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A Analysis for PL costs (Proofs of Theorem 1 and Corollary 1)

A.1 Proof outline

In this section, we present the proof of Theorem 1 and Corollary 1. We first show the existence of the
following quantity that will be used throughout the proof:

G:= sup max ||V fi(x)|| .
x: F(x)<F(xo) i€[n]

With this quantity, as long as all the iterates stay within the sublevel set Sz, := {z : F(x) < F(x0)},
one can regard each component function f; as being G-Lipschitz. This motivates us to consider the
following two cases:

1. In the first case, we assume that all the end-of-epoch iterates § stay in the sublevel set S, .

2. In the second case, we assume that there exists an end-of-epoch iterate zf ¢ Sz, .
In both cases, we will show that the best end-of-epoch iterate satisfies

F(zo) — F* <L202 log?(n'/?K) log "f)

min F(xf) - F* 3 e

kE[K+1] nKk?2

IN

with high probability.

Existence of G. Recall that the function F' : R? — R is p-PE, and the set X'* of the global optima
of F' is nonempty and compact. Also, it is a standard fact [4, Theorem 2] that u-PE functions also
satisfy the following quadratic growth: Denoting by * the closest global optimum to the point =
(i.e., the projection of x onto the solution set X'*),

F(z)— F* > 2uz — x*||* .

Then, due to the quadratic growth property, it is easy to verify:

Say = {z €RY| F(z) < Flao)} C {weRd [l —a*|)* < F(moz)uF}

Indeed, the inclusion follows since for any @ € Sy, F(x) — F* > F(x) — F* > 2uljx — *||°,
which implies @ is also in the latter set. Since we assumed that X'* is compact, S, is also bounded
and hence compact. Since V f; is continuous on a compact set S, there must exist a constant
0 < G < oosuchthat |V f;(x)|| < Gforalli € [n],z € Sg,.

What if the bounded iterates assumption holds? As noted in Remark 1, if we have the bounded

iterates assumption (Assumption 1), one can prove the same bound for the last iterate :cé{ 1 modulo

leading constants. This is because if we have Assumption 1, we have a compact set S which all the



end-of-epoch iterates % lie in, which corresponds to the first case of the proof. More specifically,
there exists a constant 0 < G’ < oo such that

IVfi(z)|]| < G foralli € [n],z € S.

Thus, the proof for the first case stated in Sections A.2—A.4 goes through, modulo G replaced by G’.
We remark that since we already have a compact set S, we no longer need the additional compactness
assumption on X'*.

A.2 The Ist case: characterizing aggregate update over an epoch

We start by recursively applying the update equations over an epoch. The key idea in doing so is to
decompose the gradient V f,, (i (x¥ ) into the “signal” V fo (i) (xk) and a noise term:

vfﬂ'k('b ( ) vfok (330) + vfak ( ) vak('L (1"0)

= Vfak(i)(wlg) + {/ szakm(wé“ +t(xh - xo))dt (x| — ‘EIS)
——— 0

=Goy, (i)

=Hg i)

gak(l)+HUk(Z)( i—1 xlg)a

where V2f;(x) denotes the Hessian of f; at &, whenever it exists. We remark that the integral
H,, (;) exists, due to the following reason. Since we assumed that each f;, ;) € C}(RY), its
gradient V f,, (;) is Lipschitz continuous, and hence absolutely continuous. This means that V f, ;)
is differentiable almost everywhere (i.e., V2 Jo (i) () exists a.e.), and the fundamental theorem of
calculus for Lebesgue integral holds; hence the integral exists. Note that [|[H,, ;)| < L due to
L-smoothness of f;’s. We now substitute this decomposition to the update equations. First,

xf = af — N901,(1)-
Substituting this to x gives
mIQC = wl NV for(2) (3’31) = ml N90,(2) — 77Hak(2)( v a:’g)

= Zf — NGor(1) — Mor(2) + 1" Hop(2)900(1) = Tt — 01 = 1H,, (2))90, (1) — 1901 (2)-

Repeating this process until =¥ = wgﬂ we get
n Jj+1
k+1 = 150 772 (H I- nHak(t))> 9o (5)
t=n

n j+1
= @i — VY F(z5) —n [Z (H(I - nHok(t))> 9o, (j) — "V F(xg) |-

j=1 \t=n

Due to summation by parts, the following identity holds:

i

n—1
Zan —aan —Z @iyl —ai)ij.
i=1

j=1

We apply this to the last term, by substituting a; = Hi:n (I —nH,, ) and b; = g,, (j):

n j+1
> (H (I - 77Hm(t>>> 9o, (j) — NV F (z()

