∑
j1,...,jm∈[n]
j1,...,jm unique

m∏
i=1

Aji

=
(n−m)!

n!

(
n∑
i=1

Ai

)m
− (n−m)!

n!

∑
j1,...,jm∈[n]

j1,...,jm not unique

m∏
i=1

Aji

︸ ︷︷ ︸
=:Nm

. (B.6)

Here, we decompose the expectation of
∏m
i=1 Aσk(i) into the difference of (nA)m and Nm. Note

that all 2m
(
n
m

)
terms in Dm have the same expectation, identical to the one evaluated above. Also

note that Nm is a sum of nm − n!
(n−m)! terms.

To summarize, we have decomposed the expectation of Cm twice, in the following way:

E[Cm] = E[Dm] + E[Rm]

= 2m
(
n

m

)
(n−m)!

n!
((nA)m −Nm) + E[Rm]

=
(2nA)m

m!
− 2m

m!
Nm + E[Rm].
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Spectral norm bound. Up to this point, we obtained the following equations for Cm’s:

C0 = I,

C1 = 2nA,

C2 = 2(nA)2 −
n∑
i=1

A2
i ,

E[Cm] =
(2nA)m

m!
− 2m

m!
Nm + E[Rm], for m = 3, . . . , n.

We substitute these to E[STk Sk] =
∑2n
m=0(−η)mE[Cm] and get

E[STk Sk] =

n∑
m=0

(−2ηnA)m

m!
− η2

n∑
i=1

A2
i +

n∑
m=3

(−η)m
(
E[Rm]− 2m

m!
Nm

)

+

2n∑
m=n+1

(−η)mE[Cm], (B.7)

and consequently,

∥∥E[STk Sk]
∥∥ ≤∥∥∥∥∥

n∑
m=0

(−2ηnA)m

m!

∥∥∥∥∥+

n∑
m=3

ηm
(
‖E[Rm]‖+

2m

m!
‖Nm‖

)

+

2n∑
m=n+1

ηm ‖E[Cm]‖ .

In what follows, we will bound each of the norms to get an upper bound.

B.3.2 Bounding each term of the spectral norm bound

We first start with
∥∥∥∑n

m=0
(−2ηnA)m

m!

∥∥∥. Note that for any eigenvalue s of the positive definite

matrix A, the corresponding eigenvalue of
∑n
m=0

(−2ηnA)m

m! is
∑n
m=0

(−2ηns)m
m! . Recall η ≤

3
16nL min{1,

√
n
κ} ≤

1
4nL , so 0 ≤ 2ηns ≤ 1/2 for any eigenvalue s of A. Since t 7→

∑n
m=0

(−t)m
m!

is a positive and decreasing function on [0, 0.5] for any n ≥ 2, the matrix
∑n
m=0

(−2ηnA)m

m! is
positive definite and its maximum singular value (i.e., spectral norm) comes from the minimum
eigenvalue of A, hence ∥∥∥∥∥

n∑
m=0

(−2ηnA)m

m!

∥∥∥∥∥ ≤
n∑

m=0

(−2ηnµ)m

m!
.

As for ‖E[Rm]‖, where m = 3, . . . , n, recall that Rm is a sum of
(
2n
m

)
− 2m

(
n
m

)
terms, and each of

the terms has spectral norm bounded above by Lm. Thus,

‖E[Rm]‖ ≤ E[‖Rm‖] ≤
((

2n

m

)
− 2m

(
n

m

))
Lm ≤ (2n)m−1Lm, (B.8)

due to Lemma B.7. Similarly, Nm is a sum of nm − n!
(n−m)! elements, so using the same lemma,

2m

m!
‖Nm‖ ≤

2m

m!

(
nm − n!

(n−m)!

)
Lm =

(
(2n)m

m!
− 2m

(
n

m

))
Lm ≤ (2n)m−1Lm. (B.9)

Finally, we consider ‖E[Cm]‖ for m = n+ 1, . . . , 2n. It contains
(
2n
m

)
=
(

2n
2n−m

)
terms, and each

of the terms have spectral norm bounded above by Lm. This leads to

‖E[Cm]‖ ≤
(

2n

2n−m

)
Lm ≤ (2n)2n−mLm ≤ (2n)m−1Lm, (B.10)

where the last bound used 2n−m ≤ m− 1, which holds for m = n+ 1, . . . , 2n.

12



B.3.3 Concluding the proof

Putting the bounds together, we get∥∥E[STk Sk]
∥∥ ≤ n∑

m=0

(−2ηnµ)m

m!
+ 2

n∑
m=3

ηm(2n)m−1Lm +

2n∑
m=n+1

ηm(2n)m−1Lm

≤
2∑

m=0

(−2ηnµ)m

m!
+

1

n

2n∑
m=3

(2ηnL)m

≤
2∑

m=0

(−2ηnµ)m

m!
+

1

n

(2ηnL)3

1− 2ηnL

≤1− 2ηnµ+
1

2
(2ηnµ)2 +

2

n
(2ηnL)3.

Here, we used 2ηnL ≤ 1/2, and the fact that 1 − t + t2

2 ≥
∑n
m=0

(−t)m
m! for all t ∈ [0, 0.5] and

n ≥ 2. The remaining step is to show that the right hand side of the inequality is bounded above by
1− ηnµ for 0 ≤ η ≤ 3

16nL min{1,
√

n
κ}.

Define z = 2ηnL. Using this, we have

1− 2ηnµ+
1

2
(2ηnµ)2 +

2

n
(2ηnL)3 ≤ 1− ηnµ for 0 ≤ η ≤ 3

16nL
min

{
1,

√
n

κ

}
⇔ g(z) :=

z

2κ
− z2

2κ2
− 2z3

n
≥ 0 for 0 ≤ z ≤ 3

8
min

{
1,

√
n

κ

}
,

so it suffices to show the latter. One can check that g(0) = 0, g′(0) > 0 and g′(z) is monotonically
decreasing in z ≥ 0, so g(z) ≥ 0 holds for z ∈ [0, c] for some c > 0. This also means that if we have
g(c) ≥ 0 for some c > 0, g(z) ≥ 0 for all z ∈ [0, c].

First, consider the case κ ≤ n. Then, n/κ ≥ 1 and κ ≥ 1, so

z

2κ
− z2

2κ2
− 2z3

n
=

1

2κ

(
z − z2

κ
− 4z3

n/κ

)
≥ 1

2κ

(
z − z2 − 4z3

)
.

We can check that the function z 7→ z − z2 − 4z3 is strictly positive at z = 3
8 . This means that

g( 3
8 ) > 0, hence g(z) ≥ 0 for 0 ≤ z ≤ 3

8 .

Next, consider the case κ ≥ n. In this case, set z = c
√

n
κ where c = 3

8 . Then,

z

2κ
− z2

2κ2
− 2z3

n
=

1

2κ

(
c

√
n

κ
− c2n

κ2
− 4c3

√
n

κ

)
≥ 1

2κ

(
(c− 4c3)

√
n

κ
− c2n

κ

)
.

Note that
√

n
κ ≤ 1, and the function t 7→ (c− 4c3)t− c2t2 = 21

128 t−
9
64 t

2 is nonnegative on [0, 1].
Therefore, we have g( 3

8

√
n
κ ) ≥ 0, so g(z) ≥ 0 for 0 ≤ z ≤ 3

8

√
n
κ .

B.4 Proof of Lemma B.2

First, note that since 0 ≤ η ≤ 3
16nL min{1,

√
n
κ}, Lemma B.1 holds and it gives

E
[
‖SK:k+1tk‖2

]
= E

[
(SK:k+1tk)T (SK:k+1tk)

]
≤ (1− ηnµ)E

[
(SK−1:k+1tk)T (SK−1:k+1tk)

]
≤ · · · ≤ (1− ηnµ)K−kE[‖tk‖2].

Now, it is left to bound E[‖tk‖2]. The proof technique follows that of [12]. We express ‖tk‖ as
a summation of norms of partial sums of bσk(j) and use a vector-valued version of the Hoeffding-
Serfling inequality due to [13].

Due to summation by parts, the following identity holds:
n∑
j=1

ajbj = an

n∑
j=1

bj −
n−1∑
i=1

(ai+1 − ai)
i∑

j=1

bj .

13



We can apply the identity to tk, by substituting aj =
∏j+1
t=n(I − ηAσk(t)) and bj = bσk(j):

‖tk‖ =

∥∥∥∥∥∥
n∑
j=1

(
j+1∏
t=n

(I − ηAσk(t))

)
bσk(j)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
n∑
j=1

bσk(j) −
n−1∑
i=1

(
i+2∏
t=n

(I − ηAσk(t))−
i+1∏
t=n

(I − ηAσk(t))

)
i∑

j=1

bσk(j)

∥∥∥∥∥∥
=

∥∥∥∥∥∥η
n−1∑
i=1

(
i+2∏
t=n

(I − ηAσk(t))

)
Aσk(i+1)

i∑
j=1

bσk(j)

∥∥∥∥∥∥
≤ η

n−1∑
i=1

∥∥∥∥∥∥
(
i+2∏
t=n

(I − ηAσk(t))

)
Aσk(i+1)

i∑
j=1

bσk(j)

∥∥∥∥∥∥ ≤ ηL(1 + ηL)n
n−1∑
i=1

∥∥∥∥∥∥
i∑

j=1

bσk(j)

∥∥∥∥∥∥ ,
(B.11)

where the last step used
∥∥Aσk(j)

∥∥ ≤ L. Recall that η ≤ 1
4nL , which implies (1 + ηL)n ≤ e1/4.

Now, we use Lemma A.1, the Hoeffding-Serfling inequality for bounded random vectors. We restate
the lemma for readers’ convenience.
Lemma A.1 ([13, Theorem 2]). Suppose n ≥ 2. Let v1,v2, . . . ,vn ∈ Rd satisfy ‖vj‖ ≤ G for all j.
Let v̄ = 1

n

∑n
j=1 vj . Let σ ∈ Sn be a uniform random permutation of n elements. Then, for i ≤ n,

with probability at least 1− δ, we have∥∥∥∥∥∥1

i

i∑
j=1

vσ(j) − v̄

∥∥∥∥∥∥ ≤ G
√

8(1− i−1
n ) log 2

δ

i
.

Recall that the mean v̄ = 1
n

∑
i bi = 0 for our setting, so with probability at least 1− δ, we have∥∥∥∥∥∥

i∑
j=1

bσk(j)

∥∥∥∥∥∥ ≤ G
√

8i log
2

δ
.

Using the union bound for all i = 1, . . . , n− 1, we have with probability at least 1− δ,
n−1∑
i=1

∥∥∥∥∥∥
i∑

j=1

bσk(j)

∥∥∥∥∥∥ ≤ G
√

8 log
2n

δ

n−1∑
i=1

√
i ≤ G

√
8 log

2n

δ

∫ n

1

√
ydy

≤ 2G

3

√
8 log

2n

δ
n3/2. (B.12)

Substituting this to (B.11) then leads to

‖tk‖2 ≤
32e1/2

9
η2n3L2G2 log

2n

δ
,

which holds with probability at least 1− δ.

Now, set δ = 1/n, and let E be the probabilistic event that (B.12) holds. Let Ec be the complement
of E. Given Ec, directly bounding (B.11) yields

E
[
‖tk‖2 | Ec

]
≤ E


e1/4ηL n−1∑

i=1

∥∥∥∥∥∥
i∑

j=1

bσk(j)

∥∥∥∥∥∥
2

| Ec

 ≤ e1/2η2n4L2G2

4
.

Finally, putting everything together and using log(2n2) ≤ 3 log n (due to n ≥ 2),

E
[
‖tk‖2

]
= E

[
‖tk‖2 | E

]
P[E] + E

[
‖tk‖2 | Ec

]
P[Ec]

≤ 32e1/2

3
η2n3L2G2 log n+

e1/2η2n4L2G2

4

1

n

≤ 18η2n3L2G2 log n.
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B.5 Proof of Lemma B.3

Recall that St and tt depend only on the permutation σt. Hence, for any t′ 6= t, St and tt are
independent of St′ and tt′ . Recall k < k′. Using independence, we can decompose the dot product.

E [〈SK:k+1tk,SK:k′+1tk′〉] = E
[
tTkS

T
K:k+1SK:k′+1tk′

]
= E[tk]TE[Sk′−1:k+1]TE

[
STK:k′SK:k′+1tk′

]
≤ ‖E[Sk′−1:k+1]E[tk]‖

∥∥E [STK:k′SK:k′+1tk′
]∥∥

≤ ‖E[S1]‖k
′−k−1 ‖E[tk]‖

∥∥E [STK:k′SK:k′+1tk′
]∥∥ ,

where we used Cauchy-Schwarz inequality.

For the remainder of the proof, we use the following three technical lemmas that bound each of the
terms in the product and get to the conclusion. The proofs of Lemmas B.4, B.5, and B.6 are deferred
to Sections B.6, B.7, and B.8, respectively.
Lemma B.4 (2nd contraction bound). For any 0 ≤ η ≤ 3

16nL min{1,
√

n
κ} and any k ∈ [K],

‖E[Sk]‖ ≤ 1− ηnµ

2
.