Jj=1 \t=
n n—1 /i42 i+1 i
= Zgak(j) - Z (H(I —nHgy, 1)) — H(I* UHak(t))> Zgok(j) — nVF(x()
j=1 =1 t=n t=n j=1
n—1 [i+2 i
=-n> <H(I - nHom))) Ho 61 Y 9ou(s)
i=1 \t=n j=1
=Tk



Therefore, we have xf ™! = 2k — ynV F (%) + 1?r). By smoothness of F', we have
F(zgt) — F(ag)

(VF(ah), ol — k) + ¢ ||k — b

IN

IN

k(|2 2 Kk Ln? k 2
— o [V + 72 [VE@)| Il + 2 [0 F) +m
< (= + 0 L) |VE@)||* + n? [V E(@b)|| |4ll + Ln* |2, (A1)

where the last inequality used ||a + b||* < 2||a|® + 2|/b||.

A.3 The 1st case: bounding noise term using Hoeffding-Serfling inequality

It is left to bound ||7y||. We have

n—1 1+2 7
Il = (1D (H(I - nHUk(t))> H,, (i+1) Y 9o.()
=1

=1 \t=n

IN

n—1 i+2 i
> (H(I - nHak(t))> H,(i41) ) 9010
j=1

1=1 t=n

- i
L(1+nL)" Z > o] - (A.2)
=1 ||j=1

Where the last step used |[H,, ;)| < L. Recall from the theorem statement that K >

10k 1og(n'/?K), and ) = %}ém This means that

2 log(n'/?K) 1

in —
" nk = 5n’

which implies (1+7L)™ < /5. Now, we use the Hoeffding-Serfling inequality for bounded random
vectors, which is taken from [13, Theorem 2]. Note that for any epoch k, the permutation oy, is
independent of the first iterate =5 of the epoch. Therefore, we can apply the following bound for
partial sums of g,, (;y := V f,, (i) (@ ):

Lemma A.1 ([13, Theorem 2]). Suppose n > 2. Let v1,vs, ..., v, € R satisfy |v;|| < G forall j.
Letv = % Z?Zl vj. Let o € S, be a uniform random permutation of n elements. Then, fori < n,
with probability at least 1 — 0, we have

lzv _sll<a w
i () — i

Recall the mean © = V F(xf) for our setting. Using this concentration inequality, with probability at
least 1 — 4, we have

7 1 2
> Gouh|| 1D gor) — IVF(f) —i—iHVF(a:’g)H§G1/8ilogg+iHVF(w’g)H.
j=1

j=1

We apply the union bound foralli = 1,...,n —1and £k = 1,..., K. After this, we have with
probability at least 1 — 6,

Z Zgam) <G\/810g 5 Z‘[JFHVF T4 HZ@

=1




n 2
<ayfsion 7 [ g+ v rh)|

- 4/2n32@G MK  n?

k
< 3 log —— + = |[VF(z)], (A3)
for each k € [K]. This then leads to
n—1 % -
4+/2e/503/2 LG mK  el/5n2[ &
7wl < 61/5122 ;gokm < 3 log —— + —— [|VF(zp)]|
5n%/2LG 2nK  2n’L
< \/log + |VF(xp)], (A4)
2 ) 3
which holds with probability at least 1 — §. By (a + b)? < 2a? + 2b?, we also have
2513 L2G? 2nK  8n*L? 12
7)) < log + |VE@d)]” (A5)

2 6 9
A.4 The Ist case: getting a per-epoch progress bound
Substituting the norm bounds (A.4) and (A.5) to (A.1) and arranging the terms, we get

2n°n?L  8npiniL3
Fagth) = F(ap) < (—nn+n2n2L+ s+t |V F(z5)

I

5m°n3/2LG

K 25n*n3L3G? 2nK
5 + 1 .

HVF(Q:IS)H log 5 5 g~

. 2 2
Using ab < % + %, we can further decompose

2,3/2 1/2,1/2
MHVF(:BIS)H log 2nk _ (77 i HVF(:UIS)H) <5n3/2nLG log 2nK>

2 0 2 )

2 25Pn?L%G? . 2nK
H + 5 log 5

Substituting these results back to the above bound and using 1 + nnL < 6/5 yields

T 5Pn?L 8ytniLd
F(w’8+1)—F(w’8)<<—gn+ "; + "g )HVF(:D’O“)HZ+15n3n2L2G210g

< % |VF(ah)

2nK

Now, since nnL < 1/5, we have

2,2 4,473
_m+5nnL+8nnL < _m

8 3 9 — 27
which follows since z — 3z — 222 — 824 is nonnegative when 0 < z < 1/5. Therefore, we have
2nK
F(af') - Faf) < =2 [V @b)||” +159°n?L2G log =~
Now let us apply the p-PL inequality on ||VF (xk) ||2 This yields
k+1 * k * 3 272,42 2nK
F(xg™ ) — F* < (1 —nnu)(F(xg) — F*) 4+ 157°n° LG~ log -5
. . .. . o sy e _ 2log(n*/?K) . |
Recursively applying this inequality over £ = 1, ..., K and substituting n = —mr - give
MK
Flxf™) — F* < (1 —nqnp)® (F(xo) — F*) + 159°n2L2G* log 5 (1 —nnp)*
k=0
"Note that since we have already taken the union bound over alli = 1,...,n —land k = 1,..., K in

Section A.3, additional union bounds are not needed.