Lemma B.5. For any 0 ≤ η ≤ 1
2nL and any k ∈ [K],

‖E[tk]‖ ≤ 4ηnLG.

Lemma B.6. For any 0 ≤ η ≤ 3
16nL min{1,

√
n
κ} and any k ∈ [K],∥∥E [STK:kSK:k+1tk

]∥∥ ≤ 10(1− ηnµ)K−kηnLG.

Given these lemmas, we get the desired bound:

E [〈SK:k+1tk,SK:k′+1tk′〉] ≤ 40
(

1− ηnµ

2

)k′−k−1
(1− ηnµ)K−k

′
η2n2L2G2

≤ 40
(

1− ηnµ

2

)2K−k′−k−1
η2n2L2G2.

B.6 Proof of the second contraction bound (Lemma B.4)

The proof goes in a similar way as the first contraction bound (Lemma B.1), but is simpler than
Lemma B.1. Nevertheless, we recommend the readers to first go over Section B.3 before reading this
section, because this section borrows quantities defined in Section B.3.

B.6.1 Decomposition into elementary polynomials

For any permutation σk, recall that we can expand Sk in the following way:

Sk =

1∏
t=n

(I − ηAσk(t)) =

n∑
m=0

(−η)m
∑

1≤t1<···<tm≤n

Aσk(tm) · · ·Aσk(t1) =:

n∑
m=0

(−η)mem(Aσk[n]),

where the noncommutative elementary symmetric polynomial em was defined in (B.1). In what
follows, we will examine the expectation E[em(Aσk[n])] closely and decompose E[Sk] into the sum
of
∑n
m=0

(−ηnA)m

m! and remainder terms.

Cases 0 ≤ m ≤ 1. By definition, e0(Aσk[n]) = I and e1(Aσk[n]) =
∑n
i=1 Ai = nA, regardless

of σk.

Cases 2 ≤ m ≤ n. Note that each elementary symmetric polynomial em(Aσk[n]) contains
(
n
m

)
terms, and each term is of the form

1∏
i=m

Aσk(ti), where 1 ≤ t1 < · · · < tm ≤ n.
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Since the indices t1, . . . , tm are guaranteed to be distinct, we have

E

[
1∏

i=m

Aσk(ti)

]
= E

[
m∏
i=1

Aσk(i)

]
.

This expectation was evaluated in (B.6):

E

[
m∏
i=1

Aσk(i)

]
=

(n−m)!

n!

(
n∑
i=1

Ai

)m
− (n−m)!

n!

∑
j1,...,jm∈[n]

j1,...,jm not unique

m∏
i=1

Aji

=:
(n−m)!

n!
(nA)m − (n−m)!

n!
Nm.

Here, we decompose the expectation of
∏m
i=1 Aσk(i) into the difference of (nA)m and Nm. Note

that all
(
n
m

)
terms in em(Aσk[n]) have the same expectation, identical to the one evaluated above.

Therefore, we have

E[em(Aσk[n])] =

(
n

m

)
(n−m)!

n!
((nA)m −Nm) =

(nA)m

m!
− Nm

m!
.

Here, note one special case, m = 2:

N2 :=
∑

j1,j2∈[n]
j1,j2 not unique

Aj1Aj2 =

n∑
i=1

A2
i ,

which is a sum of positive semi-definite matrices.

Spectral norm bound. Up to this point, we obtained the following equations for em(Aσk[n])’s:

e0(Aσk[n]) = I,

e1(Aσk[n]) = nA,

E[e2(Aσk[n])] = 1
2 (nA)2 − 1

2

n∑
i=1

A2
i ,

E[em(Aσk[n])] =
(nA)m

m!
− Nm

m!
, for m = 3, . . . , n.

We substitute these to E[Sk] =
∑n
m=0(−η)mE[em(Aσk[n])] and get

E[Sk] =

n∑
m=0

(−ηnA)m

m!
− η2

2

n∑
i=1

A2
i −

n∑
m=3

(−η)m
Nm

m!
,

and consequently,

‖E[Sk]‖ ≤

∥∥∥∥∥
n∑

m=0

(−ηnA)m

m!

∥∥∥∥∥+

n∑
m=3

ηm

m!
‖Nm‖ .

In what follows, we will bound each of the norms to get an upper bound.

B.6.2 Bounding each term of the spectral norm bound

We first start with
∥∥∥∑n

m=0
(−ηnA)m

m!

∥∥∥. Note that for any eigenvalue s of the positive definite

matrix A, the corresponding eigenvalue of
∑n
m=0

(−ηnA)m

m! is
∑n
m=0

(−ηns)m
m! . Recall η ≤

3
16nL min{1,

√
n
κ} ≤

1
4nL , so 0 ≤ ηns ≤ 1/4 for any eigenvalue s of A. Since t 7→

∑n
m=0

(−t)m
m!

is a positive and decreasing function on [0, 0.25] for any n ≥ 2, the maximum singular value (i.e.,
spectral norm) of

∑n
m=0

(−ηnA)m

m! comes from the minimum eigenvalue of A, hence∥∥∥∥∥
n∑

m=0

(−ηnA)m

m!

∥∥∥∥∥ ≤
n∑

m=0

(−ηnµ)m

m!
.
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As for ‖Nm‖ where m = 3, . . . , n, recall that Nm is a sum of nm − n!
(n−m)! terms, and each of the

terms has spectral norm bounded above by Lm. Thus,

1

m!
‖Nm‖ ≤

1

m!

(
nm − n!

(n−m)!

)
Lm =

(
nm

m!
−
(
n

m

))
Lm ≤ 1

2
nm−1Lm,

due to Lemma B.8.

B.6.3 Concluding the proof

Putting the bounds together, we get

‖E[Sk]‖ ≤
n∑

m=0

(−ηnµ)m

m!
+

1

2n

n∑
m=3

(ηnL)m

≤
2∑

m=0

(−ηnµ)m

m!
+

1

2n

(ηnL)3

1− ηnL

≤1− ηnµ+
1

2
(ηnµ)2 +

2

3n
(ηnL)3.

Here, we used ηnL ≤ 1/4, and the fact that 1 − t + t2

2 ≥
∑n
m=0

(−t)m
m! for all t ∈ [0, 0.25] and

n ≥ 2. The remaining step is to show that the right hand side of the inequality is bounded above by
1− ηnµ

2 for 0 ≤ η ≤ 3
16nL min{1,

√
n
κ}.

Define z = ηnL. Using this, we have

1− ηnµ+
1

2
(ηnµ)2 +

2

3n
(ηnL)3 ≤ 1− ηnµ

2
for 0 ≤ η ≤ 3

16nL
min

{
1,

√
n

κ

}
⇔ g(z) :=

z

2κ
− z2

2κ2
− 2z3

3n
≥ 0 for 0 ≤ z ≤ 3

16
min

{
1,

√
n

κ

}
,

so it suffices to show the latter. One can check that g(0) = 0, g′(0) > 0 and g′(z) is monotonically
decreasing in z ≥ 0, so g(z) ≥ 0 holds for z ∈ [0, c] for some c > 0. This also means that if we have
g(c) ≥ 0 for some c > 0, g(z) ≥ 0 for all z ∈ [0, c].

First, consider the case κ ≤ n. Then, n/κ ≥ 1 and κ ≥ 1, so

z

2κ
− z2

2κ2
− 2z3

3n
=

1

2κ

(
z − z2

κ
− 4z3

3n/κ

)
≥ 1

2κ

(
z − z2 − 4

3
z3
)
.

We can check that the function z 7→ z − z2 − 4
3z

3 is strictly positive at z = 3
16 . This means that

g( 3
8 ) > 0, hence g(z) ≥ 0 for 0 ≤ z ≤ 3

8 .

Next, consider the case κ ≥ n. In this case, set z = c
√

n
κ where c = 3

16 . Then,

z

2κ
− z2

2κ2
− 2z3

3n
=

1

2κ

(
c

√
n

κ
− c2n

κ2
− 4c3

3

√
n

κ

)
≥ 1

2κ

((
c− 4c3

3

)√
n

κ
− c2n

κ

)
.

Note that
√

n
κ ≤ 1, and the function t 7→ (c− 4

3c
3)t− c2t2 = 183

1024 t−
9

256 t
2 is nonnegative on [0, 1].

Therefore, we have g( 3
16

√
n
κ ) ≥ 0, so g(z) ≥ 0 for 0 ≤ z ≤ 3

16

√
n
κ .

B.7 Proof of Lemma B.5

For this lemma, the proof is an extension of Lemma 8 in [12] from one dimension to higher dimensions.
We use the law of total expectation to unwind the expectation E[tk], and use

∑n
i=1 bi = 0 to write∑

im+1∈[n]\{i1,...,im}

bim+1 = −
∑

im+1∈{i1,...,im}

bim+1 ,

which turns a sum of n−m terms into m terms. This trick reduces the bound by a factor of n.
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Now, expand the expectation of tk as

E[tk] = E

 n∑
j=1

(
j+1∏
t=n

(I − ηAσk(t))

)
bσk(j)

 =

n∑
j=1

E

[(
j+1∏
t=n

(I − ηAσk(t))

)
bσk(j)

]

=

n∑
j=1

E

bσk(j) +

n−j∑
m=1

(−η)m
∑

j+1≤t1<···<tm≤n

(
1∏

i=m

Aσk(ti)

)
bσk(j)


=

n∑
j=1

n−j∑
m=1

(−η)mE
[
em(Aσk[n]; j + 1, n)bσk(j)

]
,

where the elementary polynomial em is defined in (B.1). Now, fix any t1, . . . , tm satisfying j + 1 ≤
t1 < · · · < tm ≤ n. Since all the indices j, t1, . . . , tm in the product are unique, the expectation is
the same for all

(
n−j
m

)
such terms:

E

[(
1∏

i=m

Aσk(ti)

)
bσk(j)

]
= E

[(
m∏
i=1

Aσk(i)

)
bσk(m+1)

]
.

We can calculate the expectation using the law of total expectation.
E
[
Aσk(1)Aσk(t2) . . .Aσk(m)bσk(m+1)

]
=
∑
i1∈[n]

Ai1E
[
Aσk(2) . . .Aσk(m)bσk(m+1) | σk(1) = i1

]
P[σk(t1) = i1]

=
1

n

∑
i1∈[n]

Ai1E
[
Aσk(2) . . .Aσk(m)bσk(m+1) | σk(1) = i1

]
=

1

n(n− 1)

∑
i1∈[n]

∑
i2∈[n]\{i1}

Ai1Ai2E
[
Aσk(3) . . .Aσk(m)bσk(m+1) | σk(1) = i1, σk(2) = i2

]
=

(n−m)!

n!

∑
i1∈[n]

· · ·
∑

im∈[n]\{i1,...,im−1}

(
m∏
l=1

Ail

)
E
[
bσk(m+1) | σk(1) = i1, . . . , σk(m) = im

]
=

(n−m)!

n!

∑
i1∈[n]

· · ·
∑

im∈[n]\{i1,...,im−1}

(
m∏
l=1

Ail

)
1

n−m
∑

im+1∈[n]\{i1,...,im}

bim+1

= − (n−m)!

n!

∑
i1∈[n]

· · ·
∑

im∈[n]\{i1,...,im−1}

(
m∏
l=1

Ail

)
1

n−m
∑

im+1∈{i1,...,im}

bim+1 .

As a consequence, we get∥∥∥∥∥E
[(

1∏
i=m

Aσk(ti)

)
bσk(j)

]∥∥∥∥∥ ≤ m

n−m
LmG,

for each term in em(Aσk[n]; j + 1, n)bσk(j). Applying this to the norm of E[tk] gives

‖E[tk]‖ ≤
n∑
j=1

n−j∑
m=1

ηm
∥∥E [em(Aσk[n]; j + 1, n)bσk(j)

]∥∥
≤

n∑
j=1

n−j∑
m=1

ηm
(
n− j
m

)
m

n−m
LmG ≤

n∑
j=1

n−1∑
m=1

ηm
(
n

m

)
m

n−m
LmG

=

n∑
j=1

n−1∑
m=1

ηm
(

n

m− 1

)
n−m+ 1

n−m
LmG ≤ 2G

n∑
j=1

n−1∑
m=1

ηmnm−1Lm

≤ 2nG
ηL

1− ηnL
≤ 4ηnLG,

where the last steps used ηnL ≤ 0.5.
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B.8 Proof of Lemma B.6

B.8.1 Proof outline

First, recall that St for t > k is independent of σk. So

E
[
STK:kSK:k+1tk

]
= E

[
STk E

[
STK:k+1SK:k+1

]︸ ︷︷ ︸
=:M

tk

]
= E

[
STk Mtk

]
,

where M is a matrix satisfying ‖M‖ ≤ (1− ηnµ)K−k (due to Lemma B.1) that does not depend
on σk. Recall that

STk =

n∏
t=1

(I − ηAσk(t)) =

n∑
m=0

(−η)mem(Aσk[n])
T ,

tk =

n∑
j=1

(
j+1∏
t=n

(I − ηAσk(t))

)
bσk(j) =

n∑
j=1

n−j∑
m=1

(−η)mem(Aσk[n]; j + 1, n)bσk(j),

where the elementary polynomial em is defined in (B.1). Substituting these into STk Mtk gives

STk Mtk =

n∑
j=1

2n−j∑
m=1

(−η)m
∑

0≤m1≤n
1≤m2≤n−j
m1+m2=m

em1(Aσk[n])
TMem2(Aσk[n]; j + 1, n)bσk(j)

︸ ︷︷ ︸
=:cj,m

.

The rest of the proof is decomposing and bounding the vector cj,m for each j = 1, . . . , n and
m = 1, . . . , 2n− j to get the desired bound on the norm of E[STk Mtk].

B.8.2 Decomposing the terms in the vector cj,m into three categories

Now fix any j ∈ [n] and m ∈ [2n− j], and consider any m1 and m2 satisfying m1 +m2 = m. Then,
the product em1

(Aσk[n])
TMem2

(Aσk[n]; j + 1, n)bσk(j) in cj,m consists of
(
n
m1

)(
n−j
m2

)
terms of

the following form: (
m1∏
i=1

Aσk(si)

)
M

(
1∏

i=m2

Aσk(ti)

)
bσk(j),

where 1 ≤ s1 < · · · < sm1
≤ n, and j + 1 ≤ t1 < · · · < tm2

≤ n.

Among them,
(
n−1
m1

)(
n−j
m2

)
terms have the property that j /∈ {s1, . . . , sm1}. The remaining(

n−1
m1−1

)(
n−j
m2

)
terms satisfy j ∈ {s1, . . . , sm1

}.

Using this observation, we decompose cj,m into two terms cj,m = dj,m + rj,m. Here, dj,m is a
sum of terms in cj,m with s1, . . . , sm1

that satisfies j /∈ {s1, . . . , sm1
}, and rj,m is the sum of the

remaining terms.

dj,m :=
∑

0≤m1≤n−1
1≤m2≤n−j
m1+m2=m

∑
1≤s1<···<sm1

≤n
j+1≤t1<···<tm2

≤n
j /∈{s1,...,sm1

}

(
m1∏
i=1

Aσk(si)

)
M

(
1∏

i=m2

Aσk(ti)

)
bσk(j),

rj,m := cj,m − dj,m.

Then, we will bound the sum of terms in dj,m and rj,m separately. There are three categories we
consider:

1. Bounding rj,m,
2. Bounding dj,m, for m ≥ n/2,
3. Bounding dj,m, for m < n/2.

The first two categories are straightforward, and the last category requires the law of total expectation
trick. We will first state the bounds for the first two and then move on to the third.
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B.8.3 Directly bounding the first two categories

For the first category, the norm of each term in rj,m can be easily bounded:∥∥∥∥∥
(
m1∏
i=1

Aσk(si)

)
M

(
1∏

i=m2

Aσk(ti)

)
bσk(j)

∥∥∥∥∥ ≤ (1− ηnµ)K−kLmG.

Since there are
(
n−1
m1−1

)(
n−j
m2

)
terms in rj,m for each m1, m2 satisfying m1 +m2 = m, we have

‖rj,m‖ ≤ (1− ηnµ)K−kLmG
∑

1≤m1≤n
1≤m2≤n−j
m1+m2=m

(
n− 1

m1 − 1

)(
n− j
m2

)

≤ (1− ηnµ)K−kLmG
∑

0≤m1≤n−1
0≤m2≤n−j
m1+m2=m−1

(
n− 1

m1

)(
n− j
m2

)

= (1− ηnµ)K−k
(

2n− j − 1

m− 1

)
LmG ≤ (1− ηnµ)K−k(2n)m−1LmG. (B.13)

For the second category where m ≥ n/2, the norm of each term in dj,m can be bounded by
(1− ηnµ)K−kLmG in the same way. Now, since there are

(
n−1
m1

)(
n−j
m2

)
terms for each m1 and m2,

we have

‖dj,m‖ ≤ (1− ηnµ)K−kLmG
∑

0≤m1≤n−1
1≤m2≤n−j
m1+m2=m

(
n− 1

m1

)(
n− j
m2

)

≤ (1− ηnµ)K−kLmG
∑

0≤m1≤n−1
0≤m2≤n−j
m1+m2=m

(
n− 1

m1

)(
n− j
m2

)

= (1− ηnµ)K−k
(

2n− j − 1

m

)
LmG ≤ (1− ηnµ)K−k

(
2n

m

)
LmG.

Since m ≥ n/2, we can upper-bound
(
2n
m

)
with a constant multiple of

(
2n
m−1

)
:(

2n

m

)
=

2n−m+ 1

m

(
2n

m− 1

)
≤ 4

(
2n

m− 1

)
,

where the inequality holds because

m ≥ n/2 and n ≥ 2⇒ 5m ≥ 2n+ 1⇔ 4m ≥ 2n−m+ 1.

Therefore, if m ≥ n/2,

‖dj,m‖ ≤ 4(1− ηnµ)K−k(2n)m−1LmG. (B.14)

B.8.4 Bounding the third category using the law of total expectation

We will show a similar bound for ‖E[dj,m]‖ in case of m < n/2 as well, but the third category
requires a bit more care. For m < n/2, we need to use the law of total expectation to exploit the fact
that

∑
i bi = 0 and reduce a factor of n.

Now consider the expectation for a term in dj,m:

E

[(
m1∏
i=1

Aσk(si)

)
M

(
1∏

i=m2

Aσk(ti)

)
bσk(j)

]
.

We will use the law of total expectation to bound the norm of this expectation. One thing we should
be careful of is that there may be overlapping indices between {s1, . . . , sm1

} and {t1, . . . , tm2
}. For
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now, let us assume that there are no overlapping indices; hence, s1, . . . , sm1 , t1, . . . , tm2 , j are all
distinct. Then, the expectation can be expanded as the following.

E

[(
m1∏
i=1

Aσk(si)

)
M

(
1∏

i=m2

Aσk(ti)

)
bσk(j)

]

=
∑
i1∈[n]

E

[(
m1∏
i=1

Aσk(si)

)
M

(
1∏

i=m2

Aσk(ti)

)
bσk(j) | σk(s1) = i1

]
P[σk(s1) = i1]

=
1

n

∑
i1∈[n]

Ai1E

[(
m1∏
i=2

Aσk(si)

)
M

(
1∏

i=m2

Aσk(ti)

)
bσk(j) | σk(s1) = i1

]

=
1

n(n− 1)

∑
i1∈[n]

∑
i2∈[n]\{i1}

Ai1Ai2E

[(
m1∏
i=3

Aσk(si)

)
M

(
1∏

i=m2

Aσk(ti)

)
bσk(j) | σk(s1) = i1, σk(s2) = i2

]

=
(n−m)!

n!

∑
i1∈[n]

· · ·
∑

im1
∈[n]\{i1,...,im1−1}

∑
lm2
∈[n]\{i1,...,im1

}

· · ·
∑

l1∈[n]\{i1,...,im1
,l2,...,lm2

}(
m1∏
t=1

Ait

)
M

(
1∏

t=m2

Alt

)
E
[
bσk(j) | σk(s1) = i1, . . . , σk(tm2

) = lm2

]
.

Here, by
∑
t bt = 0,

E
[
bσk(j) | σk(s1) = i1, . . . , σk(tm2

) = lm2

]
=

1

n−m
∑

t∈[n]\{i1,...,im1 ,l1,...,lm2}

bt

= − 1

n−m
∑

t∈{i1,...,im1
,l1,...,lm2

}

bt.

Putting these together, we can get a bound on the norm of the expectation:∥∥∥∥∥E
[(

m1∏
i=1

Aσk(si)

)
M

(
1∏

i=m2

Aσk(ti)

)
bσk(j)

]∥∥∥∥∥
≤ (n−m)!

n!

∑
i1∈[n]

· · ·
∑

im1∈[n]\{i1,...,im1−1}

∑
lm2∈[n]\{i1,...,im1}

· · ·
∑

l1∈[n]\{i1,...,im1 ,l2,...,lm2}∥∥∥∥∥∥
(
m1∏
t=1

Ait

)
M

(
1∏

t=m2

Alt

)
1

n−m
∑

t∈{i1,...,im1 ,l1,...,lm2}

bt

∥∥∥∥∥∥
≤ (1− ηnµ)K−k

m

n−m
LmG.

What if there are overlapping indices between {s1, . . . , sm1} and {t1, . . . , tm2}? Suppose the union
of the two sets has m̃ < m elements. Notice that even in this case, j does not overlap with any si or
ti. So, we can do a similar calculation and use the

∑
t bt = 0 trick at the end. This gives∥∥∥∥∥E

[(
m1∏
i=1

Aσk(si)

)
M

(
1∏

i=m2

Aσk(ti)

)
bσk(j)

]∥∥∥∥∥ ≤ (1− ηnµ)K−k
m̃

n− m̃
LmG

≤ (1− ηnµ)K−k
m

n−m
LmG,

so the same upper bound holds even for the terms with overlapping indices. Now, since there are(
n−1
m1

)(
n−j
m2

)
such terms for each m1 and m2, we have

‖E[dj,m]‖ ≤ (1− ηnµ)K−k
m

n−m
LmG

∑
0≤m1≤n−1
1≤m2≤n−j
m1+m2=m

(
n− 1

m1

)(
n− j
m2

)

21



≤ (1− ηnµ)K−k
m

n−m

(
2n− j − 1

m

)
LmG.

Note that

m

n−m

(
2n− j − 1

m

)
≤ m

n−m

(
2n

m

)
=

2n−m+ 1

n−m

(
2n

m− 1

)
≤ 3

(
2n

m− 1

)
,

this is because

m < n/2⇒ 2m+ 1 ≤ n
⇔ 2m+ 1 + (2n− 3m) ≤ n+ (2n− 3m)

⇔ 2m+ 1 + (2n− 3m)

n+ (2n− 3m)
=

2n−m+ 1

3n− 3m
≤ 1.

Thus, for m < n/2, we obtain the following bound on ‖E[dj,m]‖:

‖E[dj,m]‖ ≤ 3(1− ηnµ)K−k(2n)m−1LmG. (B.15)

B.8.5 Concluding the proof

Finally, using the bounds (B.13), (B.14), and (B.15), we get

∥∥E[STk Mtk]
∥∥ ≤ n∑

j=1

2n−j∑
m=1

ηm ‖E[cj,m]‖ ≤
n∑
j=1

2n−j∑
m=1

ηm(‖E[dj,m]‖+ ‖E[rj,m]‖)

≤
n∑
j=1

2n−j∑
m=1

5(1− ηnµ)K−k(2n)m−1ηmLmG

≤ 5(1− ηnµ)K−knG
ηL

1− 2ηnL
≤ 10(1− ηnµ)K−kηnLG,

where the last inequality used η ≤ 1
4nL .

B.9 Technical lemmas on binomial coefficients

Lemma B.7. For any n ∈ N and 2 ≤ m ≤ n,(
2n

m

)
− 2m

(
n

m

)
≤ (2n)m

m!
− 2m

(
n

m

)
≤ (2n)m−1

(m− 2)!
.

Proof The first inequality is straightforward from(
2n

m

)
=

2n(2n− 1) . . . (2n−m+ 1)

m!
≤ (2n)m

m!
.

The remaining inequality is shown with mathematical induction. For the base case (m = 2),

(2n)2

2!
− 22

(
n

2

)
= 2n2 − 4

n(n− 1)

2
= 2n =

(2n)2−1

(2− 2)!
,

so the inequality holds with equality. For the inductive case, suppose

(2n)m

m!
− 2m

(
n

m

)
≤ (2n)m−1

(m− 2)!

holds, where 2 ≤ m ≤ n− 1. Then,

(2n)m+1

(m+ 1)!
− 2m+1

(
n

m+ 1

)
=

2n

m+ 1

(2n)m

m!
− 2(n−m)

m+ 1
2m
(
n

m

)
=

2m

m+ 1

(2n)m

m!
+

2(n−m)

m+ 1

(
(2n)m

m!
− 2m

(
n

m

))
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≤ 2m

m+ 1

(2n)m

m!
+

2(n−m)

m+ 1

(2n)m−1

(m− 2)!

=
(2n)m−1

(m+ 1)(m− 2)!

(
4n

m− 1
+ 2(n−m)

)
=

(2n)m−1

(m+ 1)(m− 2)!

2mn+ 2n− 2m2 + 2m

m− 1

=
(2n)m

(m− 1)!

mn+ n−m2 +m

n(m+ 1)
.

It now suffices to check that mn+n−m
2+m

n(m+1) ≤ 1.

mn+ n−m2 +m

n(m+ 1)
≤ 1⇔ mn+ n−m2 +m ≤ mn+ n⇔ m ≤ m2.

Since m ≥ 2, the inequality holds. This finishes the proof.