_ 2, 72012
SF(a:o) F Jr1577 nL*G log2nK

nk?2 I )
_ F(mo) — F* L2G? log” (n/2K) log
N nk?2 3 nk?2 '

Note that this bound certainly holds for the best iterate.

A.5 The 2nd case: escape implies desired best iterate suboptimality

Now consider the case where some end-of-epoch iterates xf escape the F'(xo)-sublevel set Sy, .

First, note that by definition of sublevel sets, if F(w(’ﬁ) is monotonically decreasing with k, then
there is no way x& can escape Sy, . Thus, & escaping S, implies that F'(z§) is not monotonically
decreasing. Let &’ € [2 : K + 1] be the first k such that £ ¢ S, . This means that for the previous
epoch k' — 1, we must have

2nK

—UTL/L(F(CBSI71) — F*) + 159302 L*G? log >0 (A.6)

because otherwise
’ ’ < 2 K ’
F(zE') — F* < (1 —qnu)(F(zf =) — F*) + 15n*n2L2G? log ”T < F(ak'~Y) - F*,
which means € S,,. Then, from (A.6), we get

in F(zk) - F* < F(zF ") - F~
phn (z0) < Flxg )

2 nk
- 15n*nL2G? log 20K o L2G? log?(n'/?K) log 2£ .
1) 3 nk?

A.6 Proof of Corollary 1

Let E be the event that the bound (A.3) holds for all k£ € [K], which happens with probability at least
1 — 4. The high probability result (Theorem 1) showed that given this event happens, we have
F(xg) — F* Lo <L2G2 log?(n'/2K) log ”f)

pin (o) e

IN

113 nk?2
We now choose § = 1/n. Given the event £, we will get a similar bound, worse by a factor of n:

I nt3 22 2
F(xy) — F Lo (L g}’ log (72”LK)>7
W K

without using the concentration inequality. Taking expectation gives

in F(zk)y - F* <
pin Fl@g) = F7 < —

E in F(zF) - F*
pin P 1]

:E[ min F(w’g)—F*E} IP[E]HE{ min F(x(’g)—F*|EC] P[E°]

ke[K+1] ke[K+1]
- 3(F(xo) — F*) Lo L2G? log® (nK) 7
2nK? u3 nk?

as desired. The rest of the proof derives the bound for E°.

The first case. The proof goes the same way as in 2. We first consider the case where all the
iterates stay in Sg,, which corresponds to the first case in the proof of Theorem 1. We unroll the
updates =¥ and obtain the bound (A.1). Then, we bound ||7|| directly, without the concentration
inequality. From (A.2), we have

n—1 i 1/5 2
7 e °nm°LG
7kl < L1+ nL)™ ) Jor(i)|[ € —5 < m2LG.
i=1||j=1



Substituting this bound to (A.1), we get

W+ |[VE@)|| Il + L rall?
W+ n?n2LG |V F ()| + n*n*L3G?

F(xg™) — F(xg) < (—nm +nn’L) [|VF(z
< (= +n*n’L) |[VF(z

ox Ox

IN

<7g” + n2n2L> |VF(h)||” + 20*n® L2G? + ' n* L3 G2,

nt/2pl/2
2

where the last inequality used ab < % + % for a =
Now, since nnL < 1/5, we have

|VF(xf)| and b = 20*/2n3/2LG.

nmn 9 9 m
L L < -
8 trnh s 2’

because z +—> %z —22is nonnegative when 0 < z < 1/5. In conclusion, we have

F(aft) = Faf) < 2 | VE@D)||” + 3'n* 1262,
Applying the u-PL inequality, we have
F(af™) = F* < (1 —nnp)(F(z5) — F*) + 3n*n L*G”.

2log(n'/?K)

Unrolling the inequalities and substituting = i+ e get
min F(zf) — F* < F(af™) — F~
Jmin | Flaf) — F* < Faf™)
_ * 2,.21722 _ * 22 2
<F(m0) F+377nLG <F(mo) F 0 L*G? log*(nK) .
- nk? I - nk? 3 K2

The second case. Now consider the case where some end-of-epoch iterates satisfy x& ¢ S,,. We
can apply the same argument as the second case of Theorem 1 here.