Lemma B.8. For any n ∈ N and 2 ≤ m ≤ n,

nm

m!
−
(
n

m

)
≤ nm−1

2(m− 2)!
.

Proof The is shown with mathematical induction. For the base case (m = 2),

n2

2!
−
(
n

2

)
=
n2

2
− n(n− 1)

2
=
n

2
,

so the inequality holds with equality. For the inductive case, suppose

nm

m!
−
(
n

m

)
≤ nm−1

2(m− 2)!

holds, where 2 ≤ m ≤ n− 1. Then,

nm+1

(m+ 1)!
−
(

n

m+ 1

)
=

n

m+ 1

nm

m!
− n−m
m+ 1

(
n

m

)
=

m

m+ 1

nm

m!
+
n−m
m+ 1

(
nm

m!
−
(
n

m

))
≤ 1

m+ 1

nm

(m− 1)!
+
n−m
m+ 1

nm−1

2(m− 2)!

=
nm−1

2(m+ 1)(m− 2)!

(
2n

m− 1
+ n−m

)
=

nm−1

2(m+ 1)(m− 2)!

mn+ n−m2 +m

m− 1

=
nm

2(m− 1)!

mn+ n−m2 +m

n(m+ 1)
.

It now suffices to check that mn+n−m
2+m

n(m+1) ≤ 1.

mn+ n−m2 +m

n(m+ 1)
≤ 1⇔ mn+ n−m2 +m ≤ mn+ n⇔ m ≤ m2.

Since m ≥ 2, the inequality holds. This finishes the proof.
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C RANDOMSHUFFLE: Tail average bound for strongly convex quadratics

In this section, we provide details for Remark 3. We first state the theorem for the tail average iterate,
which improves the leading constants of Theorem 2 by a factor of κ. We will then provide the proof
for Theorem C.1 in the subsequent subsections.
Theorem C.1 (Tail averaging). Assume that F (x) := 1

n

∑n
i=1 fi(x) = 1

2x
TAx and F is µ-strongly

convex. Let fi(x) := 1
2x

TAix + bTi x and fi ∈ C1
L(Rd). Consider RANDOMSHUFFLE for the

number of epochs K satisfying K ≥ 128κmax{1,
√

κ
n} log(nK), step size ηki = η := 16 log(nK)

µnK ,
and initialization x0. Then for G := maxi∈[n] ‖bi‖ and some constant c = O(κ3),

E[F (x̄)]− F ∗ ≤ µ ‖x0‖2

16n2K2
+
c ·G2 · log2(nK)

n2K2
+
c ·G2 · log4(nK)

nK3
,

where x̄ is the tail average of the iterates x̄ =
∑K
k=dK/2e x

k
0

K−dK/2e+1 .

C.1 Proof outline

Recall the definitions

fi(x) := 1
2x

TAix + bTi x, F (x) :=
1

n

n∑
i=1

fi(x) = 1
2x

TAx,

where fi’s are L-smooth and F is µ strongly convex. This is equivalent to saying that ‖Ai‖ ≤ L
and A := 1

n

∑n
i=1 Ai � µI . Also note that F is minimized at x∗ = 0 and

∑n
i=1 bi = 0. We let

G := maxi∈[n] ‖bi‖.
In order to get a bound for tail average of the iterates, we need to modify our proof technique a bit.
Instead of unrolling all the update equations (as done in Theorem 2), we only consider one epoch,
and derive a per-epoch improvement bound. In the Proof of Theorem 2, we derived the epoch update
equation:

xk+1
0 =

[
1∏
t=n

(I − ηAσk(t))

]
︸ ︷︷ ︸

=:Sk

xk0 − η

 n∑
j=1

(
j+1∏
t=n

(I − ηAσk(t))

)
bσk(j)


︸ ︷︷ ︸

=:tk

= Skx
k
0 − ηtk.

Using this update, the expected distance to the optimum squared ‖xk+1
0 ‖2 given xk0 is

E[
∥∥xk+1

0

∥∥2] = E[
∥∥Skxk0∥∥2]− 2ηE[

〈
Skx

k
0 , tk

〉
] + η2E[‖tk‖2]

= E[
∥∥Skxk0∥∥2]− 2η

〈
xk0 ,E[STk tk]

〉
+ η2E[‖tk‖2]

≤ E[
∥∥Skxk0∥∥2] + 2η

∥∥xk0∥∥∥∥E[STk tk]
∥∥+ η2E[‖tk‖2],

where the last inequality is due to Cauchy-Schwarz. We now bound each term in the right hand side.
The first term can be bounded by a slight refinement of the first contraction bound (Lemma B.1).
Lemma C.2 (3rd contraction bound). For any 0 ≤ η ≤ 1

8nL min{1,
√

n
κ},

E[
∥∥Skxk0∥∥2] ≤

(
1− ηnµ

2

)∥∥xk0∥∥2 − 2ηnF (xk0).

The next two terms can be bounded using Lemmas B.6 and B.2:∥∥E[STk tk]
∥∥ ≤ 10ηnLG, E[‖tk‖2] ≤ 18η2n3L2G2 log n.

Substituting these bounds, we get

E[
∥∥xk+1

0

∥∥2] ≤
(

1− ηnµ

2

)∥∥xk0∥∥2 − 2ηnF (xk0) + 20η2nLG
∥∥xk0∥∥+ 18η4n3L2G2 log n.
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We then use the AM-GM inequality ab ≤ a2+b2

2 on a = 20
√
2η3/2n1/2LG
µ1/2 and b =

√
ηnµ
2

∥∥xk0∥∥, and
get

E[
∥∥xk+1

0

∥∥2] ≤
(

1− ηnµ

4

)∥∥xk0∥∥2 − 2ηnF (xk0) +
400η3nL2G2

µ
+ 18η4n3L2G2 log n. (C.1)

Now, consider the following rearrangement of (C.1)

2ηnE[F (xk0)] ≤
(

1− ηnµ

4

)
E[
∥∥xk0∥∥2]− E[

∥∥xk+1
0

∥∥2] +
400η3nL2G2

µ
+ 18η4n3L2G2 log n.

Summing up both sides of the inequality for k = dK/2e, . . . ,K gives

2ηn

K∑
k=dK/2e

E[F (xk0)] ≤
(

1− ηnµ

4

)
E
[∥∥∥xdK/2e0

∥∥∥2]

+

(
K −

⌈
K

2

⌉
+ 1

)(
400η3nL2G2

µ
+ 18η4n3L2G2 log n

)
.

Unwinding the recursion (C.1) from k = dK/2e − 1 until k = 1 (while using F (x) ≥ 0), we obtain

E
[∥∥∥xdK/2e0

∥∥∥2] ≤ (1− ηnµ

4

)dK/2e−1 ∥∥x1
0

∥∥2
+

(⌈
K

2

⌉
− 1

)(
400η3nL2G2

µ
+ 18η4n3L2G2 log n

)
,

so by substitution we have

2ηn

K∑
k=dK/2e

E[F (xk0)] ≤
(

1− ηnµ

4

)dK/2e ∥∥x1
0

∥∥2 +
400η3nKL2G2

µ
+ 18η4n3KL2G2 log n.

Now, we take the average of both sides by dividing both sides by K − dK/2e + 1. We then
further divide both sides by 2ηn and apply Jensen’s inequality to get a bound on the tail average

x̄ :=
∑K
k=dK/2e x

k
0

K−dK/2e+1 .

E[F (x̄)] ≤
∑K
k=dK/2e E[F (xk0)]

K − dK/2e+ 1

≤ 1

ηnK

(
1− ηnµ

4

)dK/2e ∥∥x1
0

∥∥2 +
400η2L2G2

µ
+ 18η3n2L2G2 log n,

where the last inequality used K − dK/2e+ 1 ≥ K/2. Lastly, substituting η = 16 lognK
µnK gives us

(
1− ηnµ

4

)dK/2e
=

(
1− 4 log nK

K

)dK/2e
≤
(

1− 2 log nK

dK/2e

)dK/2e
≤ 1

n2K2
.

This results in the bound

E[F (x̄)− F ∗] ≤
µ
∥∥x1

0

∥∥2
16n2K2

+O
(
L2G2

µ3

(
log2(nK)

n2K2
+

log4(nK)

nK3

))
,

as desired. Recall that the bound holds for η ≤ 1
8nL min{1,

√
n
κ}, so K must be large enough so that

16 log nK

µnK
≤ 1

8nL
min

{
1,

√
n

κ

}
.

This gives us the epoch requirement K ≥ 128κmax{1,
√

κ
n} log nK.
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C.2 Proof of the third contraction bound (Lemma C.2)

The proof is an extension of the proof of Lemma B.1, so we recommend the authors to read Section B.3
before reading this subsection. From the definiton F (xk0) = 1

2 (xk0)TAxk0 , we have

E
[∥∥Skxk0∥∥2] = (xk0)TE[STk Sk]xk0

= (xk0)T
(
E[STk Sk] + ηnA

)
xk0 − ηn(xk0)TAxk0

≤
∥∥E[STk Sk] + ηnA

∥∥∥∥xk0∥∥2 − 2ηnF (xk0).

The remainder of the proof is to bound
∥∥E[STk Sk] + ηnA

∥∥ ≤ 1 − ηnµ
2 for 0 ≤ η ≤

1
8nL min{1,

√
n
κ}.

As seen in (B.7) (Section B.3), the expectation of STk Sk reads

E[STk Sk] =

n∑
m=0

(−2ηnA)m

m!
− η2

n∑
i=1

A2
i +

n∑
m=3

(−η)m
(
E[Rm]− 2m

m!
Nm

)

+

2n∑
m=n+1

(−η)mE[Cm],

where Cm,Rm,Nm are defined in (B.3), (B.5) and (B.6). Then,∥∥E[STk Sk] + ηnA
∥∥ ≤∥∥∥∥∥ηnA +

n∑
m=0

(−2ηnA)m

m!

∥∥∥∥∥+

n∑
m=3

ηm
(
‖E[Rm]‖+

2m

m!
‖Nm‖

)

+

2n∑
m=n+1

ηm ‖E[Cm]‖

≤

∥∥∥∥∥ηnA +

n∑
m=0

(−2ηnA)m

m!

∥∥∥∥∥+
1

n

2n∑
m=3

(2ηnL)m,

where the bounds for ‖E[Rm]‖ , ‖Nm‖ , ‖E[Cm]‖ are from Eqs (B.8), (B.9), and (B.10). So, it is
left to bound the term

∥∥∥ηnA +
∑n
m=0

(−2ηnA)m

m!

∥∥∥.

Note that for any eigenvalue s of the positive definite matrix A, the corresponding eigenvalue
of ηnA +

∑n
m=0

(−2ηnA)m

m! is ηns +
∑n
m=0

(−2ηns)m
m! . Recall η ≤ 1

8nL min{1,
√

n
κ} ≤

1
8nL , so

0 ≤ 2ηns ≤ 1/4 for any eigenvalue s of A. Since t 7→ t
2 +
∑n
m=0

(−t)m
m! is a positive and decreasing

function on [0, 1/4] for any n ≥ 2, the matrix ηnA +
∑n
m=0

(−2ηnA)m

m! is positive definite and its
maximum singular value (i.e., spectral norm) comes from the minimum eigenvalue of A, hence∥∥∥∥∥ηnA +

n∑
m=0

(−2ηnA)m

m!

∥∥∥∥∥ ≤ ηnµ+

n∑
m=0

(−2ηnµ)m

m!
.

Putting the bounds together, we get

∥∥E[STk Sk] + ηnA
∥∥ ≤ηnµ+

n∑
m=0

(−2ηnµ)m

m!
+

1

n

2n∑
m=3

(2ηnL)m

≤ηnµ+

2∑
m=0

(−2ηnµ)m

m!
+

1

n

(2ηnL)3

1− 2ηnL

≤1− ηnµ+
1

2
(2ηnµ)2 +

2

n
(2ηnL)3.

Here, we used 2ηnL ≤ 1/2, and the fact that 1 − t + t2

2 ≥
∑n
m=0

(−t)m
m! for all t ∈ [0, 1/4] and

n ≥ 2. The remaining step is to show that the right hand side of the inequality is bounded above by
1− ηnµ

2 for 0 ≤ η ≤ 1
8nL min{1,

√
n
κ}.

26



Define z = 2ηnL. Using this, we have

1− ηnµ+
1

2
(2ηnµ)2 +

2

n
(2ηnL)3 ≤ 1− ηnµ

2
for 0 ≤ η ≤ 1

8nL
min

{
1,

√
n

κ

}
⇔ g(z) :=

z

4κ
− z2

2κ2
− 2z3

n
≥ 0 for 0 ≤ z ≤ 1

4
min

{
1,

√
n

κ

}
,

so it suffices to show the latter. One can check that g(0) = 0, g′(0) > 0 and g′(z) is monotonically
decreasing in z ≥ 0, so g(z) ≥ 0 holds for z ∈ [0, c] for some c > 0. This also means that if we have
g(c) ≥ 0 for some c > 0, g(z) ≥ 0 for all z ∈ [0, c].

First, consider the case κ ≤ n. Then, n/κ ≥ 1 and κ ≥ 1, so

z

4κ
− z2

2κ2
− 2z3

n
=

1

4κ

(
z − 2z2

κ
− 8z3

n/κ

)
≥ 1

4κ

(
z − 2z2 − 8z3

)
.

We can check that the function z 7→ z − 2z2 − 8z3 is zero at z = 1
4 . This means that g(z) ≥ 0 for

0 ≤ z ≤ 1
4 .

Next, consider the case κ ≥ n. In this case, set z = c
√

n
κ where c = 1

4 . Then,

z

4κ
− z2

2κ2
− 2z3

n
=

1

4κ

(
c

√
n

κ
− 2c2n

κ2
− 8c3

√
n

κ

)
≥ 1

4κ

(
(c− 8c3)

√
n

κ
− 2c2

n

κ

)
.

Note that
√

n
κ ≤ 1, and the function t 7→ (c − 8c3)t − 2c2t2 = t

8 −
t2

8 is nonnegative on [0, 1].
Therefore, we have g( 1

4

√
n
κ ) ≥ 0, so g(z) ≥ 0 for 0 ≤ z ≤ 1

4

√
n
κ .

D Analysis of varying step sizes (Proofs of Theorems 3 and 4)

Throughout this section, since Theorems 3 and 4 assume the bounded iterates assumption (Assump-
tion 1) and the L-smoothness of fi’s, one can assume that fi’s are Lipschitz continuous. In particular,
one can assume that there exists G > 0 such that

∥∥∇fi(xkj )
∥∥ ≤ G for all i, j ∈ [n] and k ≥ 1.

D.1 Preliminaries: existing per-iteration/-epoch bounds

We first review the progress bounds for RANDOMSHUFFLE developed in Nagaraj, Jain, and Netra-
palli [8], which are crucial for our varying step sizes analysis. Note that for RANDOMSHUFFLE, there
are two different types of analyses:

1. Per-iteration analysis where one characterizes the progress made at each iteration.

2. Per-epoch analysis where one characterizes the aggregate progress made over one epoch.

For per-iteration analysis, [8] develops coupling arguments to prove that the progress made by
RANDOMSHUFFLE is not worse than SGD. In particular, their coupling arguments demonstrate the
closeness in expectation between the iterates of without- and with-replacement SGD. The following
is a consequence of their coupling argument:

Proposition D.1 (Per-iteration analysis [8, implicit in Section A.1]). Assume for L,G, µ > 0 that
each component function fi is convex,G-Lipschitz and L-smooth and the cost function F is µ-strongly
convex. Then, for any step size for the (i+ 1)-th iteration of the k-th epoch such that ηki+1 ≤ 2

L , the
following bound holds between the adjacent iterates:

E
∥∥xki+1 − x∗

∥∥2 ≤ (1− ηki+1µ/2
)
· E
∥∥xki − x∗

∥∥2 + 3(ηki+1)2G2 + 4(ηki+1)3κLG2 . (D.1)

where the expectation is taken over the randomness within the k-th epoch.

However, with the above analysis, one can only obtain results comparable to SGD, as manifested
in [8, Theorem 2]. In order to characterize better progress, one needs to characterize the aggregate
progress made over one epoch as a whole:
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Proposition D.2 (Per-epoch analysis [8, implicit Section 5.1]). Under the same setting as Proposi-
tion D.1, let ηk ≤ 2

L be the step size for the k-th epoch, i.e., ηki ≡ ηk for i = 1, 2, . . . , n. Then, the
following bound holds between the output of the k-th and (k − 1)-th epochs xk+1

0 and xk0:

E
∥∥xk+1

0 − x∗
∥∥2 ≤ (1− 3nηkµ/4 + n2(ηk)2L2

)
·
∥∥xk0 − x∗

∥∥2
− 2nηk (1− 4nηkκL) · (EF (xk0)− F (x∗)) + 20n2(ηk)3κLG2 + 5n3(ηk)4L2G2 .

(D.2)

where the expectation is taken over the randomness within the k-th epoch.

Having these per-iteration/-epoch progress bounds, the final ingredient of the non-asymptotic conver-
gence rate analysis is to turn these bounds into across-epochs global convergence bounds.

D.2 Chung’s lemma: an analytic tool for varying stepsize

To illustrate our varying step sizes analysis, let us warm up with the per-iteration progress bound
in Proposition D.1. Since Proposition D.1 works for any iterations, one can disregard the epoch
structure and simply denote by xt the t-th iterate and by ηt the step size used for the t-th iteration.
Choosing ηt = 2α

µ ·
1

k0+t
for all t ≥ 1 with the initial index k0, where we choose k0 = α ·κ to ensure

ηt ≤ 2
L , the per-iteration bound (D.1) becomes (we also use (ηt)

3 ≤ (ηt)
2 L
2 ):

E‖xt+1 − x∗‖2 ≤
(

1− α

k0 + t+ 1

)
· E‖xt − x∗‖2 +

α2G2(12µ−2 + 32κ3)

(k0 + t+ 1)2
. (D.3)

In fact, for the bounds of type (D.3), there are suitable tools for obtaining convergence rates: versions
of Chung’s lemma [1], developed in the stochastic approximation literature. Among the various
versions of Chung’s lemma, there is a non-asymptotic version [1, Lemma 1]:

Lemma D.3 (Non-asymptotic Chung’s lemma). Let {ξk}k≥0 be a sequence of positive real numbers.
Suppose that there exist an initial index k0 > 0 and real numbers A > 0, α > β > 0 such that ξk+1

satisfies the following inequality:

ξk+1 ≤ exp

(
− α

k0 + k + 1

)
ξk +

A

(k0 + k + 1)β+1
for any k ≥ 0 . (D.4)

Then, for any K ≥ 1 we have the following bound:

ξK ≤ exp

(
−α ·

K∑
i=1

1

k0 + i

)
· ξ0 +

1
α−β e

α
k0+1 ·A

(k0 +K)β
+

e
α

k0+1 ·A
(k0 +K)β+1

(D.5)

≤ (k0 + 1)α · ξ0
(k0 +K)α

+

1
α−β e

α
k0+1 ·A

(k0 +K)β
+

e
α

k0+1 ·A
(k0 +K)β+1

. (D.6)

Proof Unfortunately, the original “proof” contains some errors as pointed out by Fabian [2,
Discussion above Lemma 4.2]. We are able to correct the original proof; for this, see Section E.

Let us apply Lemma D.3 to (D.3) as a warm-up. From (D.3), one can see that A in Lemma D.3 can
be chosen as G2(12µ−2 + 32κ3). Hence, we obtain:

Corollary D.4. Under the setting of Proposition D.1, let α > 1 be a constant, and consider the step
size ηki = 2α/µ

k0+n(k−1)+i for k0 := α · κ. Then the following convergence rate holds for any K ≥ 1:

E
∥∥xK0 − x∗

∥∥2 ≤ (k0 + 1)α ‖x0 − x∗‖2

(k0 + nK)α
+

e
α−1α

2G2(12µ−2 + 32κ3)

k0 + nK
+
eα2G2(12µ−2 + 32κ3)

(k0 + nK)2
.

(D.7)

Notably, Corollary D.4 is an improvement over [8, Theorem 2] as it gets rid of extra poly-logarithmic
terms.
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D.3 An illustrative failed attempt using Chung’s lemma

Now, let us apply Lemma D.3 to the per-epoch progress bound (Proposition D.2). For illustrative
purpose, consider an ideal situation where instead of the actual progress bound (D.2), a nicer epoch
progress bound of the following form holds (that is to say, the coefficient of E‖yk − x∗‖2 does not
contain the higher order error terms):

E
∥∥xk+1

0 − x∗
∥∥2 ≤ (1− nηkµ/2) · E

∥∥xk0 − x∗
∥∥2 + 20n2(ηk)3κLG2 + 5n3(ηk)4L2G2 . (D.8)

Following the same principle as the previous section, let us take ηk = 2α/µ
k0+nk

for some constant
α > 2. On the other hand, to make things simpler, let us assume that one can take k0 = 0. Plugging
this stepsize into (D.8), we obtain the following bound for some constants c > 0:

E
∥∥xk+1

0 − x∗
∥∥2 ≤ (1− α

k

)
· E
∥∥xk0 − x∗

∥∥2 +
c/n

k3
,

which then yields the following non-asymptotic bound due to Lemma D.3:

E
∥∥xK+1

0 − x∗
∥∥2 ≤ O( 1

Kα

)
+O

(
1

nK2

)
+O

(
1

nK3

)
. (D.9)

Although the last two terms in (D.9) are what we desire, the first term is undesirable. Even though
we choose α large, this bound will still contain the term O(1/Kα) which does not match the rate in
Theorem 3. Therefore, for the target convergence bound, one needs other versions of Lemma D.3.

D.4 A variant of Chung’s lemma

As we have seen in the previous section, Chung’s lemma is not enough for capturing the desired
convergence rate. In this section, to capture the right order for both n and K, we develop a variant of
Chung’s lemma.
Lemma D.5. Let n > 0 be an integer, and {ξk}k≥0 be a sequence of positive real numbers. Suppose
that there exist an initial index k0 > 0 and real numbers A1, A2 > 0, α > β > 0 and ε > 0 such
that the following are satisfied:

ξ1 ≤ exp

(
−α

n∑
i=1

1

k0 + i

)
ξ0 +A1 and (D.10)

ξk+1 ≤ exp

(
−α

n∑
i=1

1

k0 + nk + i
+

ε

k2

)
ξk +

A2

(k0 + n(k + 1))β+1
for any k ≥ 1 . (D.11)

Then, for any K ≥ 1 we have the following bound for c := eεπ
2/6:

ξK ≤
c(k0 + 1)α · ξ0
(k0 + nK)α

+
c · (k0 + n+ 1)α ·A1

(k0 + nK)α
+

c
α−β e

α
k0+n+1 ·A2

n(k0 + nK)β
+
ce

α
k0+n+1 ·A2

(k0 + nK)β+1
. (D.12)

Proof See Section E.2.

D.5 Sharper convergence rate for strongly convex costs (Proof of Theorem 3)

Now we use Lemma D.5 to obtain a sharper convergence rate. Let ξk := E
∥∥xk+1

0 − x∗
∥∥2 for k ≥ 1

and ξ0 := ‖x0 − x∗‖2. Let α > 2 be an arbitrarily chosen constant. For the first epoch, we take the
following iteration-varying step size: η1i = 2α

µ ·
1

k0+i
, where k0 = α · κ to ensure η1i ≤ 2

L . Then,
similarly to Corollary D.4, yet this time by using the bound (D.5) in Lemma D.3, one can derive the
the following bound:

ξ1 ≤ exp

(
−α ·

n∑
i=1

1

k0 + i

)
· ξ0 +

a1
k0 + n

, (D.13)
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where a1 := α2G2 · [ e
α−1 (12µ−2 + 32κ3) + eα2G2(12µ−1L−1 + 32κ2)], i.e., a1 = O

(
κ3
)
.

Next, let us establish bounds of the form (D.11) for the k-th epoch for k ≥ 2. From the second epoch
on, we use the same step size within an epoch. More specifically, for the k-th epoch we choose
ηk,i ≡ ηk = 2α/µ

k0+nk
. Let us recall the per-epoch progress bound from Proposition D.2:

ξk ≤
(
1− 3nηkµ/4 + n2(ηk)2L2

)
· ξk−1

− 2nηk (1− 4nηkκL) · (EF (xk0)− F (x∗)) + 20n2(ηk)3κLG2 + 5n3(ηk)4L2G2 .
(D.14)

Since EF (xk0) − F (x∗) > 0, one can disregard the second term in the upper bound (D.2) as
long as 4nηkκL < 1. If ηk small enough that 4nηkκL < 1 holds, then since we also have
nηkµ

4 > n2(ηk)2L2, the per-epoch bound (D.2) becomes:

ξk ≤ (1− nηkµ/2) ξk−1 + 20n2(ηk)3κLG2 + 5n3(ηk)4L2G2 . (D.15)

≤ exp (−nηkµ/2) · ξk + 20n2(ηk)3κLG2 + 5n3(ηk)4L2G2 . (D.16)

Since 4nηkκL < 1 is fulfilled for k ≥ 8ακ2 (note that for k ≥ 8ακ2, nk > 8ακ2n = (2α/µ) ·
4nκL), we conclude that (D.16) holds for k ≥ 8ακ2.