Let k&’ be the first such index. Then, this means that F'(x} ) is greater than F(mg/_l), which holds
only if

fnnu(F(mgl_l) — F*) +3n°n2L%G? > 0.
Then, this implies that

min  F(ak) — F* < F(zf ~) - F*

ke[K+1] i

2n212G2 L2G2 1 2 K
<3nn G :(’)( f og (721 ))
I K

B Analysis on RANDOMSHUFFLE for quadratics (Proof of Theorem 2)

B.1 Additional notation on matrices

Prior to the proofs, we introduce additional notation on matrices. For a matrix A, || A|| denotes its
spectral norm. For matrices indexed M, My, ..., M} and for any 1 < ¢ < j < k, we use the
shorthand notation for products M;.; = M;M;_; ... M, M;. In case where ¢ > j, we define

M;.; = I. Similarly, MJTZ denotes the product M M}, , .. .MijleT.

The proofs of Theorems 2 and C.1 involve polynomials of matrices. We define the following
noncommutative elementary symmetric polynomials, which will prove useful in the proof. For a
permutation ¢ : [n] — [n] and integers [, 7 and m satisfying 1 <1 <r <mnandm € [0 : n],

em(Ai, ..., Ap;o,l,r) = Z Ac(t,)Ac(tm_1)  As(tr)- (B.1)
1<ty <ty <--<tpm<r

Whenever it is clear from the context that the arguments are Ay, ..., A,, and permutation is o, we
use a shorthand A,,). Also, the default value of [ and r are [ = 1 and r = n; s0, e, (Ag[n]) =
em(Ai1,..., Ap;0,1,n).



B.2 Proof outline

Recall the definitions

filx) := 7a:TA x+blx, Flx va = %a:TAa:,

where f;’s are L-smooth and F' is y strongly convex. This is equlvalent to saymg that A < L
and A := L3 | A; = pul. Also note that F is minimized at #* = 0 and )" ; b; = 0. We let
G = max;c(y [[bi].

The proof goes as follows. We first recursively apply the update equations over all iterations and
obtain an equation that expresses the last iterate 5 ™ in terms of the initialization x{, = x(. Using

such an equation, we will directly bound E[||zf " — 2*||?] = E[||z{ ™" — 0]|?] to get our desired
result.

Compute the update equation of ¥ in terms of the initial iterate ¥ of the k-th epoch:

mlf = "Blg - nvfok(l)(m](§> = mlg - n(AUk(l)mIS + bak(l))

= (I =1 Ag,(1)ZG = Nbo, (1)-
Substituting this to the update equation of x4, we get
@y = &} — 1V [ (2)(@F)
= (I = 145,(1))%5 = Mg, (1) = 1Ay (2) (I = 146,1))T5 — b, (1)) + by (2))
= (I —145,2))(I = 1A, (1)) %G — 1bgy(2) — NI = 1A, (2)bo, (1)

Repeating this, one can write the last iterate ¥ (or equivalently, x’é“) of the k-th epoch as the
following:

1 n Jj+1
ZC]S+1 = [H(I— UAak(t))] wlg -n Z (H(I - nAUk(t))> bak(j)
t=n Jj=1 \t=n

::Sk :2tk
= Spxh — nty. (B.2)

Note that S}, and t;, are random variables that solely depend on the k-th permutation o). Now,
repeating this K times, we get the equation for the iterate after K epochs, which is the output of the
algorithm we consider in Theorem 2:

K /k+1
i = <H5k>wo UZ(H&)%—&(@O UZSKk+1tk

We aim to provide an upper bound on E| Hwo +1 H ], where the expectation is over the randomness of
permutation oy, . . ., 0. To this end, using ||a + b||> < 2||a|® + 2 b|%
2 X ’
2
lz& ™ < 2||Skaz|]” + 21 Z Sk k1t
k=1

where the second term on the RHS can be further decomposed into:

K
= Z IS k4 1tel*+ 2 Z (Skikt1te, Skin1te) -

k=1 1<k<k'<K

1t

The remaining proof bounds each of the terms, which we state as the following three lemmas. The
proofs of Lemmas B.1, B.2, and B.3 are deferred to Sections B.3, B.4, and B.5, respectively.



Lemma B.1 (Ist contraction bound). For any 0 <1 < 27 min{1, \/Z} and k € [K],
=[S Sk] || <1 —nnpe
Lemma B.2. Forany0 <n < ﬁ min{1, \/E} and k € [K],
E [HSK:kHtkHz} < 18(1 — nnp) K ~Fn?n3L2G? log n.
Lemma B.3. Forany 0 <7 < 127 min{1, \/2} and k, k' € [K] (k < k'),

2K —k'—k—1
77”#) 772”2 L2G2.