For k < 8ακ2, recursively applying Proposition D.1 with the fact (nηk)−1 ≤ 4κL+L/(2n) implies:

ξk ≤ exp (−nηkµ/2) · ξk−1 + 3n2(ηk)3G2(4κL+ L/(2n)) + 4n(ηk)3κLG2 . (D.17)

Therefore, combining (D.16) and (D.17), we obtain the following bound which holds for any k ≥ 2:

ξk ≤ exp (−nηkµ/2) · ξk−1 + a2 · n2(ηk)3 , (D.18)

where a2 := 12κLG2 +(3L/2+4κLG2)/n+20κLG2 +5µ2G2/8, i.e., a2 = O (κ). Let us modify
the coefficient of ξk in (D.18) so that it fits into the form of (D.11) in Lemma D.5. First note that
exp (−nηkµ/2) = exp (−αn/(k0 + nk)). Now, this expression can be modified as

exp

[
−α ·

n∑
i=1

1

k0 + n(k − 1) + i
+ α ·

n∑
i=1

(
1

k0 + n(k − 1) + i
− 1

k0 + nk

)]
,

which is then upper bounded by exp
[
−α ·

∑n
i=1

1
k0+n(k−1)+i + α

(k−1)2

]
. Thus, (D.18) can be

rewritten as:

ξk ≤ exp

(
−α ·

n∑
i=1

1

k0 + n(k − 1) + i
+

α

(k − 1)2

)
· ξk−1 +

8a2α
3n2µ−3

(k0 + nk)3
. (D.19)

Now applying Lemma D.5 with (D.13) and (D.19) implies the following result:

D.6 Sharper convergence rate for quadratic costs (Proof of Theorem 4)

Now let us use again Lemma D.5 to obtain a sharper convergence rate. We follow the notations in
Section D.5. Again, we use the following bound (which we derived in (D.13) in the main text) for the
first recursive inequality (D.10) in Lemma D.5:

ξ1 ≤ exp

(
−α ·

n∑
i=1

1

k0 + i

)
· ξ0 +

a1
k0 + n

,

where a1 := α2G2 · [ e
α−1 (12µ−2 + 32κ3) + eα2G2(12µ−1L−1 + 32κ2)], i.e., a1 = O

(
κ3
)
.

For the second recursive inequalities (D.11) in Lemma D.5, in order to obtain better convergence
rate, we use the following improved per-epoch bound for quadratic costs due to Rajput, Gupta, and
Papailiopoulos [10]:
Proposition D.6 ([10, implicit in Appendix A]). Under the setting of Proposition D.1, assume further
that F is quadratic. Then for any step size for the k-th epoch ηk ≤ 2

L , the following bound holds
between the output of the k-th and k − 1-th epochs xk+1

0 and xk0:

E
∥∥xk+1

0 − x∗
∥∥2 ≤ (1− 3nηkµ/2 + 5n2(ηk)2L2 + 8n3(ηk)3κL3

) ∥∥xk0 − x∗
∥∥2

+ 10n3(ηk)4L2G2 + 40n4(ηk)5κL3G2 + 32n(ηk)3κLG2 .
(D.20)

where the expectation is taken over the randomness within the k-th epoch.

30



For k > 16ακ2, we have nηk < 1
8
µ
L2 . Using this bound, it is straightforward to check that (D.20)

can be simplified into:

ξk ≤ exp (−nηkµ/2) ξk−1 + 15n3(ηk)4L2G2 + 32n(ηk)3κLG2 . (D.21)

For k < 16ακ2, recursively applying Proposition D.1 with the fact (nηk+1)−1 ≤ 8κL + L/(2n)
implies:

ξk ≤ exp (−nηkµ/2) · ξk + 3n3(ηk)4G2(8κL+ L/(2n))2 + 4n(ηk)3κLG2 . (D.22)

Therefore, combining (D.21) and (D.22), we obtain the following bound which holds for any k ≥ 1:

ξk ≤ exp (−nηkµ/2) · ξk−1 + b2 · n3(ηk)4 + b3 · n(ηk)3 , (D.23)

where b2 := 15L2G2 + 3G2(8κL+L/(2n))2 and b3 := 32κLG2, i.e., b2 = O(κ2) and b3 = O (κ).
Following Section D.4, one can similarly modify the coefficient of ξk in (D.23) to obtain the following
for k ≥ 2:

ξk ≤ exp

(
−α ·

n∑
i=1

1

k0 + n(k − 1) + i
+

α

(k − 1)2

)
· ξk +

16b2α
4n3µ−4

(k0 + nk)4
+

8b3α
3nµ−3

(k0 + nk)3

(D.24)

However, one can notice that (D.24) is not quite of the form (D.11), and Lemma D.5 is not directly
applicable to this bound. In fact, we need to make some modifications in Lemma D.5. First, for
A3 > 0 and γ > 0, there is an additional term to the recursive relations (D.11): for any k ≥ 1, the
new recursive relations now read

ξk+1 ≤ exp

(
−α

n∑
i=1

1

k0 + nk + i
+

ε

k2

)
ξk +

A2

(k0 + n(k + 1))β+1
+

A3

(k0 + n(k + 1))γ+1
.

(D.25)

It turns out that for these additional terms in the recursive relations, one can use the same techniques
to prove that the corresponding global convergence bound (D.12) has the following additional terms:

c
α−β e

α
k0+n+1 ·A3

n(k0 + nK)γ
+
ce

α
k0+n+1 ·A3

(k0 + nK)γ+1
. (D.26)

Now using this modified version of Lemma D.5, the proof is completed.

E Proofs of the versions of Chung’s lemma (Lemmas D.3 and D.5)

We begin by introducing an elementary fact that we will use throughout the proofs:

Proposition E.1 (Integral approximation; see e.g. [6, Theorem 14.3])). Let f : e+ → e+ be a
non-decreasing continuous function. Then, for any integers 1 ≤ m < n,

∫ n
m
f(x)dx + f(m) ≤∑n

i=m f(i) ≤
∫ n
m
f(x)dx+f(n). Similarly, if f is non-increasing, then for any integers 1 ≤ m < n,∫ n

m
f(x)dx+ f(n) ≤

∑n
i=m f(i) ≤

∫ n
m
f(x)dx+ f(m).

We first prove Lemma D.3, and hence proving the non-asymptotic Chung’s lemma [1, Lemma 1]
which has an incorrect original proof.

E.1 A correct proof of Chung’s lemma (Proof of Lemma D.3)

We first restate the lemma for reader’s convenience:

Lemma E.2 (Restatement from Section D.2). Let {ξk}k≥0 be a sequence of positive real numbers.
Suppose that there exist an initial index k0 > 0 and real numbers A > 0, α > β > 0 such that ξk+1

satisfies the following inequality:

ξk+1 ≤ exp

(
− α

k0 + k + 1

)
ξk +

A

(k0 + k + 1)β+1
for any k ≥ 0 . (E.1)

31



Then, for any K ≥ 1 we have the following bound:

ξK ≤ exp

(
−α ·

K∑
i=1

1

k0 + i

)
· ξ0 +

1
α−β e

α
k0+1 ·A

(k0 +K)β
+

e
α

k0+1 ·A
(k0 +K)β+1

(E.2)

≤ (k0 + 1)α · ξ0
(k0 +K)α

+

1
α−β e

α
k0+1 ·A

(k0 +K)β
+

e
α

k0+1 ·A
(k0 +K)β+1

. (E.3)

For simplicity, let us define the following quantities for k ≥ 1:

ak := exp

(
− α

k0 + k

)
and ck :=

A

(k0 + k)β+1
.

Using these notations, the recursive relation (E.1) becomes:

ξk+1 ≤ ak+1 · ξk + ck+1 for any integer k ≥ 1. (E.4)

After recursively applying (E.4) for k = 0, 1, 2, . . . ,K − 1, one obtains the following bound:

ξK ≤ ξ0
K∏
j=1

aj +

 K∏
j=1

aj

 ·
 K∑
k=1

 k∏
j=1

aj

−1 ck
 . (E.5)

Now let us upper and lower bound the product of aj’s. Note that

k∏
j=1

aj = exp

(
−α

k∑
i=1

1

k0 + i

)
for any k ≥ 1.

Using Proposition E.1 with f(x) = 1
k0+x

, we get

log
k0 + k

k0 + 1
≤

k∑
i=1

1

k0 + i
≤ log

k0 + k

k0 + 1
+

1

k0 + 1
.

Using these upper and lower bounds, one can conclude:

e−
α

k0+1

(
k0 + 1

k0 + k

)α
≤

k∏
j=1

aj ≤
(
k0 + 1

k0 + k

)α
. (E.6)

Therefore, we have

K∑
k=1

 k∏
j=1

aj

−1 ck ≤ e α
k0+1

K∑
k=1

(
k0 + k

k0 + 1

)α
· A

(k0 + k)β+1
=
e

α
k0+1 ·A

(k0 + 1)α
·
K∑
k=1

(k0 + k)α−β−1 .

Applying Proposition E.1 with f(x) = (k0 + x)α−β−1 to the above, since 1
α−β (k0 + x)α−β is an

anti-derivative of f , we obtain the following upper bounds:

e
α

k0+1 ·A
(k0 + 1)α

·


1

α−β
(
(k0 +K)α−β − (k0 + 1)α−β

)
+ (k0 +K)α−β−1, if α > β + 1,

K, if α = β + 1,
1

α−β
(
(k0 +K)α−β − (k0 + 1)α−β

)
+ (k0 + 1)α−β−1 if α < β + 1.

Combining all three cases, we conclude:

K∑
k=1

 k∏
j=1

aj

−1 ck ≤ e
α

k0+1 ·A
(k0 + 1)α

·
(

(k0 +K)α−β

α− β
+ (k0 +K)α−β−1

)
. (E.7)

Indeed, for the cases α > β − 1 and α = β + 1, the above upper bound follows immediately;
for the case α < β + 1, note (from the assumption α > β) that α − β ∈ (0, 1), which implies
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− 1
α−β (k0+1)α−β+(k0+1)α−β−1 < −(k0+1)α−β+(k0+1)α−β−1 = −(k0+1)α−β−1 ·k0 < 0,

which then implies the desired upper bound.

Plugging (E.7) back to (E.5) and using (E.6) to upper bound
∏K
j=1 aj , we obtain:

ξK ≤ ξ0
K∏
j=1

aj +

 K∏
j=1

aj

 · e α
k0+1 ·A

(k0 + 1)α
·
(

(k0 +K)α−β

α− β
+ (k0 +K)α−β−1

)

≤ ξ0
K∏
j=1

aj +

(
k0 + 1

k0 +K

)α
· e

α
k0+1 ·A

(k0 + 1)α
·
(

(k0 +K)α−β

α− β
+ (k0 +K)α−β−1

)

≤ exp

(
−α ·

K∑
i=1

1

k0 + i

)
· ξ0 +

1
α−β e

α
k0+1 ·A

(k0 +K)β
+

e
α

k0+1 ·A
(k0 +K)β+1

,

which is precisely (E.2). Using (E.6) once again to upper bound the term exp(−α ·
∑K
i=1

1
k0+i

), we
obtain (E.3), which completes the proof.

E.2 Proof of Lemma D.5

We first restate the lemma for reader’s convenience:
Lemma E.3 (Restatement from Section D.4). Let n > 0 be an integer, and {ξk}k≥0 be a sequence of
positive real numbers. Suppose that there exist an initial index k0 > 0 and real numbers A1, A2 > 0,
α > β > 0 and ε > 0 such that the following are satisfied:

ξ1 ≤ exp

(
−α

n∑
i=1

1

k0 + i

)
ξ0 +A1 and (E.8)

ξk+1 ≤ exp

(
−α

n∑
i=1

1

k0 + nk + i
+

ε

k2

)
ξk +

A2

(k0 + n(k + 1))β+1
for any k ≥ 1 . (E.9)

Then, for any K ≥ 1 we have the following bound for c := eεπ
2/6:

ξK ≤
c(k0 + 1)α · ξ0
(k0 + nK)α

+
c · (k0 + n+ 1)α ·A1

(k0 + nK)α
+

c
α−β e

α
k0+n+1 ·A2

n(k0 + nK)β
+
ce

α
k0+n+1 ·A2

(k0 + nK)β+1
. (E.10)

The proof is generally analogous to that of Lemma D.3, while some distinctions are required so
that the final bound captures the desired dependencies on the two parameters n and K. To simplify
notations, let us define the following quantities for k ≥ 1:

ak := exp

(
−α ·

n∑
i=1

1

k0 + n(k − 1) + i

)
, bk := exp

(
ε

(k − 1)2

)
, and ck :=

A2

(k0 + nk)β+1
.