E [(Sk:k+1tr, Sk +1tir)] < 40 (1 -5

Remark B.1 (Our contraction bounds and the matrix AM-GM inequality conjecture). Before we
continue with the proof, a side remark on the contraction bounds is in order. In this paper, we
prove a number of contraction bounds (Lemmas B.1, B.4, and C.2) that circumvents the need for
the conjectured matrix AM-GM inequality [11], which was proven to be false [5]. The bounds we
provide can be seen as “weaker” versions of the AM-GM inequalities, which hold for any number
n of matrices but with 7 diminishing with n. Whether these weak AM-GM inequalities hold for a
broader range of 7 (e.g. n < 1/L) or not is left to future investigation.

By Lemma B.1, we have 0 < E[Sgsk] (1 — mnu)I for appropriately chosen step size 7). Since
any STSk is independent of o1, ..., 0,_1, we have

B [||Swiat]*] = & [(Swaad)” (Swaad)|
—E {(SK—lzlxé)TE [SicSk] (SK*LW%’)}
< (1= i [ (Si-sa2)” (Se-1a08)]

(= (S22 (S-12))]

IN

2
<< (= ) [l
By Lemma B.2, we have
K K
_ 182 L2G? logn
Z]E {HSK;kHtkHZ} < 18n?n*L*G? lognZ(l —nu)EF < %,
k=1 k=1

and Lemma B.3 implies that

nnu\ 2K-K—k=1  160L%G?
Z E [<SK:k+1tk, SK:k’+1tk’>] S 40772n2L2G2 Z (1 — T) § 5
1<k<k'<K 1<k<k'<K H

Putting the bounds together, we get

36773n2L2G210gn 640n2 L2G?
I e

into the bound gives

g < 201 - ) |+
Substituting the step size n =

o 2ll=d? L2G? [log*(nK) log*(nkK)
sl 1< S o (57 (M5 ) )

2log(nK)
unKkK

and in terms of the cost values,

E[F(zK+) - F*) < %Jro (L3G2 (10%4(nK) N logz(nK)».

= T 2K2 1t nk?3 n2K2
Recall that these bounds hold for < 15>+ min{1, f }, so K must be large enough so that

210g(nK) 3. \/ﬁ
< 1,4/—¢.
unK  — 16n me{ "V ok

This gives us the epoch requirement & > 2 n max{1, \/Z}log(nkK).




B.3 Proof of the first contraction bound (Lemma B.1)
B.3.1 Decomposition into elementary polynomials

For any permutation oy, note that we can expand S, in the following way:

1 n n
Sk = H(I — nAak(t)) = Z (_n)m Z Agk(tm,) v Agk(tl) =: Z (—n)mem(Agk[n])a
t=n m=0 1<t1 < <tm<n m=0

where the noncommutative elementary symmetric polynomial e,,, was defined in (B.1). Using this,
we can write

2n
SESe=2 (=™ Y em(Anym) ems(Agym)- (B.3)
m=0 0<mi<n

0<ma<n
mi+me=m

=:C,,

Note E[ST S)] = 322" (—1)™E[C,]. In what follows, we will examine the expectation E[C,,]

m=0
closely, and decompose E[S}'S}] into the sum of " _ %

(= 2nnA)

and remainder terms. By
bounding the spectral norm of > _,
bound on the spectral norm of E[S] Sy].

and the remainder terms, we will get the desired

Cases 0 < m < 2. Itis easy to check that Cy = I and C; = 261(A0.k[n]) =2 Z?’Zl A; =2nA,
regardless of oj. For Cs, we have

Co = e2(Anyn)) €0(Agyn)) + €1(Agy ) €1(Agyn) + €0(Agyn) " €2(Anyin))

> Aak(tnAok(tz)Jr(ZA) + Y A Aot

1<t <ta<n 1<t;<ta<n
=Y A4 +<ZA> —2<§:Ai> ZA2_2nA ZA
i#£] =1

again regardless of 0. Note that each A? is positive semidefinite even when A; is not.

Cases 3 < m < n: decomposition of C,,. In a similar way, for m = 3,...,n, we will take

expectation E[C,,] and express it as the sum of @nA)™ "A) and the remainder terms. Now fix any
m € [3 : n], and consider any m; and m satisfying m1 + mg = m. Then, the product of elementary
polynomials e, (Ay, (1)) €my (Ag,[n)) consists of (ml) (mQ) terms of the following form:

ma

HAok(g) H Ao, ti), Where 1 <5y <o <5y <, 1<t <oos <y, <n. (BA)

=1 i=mso
Among them, (731) (”mml) terms have the property that each of the s1,...,8,,, and t1 ..., tp,, is
unique; in other words, {s1,. .., Sm, } N {t1,...,tm,} = 0. The remaining (ml) ((nzz) — (”;LZ”))

terms have overlapping indices.

Using this observation, we decompose C,, into two terms C,,, = D,,, + R,,. Here, D,,, is a sum

of terms in C,, with distinct indices s1, ..., Sm,, 1, - - ., tm, and R, is the sum of the remaining
terms.
ma 1
Dm = Z Z HAO'k(S'i) H Ao'k(ti) 5 Rm = Cm - Dm. (BS)

0<mi<n 1<s1<-<spm,<n  Li=1 i=me
0Smasn 1<ty < <tm,<n
mi+me=m 54, t; unique

10



The matrix C,,, is a summation of

2 ) ()= ()

0<ma<n
mi+mo=m

terms of the form in (B.4). The number of terms in D,,, is

Os%;n (”:1) (n m;nl) =2" (Z)

0<ma<n
mi+mo=m

and consequently, R, consists of (273) —2m (SL) terms.

Cases 3 < m < n: expectation of terms in D,,. For any s1,5s2,...,5m,,%1,%2,...,tm, such
that each of s; or ¢; is unique, we have

mi

HAam ) H Agy(ts)

i=ma

=E

HAak(z ‘| ’

due to taking expectation. We can expand this expectation using the law of total expectation.

ElHAUk(i)]
ZAjIElH o ol _ﬁ]mak(m:jﬂ

J1€[n =

- Z AJl lH o (1) |Uk: :]1‘|

JlE

= m Z Z Aj AR [E}Aak(i) | ok (1) = j1,0k(2) = j2

Jr1€[n] j2€[n]\{71}

::wz > > ﬁAa‘i

j1€[n] je€[n]\{j1} Jm €MIN{J1,sJm—1} 1=1

n—m)! i
Z% > 114

J1yeeim€[n] =1
J15--+,dm unique

_W(ZAi> Smt s B.6)

.j1>~~<7j7n€[’fb] =1
J1,-++>Jm DOt unique

=:N,,
Here, we decompose the expectation of [, A,, (; into the difference of (nA)™ and N,,. Note

that all 2’”( ) terms in D,,, have the same expectation, identical to the one evaluated above. Also

note that IV,,, is a sum of n™ terms.

N M)'
To summarize, we have decomposed the expectation of C,,, twice, in the following way:

E[Cyn] = E[Do] + E[R]
_om (”) (L =mt (A~ N, + B[R]

m n!
2 A m 2777.

_ A 2 B[R,
m/! !



Spectral norm bound. Up to this point, we obtained the following equations for C,;,’s:

Cy=1,
01=2nA

Cy, =2(nA)? ZA

2nA 2m
E[Cm] = % - ﬁNm + ]E[Rm], form = 3, oo, N,
m! m!
We substitute these to E[ST'S)] = Zf:zo(—n)mE[Cm] and get
- 217nA m n n om
E[SESy] = Z —n? Z A? 4 Z (=)™ (E[Rm] - m!Nm>
m=0 i=1 m=3
+ Z (=)™ E[Cp), (B.7)
m=n-+1
and consequently,
~ (=2mA)" S 2m
IEISTSHl < || > |+ > ™ { IERum]l + 5 [ Null
m=0 ’ m=3 :
+ Z " E[Cm]II-
m=n+1

In what follows, we will bound each of the norms to get an upper bound.
B.3.2 Bounding each term of the spectral norm bound

We first start with HZZ:O MH Note that for any eigenvalue s of the positive definite

m!
matrix A, the corresponding eigenvalue of > " _ % is Y M. Recall 7 f
oo min{1, VE} < g 50 0 < 2ns < 1/2 for any eigenvalue s of A. Since t — y" _ va)'
= 2nnA)’" :

is a positive and decreasmg function on [0, 0.5] for any n > 2, the matrix ), _, g is
positive definite and its maximum singular value (i.e., spectral norm) comes from the minimum

eigenvalue of A, hence

n

< Z 277n,u

’UL

m=0 =0
As for |[E[R.,]||, where m = 3, ..., n, recall that R,,, is a sum of (") — 2™ () terms, and each of
the terms has spectral norm bounded above by L™. Thus,
2n n —1+m
Rl < Bl < () <2 (2) ) om <o am @
m m

due to Lemma B.7. Similarly, IV,, is a sum of n™ — (nfiln)' elements, so using the same lemma,

—— || N, < ﬁ (nm - (nf'm),> L= ((2:1)!7,1 _om (;)) L™ < (2n)™'L™. (B.9)

Finally, we consider ||E[C,,]|| form =n + 1,...,2n. It contains (2”) = (fom) terms, and each
of the terms have spectral norm bounded above by Lm This leads to

IE[C]ll < <2n2f m) L™ < (2n)2 L™ < (2n)" 7 L™, (B.10)

where the last bound used 2n — m < m — 1, which holds form =n+1,...,2n.