Using these notations, the recursive relations (D.10) and (D.11) become:

ξ1 ≤ a1 · ξ0 +A1 (E.11)
ξk+1 ≤ ak+1bk+1 · ξk + ck+1 for any integer k ≥ 1. (E.12)

Recursively applying (E.12) for k = 1, 2, . . . ,K − 1 and then (E.11), we obtain:

ξK ≤ a1ξ0
K∏
j=2

ajbj +

 K∏
j=2

ajbj

 ·
A1 +

K∑
k=2

 k∏
j=2

ajbj

−1 ck
 . (E.13)

Note taht from the fact
∑
i≥1 i

−2 = π2

6 , one can upper and lower bound the product of bj’s:

1 ≤
K∏
i=2

bi ≤ exp

(
K∑
i=2

ε

(i− 1)2

)
≤ exp

(
επ2/6

)
. (E.14)
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Applying (E.14) to (E.13), we obtain the following bound (recall that c := eεπ
2/6):

ξK ≤ cξ0
K∏
j=1

aj + c

K∏
j=2

aj ·

A1 +

K∑
k=2

 k∏
j=2

aj

−1 ck
 . (E.15)

To obtain upper and lower bounds on the product of aj’s, again note that for any 2 ≤ k,

k∏
j=2

aj = exp

−α · (k−1)n∑
i=1

1

k0 + n+ i

 ,

which can then be estimated as follows using Proposition E.1 similarly to (E.6):

e−
α

k0+n+1

(
k0 + n+ 1

k0 + nk

)α
≤

k∏
j=2

aj ≤
(
k0 + n+ 1

k0 + nk

)α
. (E.16)

Therefore, we have

K∑
k=2

 k∏
j=2

aj

−1 ck ≤ e α
k0+n+1

K∑
k=2

(
k0 + nk

k0 + n+ 1

)α
· A2

(k0 + nk)β+1

=
e

α
k0+n+1 ·A2

(k0 + n+ 1)α
·
K∑
k=2

(k0 + nk)α−β−1 .

Applying Proposition E.1 with f(x) = (k0 + nx)α−β−1 to the above, since 1
n(α−β) (k0 + nx)α−β is

an anti-derivative of f , we obtain the following upper bounds:

e
α

k0+n+1 ·A2

(k0 + n+ 1)α
·


1

n(α−β)
(
(k0 + nK)α−β − (k0 + 2n)α−β

)
+ (k0 + nK)α−β−1, if α > β + 1,

K − 1, if α = β + 1,
1

n(α−β)
(
(k0 + nK)α−β − (k0 + 2n)α−β

)
+ (k0 + 2n)α−β−1 if α < β + 1.

Akin to (E.7), one can combining all three cases and conclude:

K∑
k=2

 k∏
j=2

aj

−1 ck ≤ e
α

k0+n+1 ·A2

(k0 + n+ 1)α
·
(

(k0 + nK)α−β

n(α− β)
+ (k0 + nK)α−β−1

)
.

Plugging this back to (E.15), and using (E.16) to upper bound the product of aj’s, we obtain:

ξK ≤ cξ0
K∏
j=1

aj + c

K∏
j=2

aj ·

[
A1 +

e
α

k0+n+1 ·A2

(k0 + n+ 1)α
·
(

(k0 + nK)α−β

n(α− β)
+ (k0 + nK)α−β−1

)]

≤ cξ0
K∏
j=1

aj + c

(
k0 + n+ 1

k0 + nK

)α
·

[
A1 +

e
α

k0+n+1 ·A2

(k0 + n+ 1)α
·
(

(k0 + nK)α−β

n(α− β)
+ (k0 + nK)α−β−1

)]

= cξ0

K∏
j=1

aj +
c · (k0 + n+ 1)α ·A1

(k0 + nK)α
+

c
α−β e

α
k0+n+1 ·A2

n(k0 + nK)β
+
ce

α
k0+n+1 ·A2

(k0 + nK)β+1
.

Now similarly to (E.16), one obtains the upper bound
∏K
j=1 aj ≤

(
k0+n+1
k0+nK

)α
, which together with

the last expression deduces (E.10) and hence completes the proof.

F Tight convergence bound for SINGLESHUFFLE

In this section, we provide a tight convergence bound for SINGLESHUFFLE on smooth strongly
convex functions, which also holds for strongly convex quadratic functions.
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Theorem F.1 (Strongly convex costs). Assume that F is µ-strongly convex and each fi ∈ C1
L(Rd).

Consider SINGLESHUFFLE for the number of epochs K satisfying K ≥ 10κ2 log(n1/2K), step

size ηki = η := 2 log(n1/2K)
µnK , and initialization x0. Then for G := maxi∈[n] ‖∇fi(x∗)‖ and some

constant c = O(κ4),

E[F (xK+1
0 )]− F ∗ ≤ 2L ‖x0 − x∗‖2

nK2
+
c ·G2 · log3(nK)

nK2
.

Proof: The proof technique builds on the proof of Theorem 2, using the idea of the end-to-end
analysis from [12]. See the subsequent subsections for the full proof.

Optimality of convergence rate. Theorem F.1 provides a tight (up to poly-log factors) bound that
matches the known lower bound Ω (1/nK2) [12], which was proven for strongly convex quadratic
functions. Since Theorem F.1 applies to subclasses of smooth strongly convex functions, it also gives
the minimax optimal rate (up to log factors) for strongly convex quadratic functions (see Table A).
Note that the theorem does not require the convexity of component functions or bounded iterates
assumption (Assumption 1), in the same spirit as our RANDOMSHUFFLE results (Theorems 1 and 2).
Remark F.1 (RANDOMSHUFFLE v.s. SINGLESHUFFLE). It is often conjectured that
RANDOMSHUFFLE performs better than SINGLESHUFFLE due to multiple shuffling. The class of
strongly convex quadratic functions aligns with this intuition, because there is a gap between optimal
convergence rates Õ(1/(nK)2 + 1/nK3) (RANDOMSHUFFLE) and Õ(1/nK2) (SINGLESHUFFLE) for
quadratic functions. In contrast, for a broader class of smooth strongly convex functions, Theorems 1
and F.1 reveal a rather surprising fact: the optimal rates of RANDOMSHUFFLE and SINGLESHUFFLE
have the same dependence on n andK. Although Theorem F.1 shows the same rate in n andK as The-
orem 1, we note that its epoch requirement K & κ2 log(n1/2K) is worse than Theorem 1 by a factor
of κ; however, it matches the epoch requirement of the existing bound for RANDOMSHUFFLE [8].
Remark F.2 (Proof techniques). The Hoeffding-Serfling inequality used in the proof of Theorem 1
for RANDOMSHUFFLE requires that the vectors∇fi(xk0)’s, to which we apply the Hoeffding-Serfling
inequality, have to be independent of the permutation σk. This is no longer true for SINGLESHUFFLE,
because in SINGLESHUFFLE, once a permutation σ is fixed, it is used over and over again. The
iterates become dependent on the choice of σ, hence rendering a direct extension of Theorem 1 to
SINGLESHUFFLE impossible. For the proof of Theorem F.1, we instead take an end-to-end approach
following [12]. Taking this approach, we apply the Hoeffding-Serfling inequality to the vectors
∇fi(x∗)’s, i.e., gradients evaluated at the global minimum x∗, which are independent of permutations
sampled by the algorithm. This way, we can prove a bound for SINGLESHUFFLE. In fact, this proof
technique can be easily extended to any reshuffling schemes that lie between RANDOMSHUFFLE and
SINGLESHUFFLE, modulo some additional union bounds. For instance, our proof can be extended to
the scheme where the components are reshuffled every 5 epochs.
Remark F.3 (Possible improvements for quadratics). Notice that if the component functions fi’s are
quadratic, then their Hessians are constant, which implies that the matrix Sk (B.2) that appears in the
update equation of RANDOMSHUFFLE is now constant (Sk = S) over epochs of SINGLESHUFFLE.
We believe that leveraging this fact could lead to a tighter epoch requirement than Theorem F.1.
However, proving such an epoch requirement demands deriving a contraction bound that is more
involved than the ones proven for RANDOMSHUFFLE (e.g., Lemma B.1), because one has to now
bound

∥∥E[(SK)TSK ]
∥∥, in place of

∥∥E[STS]
∥∥. We leave this refinement for future work.

F.1 Proof outline

The proof of Theorem F.1 builds on the proof of Theorem 2 presented in Section B. We first recursively
apply the update equations over all iterations and obtain an equation that expresses the last iterate
xK+1
0 in terms of the initialization x1

0 = x0. By proving new lemmas in a similar flavor to the ones
developed in Section B, we will bound E[‖xK+1

0 − x∗‖2] to get our desired result.

Since the algorithm is SINGLESHUFFLE, we fix the permutation σ and use it for all epochs. If the
component functions fi’s were quadratic functions as in Theorem 2, Sk and tk (B.2) defined in the
proof of Theorem 2 would have been constant over epochs of SINGLESHUFFLE, given the choice of
σ; however, this is not true in the non-quadratic case, because the Hessians of fi’s are not constant.
We have to take this into account in the proof.
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Table A: A summary of existing convergence rates and our results for SINGLESHUFFLE. All the convergence
rates are with respect to the suboptimality of objective function value. Note that since the function classes
become more restrictive as we go down the table, the noted lower bounds are also valid for upper rows, and
the upper bounds are also valid for lower rows. In the “Assumptions” column, inequalities such as K & κα

mark the requirements K ≥ Cκα log(nK) for the bounds to hold, and (A1) denotes the assumption that all the
iterates remain in a bounded set (see Assumption 1). Also, (LB) stands for “lower bound.”

Convergence rates for SINGLESHUFFLE
Settings References Convergence rates Assumptions

(1) F PŁ fi smooth
Lipschitz

Nguyen et al. [9] O
(

1
K2

)
K ≥ 1

Safran and Shamir [12] Ω
(

1
nK2

)
(LB) const. step size

(2) F
strongly
convex

fi smooth
Nguyen et al. [9] O

(
1
K2

)
K ≥ 1

Ours (Thm F.1) O
(

log3(nK)
nK2

)
K & κ2

fi smooth
convex

Gürbüzbalaban et al. [3] O
(

1
K2

)
asymptotic & (A1)

Mishchenko et al. [7]† O
(
e−

nK
κ + log2(nK)

nK2

)
K ≥ 1

Safran and Shamir [12] Ω
(

1
nK2

)
(LB) const. step size

(3) F
strongly
convex
quadratic

fi smooth Ours (Thm F.1) O
(

log3(nK)
nK2

)
K & κ2

fi smooth
quadratic
convex

Gürbüzbalaban et al. [3]‡ O
(

1
K2

)
asymptotic

Safran and Shamir [12] O
(

log4(nK)
nK2

)
d = 1, K & κ/n

Safran and Shamir [12] Ω
(

1
nK2

)
(LB) const. step size

† additionally requires µ-strong convexity of fi’s.
‡ does not require that fi’s are convex.

Throughout the proof, we assume without loss of generality that the global minimum is achieved at
x∗ = 0. That is,

∑n
i=1∇fi(0) = 0. We define G := maxi∈[n] ‖∇fi(0)‖.

We first decompose the gradient estimate ∇fσ(i)(xki−1) at the i-th iteration of the k-th epoch (i ∈
[n], k ∈ [K]) into a sum of three different parts:

∇fσ(i)(xki−1) =∇fσ(i)(0) +∇fσ(i)(xk0)−∇fσ(i)(0) +∇fσ(i)(xki−1)−∇fσ(i)(xk0)

=∇fσ(i)(0) +

[∫ 1

0

∇2fσ(i)(tx
k
0)dt

]
︸ ︷︷ ︸

=:Ak
σ(i)

xk0 +

[∫ 1

0

∇2fσ(i)(x
k
0 + t(xki−1 − xk0))dt

]
︸ ︷︷ ︸

=:Bk
σ(i)

(xki−1 − xk0)

=∇fσ(i)(0) + Ak
σ(i)x

k
0 + Bk

σ(i)(x
k
i−1 − xk0).

As discussed in Section A.2, the integrals Ak
σ(i) and Bk

σ(i) exist due to smoothness of fσ(i)’s. Note
that ‖Ak

σ(i)‖ ≤ L and ‖Bk
σ(i)‖ ≤ L due to L-smoothness of fσ(i)’s, and 1

n

∑n
i=1 A

k
σ(i) � µI due to

µ-strong convexity of F .

Plugging this into the update equation of xk1 , we get

xk1 = xk0 − η∇fσ(1)(xk0) = xk0 − η(∇fσ(1)(0) + Ak
σ(1)x

k
0)

= (I − ηAk
σ(1))x

k
0 − η∇fσ(1)(0).

Substituting this to the update equation of xk2 ,

xk2 = xk1 − η∇fσ(2)(xk1)

= xk1 − η(∇fσ(2)(0) + Ak
σ(2)x

k
0 + Bk

σ(2)(x
k
1 − xk0))

= (I − ηBk
σ(2))[(I − ηA

k
σ(1))x

k
0 − η∇fσ(1)(0)]− η∇fσ(2)(0)− ηAk

σ(2)x
k
0 + ηBk

σ(2)x
k
0
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= [I − ηAk
σ(2) − η(I − ηBk

σ(2))A
k
σ(1)]x

k
0 − η∇fσ(2)(0)− η(I − ηBk

σ(2))∇fσ(1)(0).

Repeating this, one can write the last iterate xkn (or equivalently, xk+1
0 ) of the epoch as the following:

xk+1
0 =

I − η n∑
j=1

(
j+1∏
t=n

(I − ηBk
σ(t))

)
Ak
σ(j)


︸ ︷︷ ︸

=:S̃k

xk0 − η

 n∑
j=1

(
j+1∏
t=n

(I − ηBk
σ(t))

)
∇fσ(j)(0)


︸ ︷︷ ︸

=:t̃k

= S̃kx
k
0 − ηt̃k.