12



B.3.3 Concluding the proof

Putting the bounds together, we get

n m n 2n
IE[SESH| <> % +2) @)L+ > g (2n) T L
m=0 ’ m=3 m=n+1
2 (- 277n,u 1
<y -+ - Z 2nnL)™
m=0 =3
< = (=2p)™ 1 (2gnL)?
et m)! nl—2nnL

1 2
<1 —2nnu + 5(2nnu)2 + 7(277nL)3.

Here, we used 2nnL < 1/2, and the fact that 1 — ¢ +E >3 0 = " forallt € [0,0.5] and
n > 2. The remaining step is to show that the right hand 51de of the 1nequa11ty is bounded above by

1—nnufor0<n< 16nL min{1, \/Z}.
Define z = 2nn L. Using this, we have

1 2 3
5(27771#)2 + ﬁ(2nnL)3 <1—nnufor0<n< TonL min {17 \/Z}

z 22 223 3 . n
@g(z):%—w—n20f0r0§2§8m1H{17 H},

so it suffices to show the latter. One can check that g(0) = 0, ¢’(0) > 0 and ¢'(z2) is monotonically
decreasing in z > 0, so g(z) > 0 holds for z € [0, ¢] for some ¢ > 0. This also means that if we have
g(c) > 0 for some ¢ > 0, g(z) > 0forall z € [0, ].

First, consider the case k < n. Then, n/k > 1and k > 1, so

2 3 2 3
i_i_zz zl(z—z—élz>>1(z—22—4z3).

2k 2K2 n 2K Kk n/k) T 2k

1—2mnp +

We can check that the function z — z — 22 — 423 is strictly positive at z = %. This means that
g(2) > 0, hence g(z) > 0for 0 < z < 2.

Next, consider the case x > n. In this case, set z = c\/g where ¢ = %. Then,

z z2 223 1 n An n 1 n n
_—— - — — = — Ak m ) > = —4) = =22 ).
2k 2% n 2K (c Kk K? H) T 2K ((c <) PR /1)

Note that \/Z < 1, and the function t — (¢ — 4¢®)t — ¢*t* = ft — 2% is nonnegative on [0, 1.

Therefore, we have g(g\/g) >0,509(2) >0for0 <z < 8\/:

B.4 Proof of Lemma B.2
First, note that since 0 < n < 16 157 min{1, f }, Lemma B.1 holds and it gives
E [HSK:k-ﬁ-ltkHQ} =E [(Sxi+1tr)” (Skunr1te)]
< (1 =nmmpE [(Sk—1e41te) T (Sk—rp1te)] < - < (1— ) KR8]
Now, it is left to bound E[|[]|>]. The proof technique follows that of [12]. We express ||£;]| as

a summation of norms of partial sums of b,, ;) and use a vector-valued version of the Hoeffding-
Serfling inequality due to [13].

ok (J

Due to summation by parts, the following identity holds:

n n n—1 %
E a;b; —aanj *Z(awl —a,)ZbJ
Jj=1 Jj=1 i=1 Jj=1



We can apply the identity to ¢, by substituting a; = HJH (I —nA,, ) and bj = b,, (j):

n j+1
Ikl = Z <H(I - nAUk(t))) bo,.(j)

j=1 \t=n

i=1 \t=n t=n

n n—1 /i+2 i+1 i
— Zbak(]) - Z (H(I - nAgk(t)) — H(I — nAak(t))> Zbak(])
j=1 j=1
n—1 /i+4+2 i
= ||" Z <H(I - nA”k(t))> Ay (i+1) Z bs. ()
i=1 \t=n j=1

3

n—1 i+2 7
<y <H(I—77Aak(t))> Agyiiv) D oy || S nL(L+1L)" Z Zboke) )
j=1 i=1

=1 t=n
(B.11)

where the last step used HAUk(J H < L. Recall thatp < = L, which implies (1 4+ nL)"* < e'/2.
Now, we use Lemma A.1, the Hoeffding-Serfling inequality for bounded random vectors. We restate
the lemma for readers’ convenience.