Now, repeating this K times, we get the equation for the iterate after K epochs, which we take as the
output of the algorithm:

xK+1
0 =

(
1∏

k=K

S̃k

)
x1
0 − η

K∑
k=1

(
k+1∏
t=K

S̃t

)
t̃k = S̃K:1x

1
0 − η

K∑
k=1

S̃K:k+1t̃k.

We aim to get an upper bound on E[‖xK+1
0 ‖2], where the expectation is over the randomness of

permutation σ. To this end, using ‖a + b‖2 ≤ 2 ‖a‖2 + 2 ‖b‖2,

∥∥xK+1
0

∥∥2 ≤ 2
∥∥∥S̃K:1x

1
0

∥∥∥2 + 2η2

∥∥∥∥∥
K∑
k=1

S̃K:k+1t̃k

∥∥∥∥∥
2

. (F.1)

The remaining proof bounds each of the terms, using the following two lemmas. The proofs of
Lemmas F.2 and F.3 are deferred to Sections F.2, and F.3, respectively.
Lemma F.2. For any 0 ≤ η ≤ 1

5nLκ , any permutation σ, and k ∈ [K], we have∥∥∥S̃k∥∥∥ ≤ 1− ηnµ

2
.

Lemma F.3. For any 0 ≤ η ≤ 1
5nLκ ,

E

∥∥∥∥∥
K∑
k=1

S̃K:k+1t̃k

∥∥∥∥∥
2
 ≤ 66nL2G2 log n

µ2
.

Since Lemma F.2 holds for any permutation σ and k ∈ [K] (for η ≤ 1
5nLκ ), we have∥∥∥S̃K:1x

1
0

∥∥∥2 ≤ ( K∏
k=1

∥∥∥S̃k∥∥∥2)∥∥x1
0

∥∥2 ≤ (1− ηnµ

2

)2K ∥∥x1
0

∥∥2 .
The second term is bounded by Lemma F.3, which uses Lemma F.2 in its proof.

Substituting these bounds to (F.1), we have

E[‖xK+1
0 ‖2] ≤ 2

(
1− ηnµ

2

)2K ∥∥x1
0

∥∥2 +
132η2nL2G2 log n

µ2
.

Now substitute the step size η = 2 log(n1/2K)
µnK . Then, we get

E[‖xK+1
0 ‖2] ≤

2
∥∥x1

0

∥∥2
nK2

+O
(
L2G2 log3(nK)

µ4nK2

)
,

and in terms of the function value,

E[F (xK+1
0 )− F ∗] ≤

2L
∥∥x1

0

∥∥2
nK2

+O
(
L3G2 log3(nK)

µ4nK2

)
.

Recall that the bound holds for η ≤ 1
5nLκ , so K must be large enough so that

2 log(n1/2K)

µnK
≤ 1

5nLκ
.

This gives us the epoch condition K ≥ 10κ2 log(n1/2K).
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F.2 Proof of Lemma F.2

Decomposition into (modified) elementary polynomials. We expand S̃k in the following way:

S̃k = I − η
n∑
j=1

(
j+1∏
t=n

(I − ηBk
σ(t))

)
Ak
σ(j) =

n∑
m=0

(−η)m
∑

1≤t1<···<tm≤n

Bk
σ(tm) · · ·B

k
σ(t2)

Ak
σ(t1)

,︸ ︷︷ ︸
=:ẽm

where ẽm be viewed as a modified version of noncommutative elementary polynomial (B.1). Since k
and σ are fixed in this section, we use A to denote the mean 1

n

∑n
i=1 A

k
σ(i). Recall that by definition

of Ak
σ(i)’s and strong convexity of F := 1

n

∑
i fi, we have A � µI . In what follows, we will

decompose S̃k into the sum of 1 − ηnA and remainder terms. By bounding the spectral norm of
1− ηnA and the remainder terms, we will get the desired bound on the spectral norm of S̃k.

Spectral norm bound. It is easy to check that ẽ0 = I and ẽ1 =
∑n
i=1 A

k
σ(i) = nA, so

S̃k = I − ηnA +

n∑
m=2

(−η)mẽm,

and we get the spectral norm bound∥∥∥S̃k∥∥∥ ≤ ‖I − ηnA‖+

n∑
m=2

ηm ‖ẽm‖ . (F.2)

It is now left to bound each of the norms.

Bounding each term of the spectral norm bound. First, note that for any eigenvalue s of the
positive definite matrix A, the corresponding eigenvalue of I − ηnA is 1− ηns. Recall η ≤ 1

5nLκ ≤
1

5nL , so ηns ≤ 1/5 for any eigenvalue s of A. Since the function t 7→ 1− t is positive and decreasing
on [0, 0.2], the maximum singular value (i.e., spectral norm) of I − ηnA comes from the minimum
eigenvalue of A. Hence,

‖I − ηnA‖ ≤ 1− ηnµ.

Next, consider ‖ẽm‖. It contains
(
n
m

)
terms, and each of the terms have spectral norm bounded above

by Lm. This gives

‖ẽm‖ ≤
(
n

m

)
Lm ≤ (nL)m.

Concluding the proof. Substituting the bounds to (F.2) yields∥∥∥S̃k∥∥∥ ≤ 1− ηnµ+
n∑

m=2

(ηnL)m ≤ 1− ηnµ+
(ηnL)2

1− ηnL
≤ 1− ηnµ+

5

4
(ηnL)2,

where the last inequality used ηnL ≤ 1/5. The remaining step is to show that the right hand side of
the inequality is bounded above by 1− ηnµ

2 for 0 ≤ η ≤ 1
5nLκ .

Define z = ηnL. Using this, we have

1− ηnµ+
5

4
(ηnL)2 ≤ 1− ηnµ

2
for 0 ≤ η ≤ 1

5nLκ

⇔ g(z) :=
z

2κ
− 5z2

4
≥ 0 for 0 ≤ z ≤ 1

5κ
,

so it suffices to show the latter. One can check that g(0) = 0, g′(0) > 0 and g′(z) is monotonically
decreasing in z ≥ 0, so g(z) ≥ 0 holds for z ∈ [0, c] for some c > 0. This also means that if we have
g(c) ≥ 0 for some c > 0, g(z) ≥ 0 for all z ∈ [0, c].

Consider z = 1
5κ . Substituting to g gives

g

(
1

5κ

)
=

1

10κ2
− 1

20κ2
=

1

20κ2
> 0.

This means that g(z) ≥ 0 for 0 ≤ z ≤ 1
5κ , hence proving the lemma.
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F.3 Proof of Lemma F.3

First, note that if 0 ≤ η ≤ 1
5nLκ , Lemma F.2 tells us that the following holds for any k ∈ [K] and

any underlying permutation σ: ∥∥∥S̃k∥∥∥ ≤ 1− ηnµ

2
.

Therefore, for any permutation σ, we have∥∥∥∥∥
K∑
k=1

S̃K:k+1t̃k

∥∥∥∥∥
2

≤

(
K∑
k=1

∥∥∥S̃K:k+1t̃k

∥∥∥)2

≤

(
K∑
k=1

(
1− ηnµ

2

)K−k ∥∥∥t̃k∥∥∥)2

. (F.3)

Now, it is left to bound the right hand side of the inequality (F.3), which involves ‖t̃k‖. The proof
technique used to bound ‖t̃k‖ is similar to Lemma B.2; we use the Hoeffding-Serfling inequality [13]
and union bound.

Due to summation by parts, the following identity holds, even when multiplication of aj and bj is
noncommutative:

n∑
j=1

ajbj = an

n∑
j=1

bj −
n−1∑
i=1

(ai+1 − ai)
i∑

j=1

bj .

We can apply the identity to t̃k, by substituting aj =
∏j+1
t=n(I − ηBk

σ(t)) and bj = ∇fσ(j)(0):

∥∥∥t̃k∥∥∥ =

∥∥∥∥∥∥
n∑
j=1

(
j+1∏
t=n

(I − ηBk
σ(t))

)
∇fσ(j)(0)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
n∑
j=1

∇fσ(j)(0)−
n−1∑
i=1

(
i+2∏
t=n

(I − ηBk
σ(t))−

i+1∏
t=n

(I − ηBk
σ(t))

)
i∑

j=1

∇fσ(j)(0)

∥∥∥∥∥∥
=

∥∥∥∥∥∥η
n−1∑
i=1

(
i+2∏
t=n

(I − ηBk
σ(t))

)
Bk
σ(i+1)

i∑
j=1

∇fσ(j)(0)

∥∥∥∥∥∥
≤ η

n−1∑
i=1

∥∥∥∥∥∥
(
i+2∏
t=n

(I − ηBk
σ(t))

)
Bk
σ(i+1)

i∑
j=1

∇fσ(j)(0)

∥∥∥∥∥∥ ≤ ηL(1 + ηL)n
n−1∑
i=1

∥∥∥∥∥∥
i∑

j=1

∇fσ(j)(0)

∥∥∥∥∥∥ ,
(F.4)

where the last step used ‖Bk
σ(t)‖ ≤ L. Recall that η ≤ 1

5nLκ ≤
1

5nL , which implies that (1+ηL)n ≤
e1/5. Also, note that the right hand side of the inequality now does not depend on k. Thus, any
bound on the norm of partial sums ‖

∑i
j=1∇fσ(j)(0)‖ applies to all t̃k. Next, we use the Hoeffding-

Serfling inequality (Lemma A.1) for bounded random vectors. We restate the lemma here, for readers’
convenience.

Lemma A.1 ([13, Theorem 2]). Suppose n ≥ 2. Let v1,v2, . . . ,vn ∈ Rd satisfy ‖vj‖ ≤ G for all j.
Let v̄ = 1

n

∑n
j=1 vj . Let σ ∈ Sn be a uniform random permutation of n elements. Then, for i ≤ n,

with probability at least 1− δ, we have∥∥∥∥∥∥1

i

i∑
j=1

vσ(j) − v̄

∥∥∥∥∥∥ ≤ G
√

8(1− i−1
n ) log 2

δ

i
.

Recall that v̄ = 1
n

∑n
j=1∇fj(0) = 0 in our setting, so with probability at least 1− δ, we have∥∥∥∥∥∥

i∑
j=1

∇fσ(j)(0)

∥∥∥∥∥∥ ≤ G
√

8i log
2

δ
.
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Using the union bound for all i = 1, . . . , n− 1, we have with probability at least 1− δ,

n−1∑
i=1

∥∥∥∥∥∥
i∑

j=1

∇fσ(j)(0)

∥∥∥∥∥∥ ≤ G
√

8 log
2n

δ

n−1∑
i=1

√
i ≤ G

√
8 log

2n

δ

∫ n

1

√
ydy ≤ 2G

3

√
8 log

2n

δ
n3/2.

(F.5)

Substituting this to (F.4) leads to the following bound that holds for all k ∈ [K], without having to
invoke any union bounds over different k’s:∥∥∥t̃k∥∥∥ ≤ 4

√
2e1/5

3
ηn3/2LG

√
log

2n

δ
.

Using this bound, we can bound the right hand side of (F.3) as follows:(
K∑
k=1

(
1− ηnµ

2

)K−k ∥∥∥t̃k∥∥∥)2

≤

(
4
√

2e1/5

3
ηn3/2LG

√
log

2n

δ

K∑
k=1

(
1− ηnµ

2

)K−k)2

≤

(
8
√

2e1/5n1/2LG

3µ

√
log

2n

δ

)2

=
128e2/5nL2G2

9µ2
log

2n

δ
.

which holds with probability at least 1− δ.

Now, set δ = 1/n, and let E be the probabilistic event that (F.5) holds. Let Ec be the complement of
E. Given the event Ec, directly bounding (F.4) leads to∥∥∥t̃k∥∥∥ ≤ e1/5ηL n−1∑

i=1

∥∥∥∥∥∥
i∑

j=1

∇fσ(j)(0)

∥∥∥∥∥∥ ≤ e1/5ηn2LG

2
,

which yields the following bound on (F.3), conditional on Ec:(
K∑
k=1

(
1− ηnµ

2

)K−k ∥∥∥t̃k∥∥∥)2

≤

(
e1/5ηn2LG

2

K∑
k=1

(
1− ηnµ

2

)K−k)2

≤
(
e1/5nLG

µ

)2

=
e2/5n2L2G2

µ2
.

Finally, putting everything together and using log 2n
δ = log(2n2) ≤ 3 log n,

E

∥∥∥∥∥
K∑
k=1

S̃K:k+1t̃k

∥∥∥∥∥
2
 = E

∥∥∥∥∥
K∑
k=1

S̃K:k+1t̃k

∥∥∥∥∥
2

| E

P[E] + E

∥∥∥∥∥
K∑
k=1

S̃K:k+1t̃k

∥∥∥∥∥
2

| Ec
P[Ec]

≤ 128e2/5nL2G2 log n

3µ2
+
e2/5n2L2G2

µ2

1

n

≤ 66nL2G2 log n

µ2
,

which finishes the proof.
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