Lemma A.1 ([13, Theorem 2]). Suppose n > 2. Let vy, v, ..., v, € R%satisfy ||v;|| < G forall j.
Letv = % Z;'L=1 vj. Let o € Sy, be a uniform random permutation of n elements. Then, fori < n,
with probability at least 1 — 0, we have

1< 8(1 — i=1y1
= Vo) — || <G 80 - 5 )los s
1 < ’L

Recall that the mean v = % >, bi = 0 for our setting, so with probability at least 1 — §, we have

: 2
Zbak(j) < Gy/Silog .

Jj=1
Using the union bound for all ¢ = 1,...,n — 1, we have with probability at least 1 — 4,

2 n
Z Zbak(]) < Gy/810g 2" Z\/<G1/810g?n/ Sy
i=1 1
S%\/Slog 2; 3/2, (B.12)

Substituting this to (B.11) then leads to
32¢1/2 2
el < =5’ LG log =,
which holds with probability at least 1 — 4.

Now, set § = 1/n, and let E be the probabilistic event that (B.12) holds. Let E° be the complement
of E. Given E°, directly bounding (B.11) yields

2

noly @ 1/2,2, 4722
. e’ “n*n*L°G
& [l | 5] <E | {n S |Sbn|| | 18| < S
i=1 ||j=1

Finally, putting everything together and using log(2n?) < 3logn (due to n > 2),
2 2 2 c c
E|ltxll?] = E [Iltx)® | B| PE] + E [t | B<| PEF]

39 1/2 1/2,.2 1122 1
< eTnQnSLQG2 logn + %—
n

< 187*n3L2G? log n.
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B.5 Proof of Lemma B.3

Recall that S; and t; depend only on the permutation o;. Hence, for any ¢’ # t, S; and t; are
independent of S}/ and ¢;/. Recall k < k’. Using independence, we can decompose the dot product.

E [(Skki1te, Sk y1ti)] = E [8f Sfepy1 Sk 1t
=E[ti]"E[Sk—1:641)"E [Sk.o Srinr+1th7]
< B[Sk —1:h1 E[Ek] | ||E [Skps Scenr+1tir]
< [EISIF T BRI |E [SE.p Sicons1te]

where we used Cauchy-Schwarz inequality.

For the remainder of the proof, we use the following three technical lemmas that bound each of the
terms in the product and get to the conclusion. The proofs of Lemmas B.4, B.5, and B.6 are deferred
to Sections B.6, B.7, and B.8, respectively.

Lemma B.4 (2nd contraction bound). For any 0 < n < 12+ min{1, \/2} and any k € [K],
LEAES TR
Lemma B.5. Forany 0 < n < ;- and any k € [K],
[E[tx][| < 4nnLG.
Lemma B.6. Forany 0 <n < 227 min{1, \/%} and any k € [K],
||]E [SIT(:kSK:kHtk} H <10(1— nnu)KﬁknnLG.
Given these lemmas, we get the desired bound:

k' —k—1
E [<SK:k+1tk; SK:k’+1tk’>] S 40 (1 - %) (]. - nnu)K k 2L2G2

—k'—k—1
<40 (1 — %) ’n?L2G?.

B.6 Proof of the second contraction bound (Lemma B.4)

The proof goes in a similar way as the first contraction bound (Lemma B.1), but is simpler than
Lemma B.1. Nevertheless, we recommend the readers to first go over Section B.3 before reading this
section, because this section borrows quantities defined in Section B.3.

B.6.1 Decomposition into elementary polynomials

For any permutation oy, recall that we can expand S}, in the following way:

1 n n
Si=[[T-nAsw) = (=)™ > Aty Ayt = > (1) em (A ),
t=n m=0 1<t1 < <tm<n m=0

where the noncommutative elementary symmetric polynomial e,, was defined in (B.1). In what
follows, we will examine the expectation Ele,,, (A, )] closely and decompose E[Sy] into the sum

nnA) ;
of 0 _ 0 .-~ and remainder terms.

Cases 0 < m < 1. By definition, (A, ) = I and e1(A,,[n)) = Y1) A; = nA, regardless
of Of.

Cases 2 < m < n. Note that each elementary symmetric polynomial e,,(A,,[,,]) contains (:1)
terms, and each term is of the form

1
H Ag, (1), Where 1 <ty < -+ <t <.

i=m

15



Since the indices ¢4, . .., t,, are guaranteed to be distinct, we have

HAUkt) HAUI»(Z‘| :

i=m

=E

This expectation was evaluated in (B.6):

" n—m)! [ " n—m)! "
E HAgk(i)] :(ni!) <2A1> *% Z Hqu‘,

. j17':'7j77l6[71"] 1=1
J1,-++,Jm NOt unique

. (n ;!WL)!(TLA)m B

(n —m)!

' Np,.
n!

Here, we decompose the expectation of [];" ; A,, ;) into the difference of (nA)™ and N,,,. Note

that all (:@) terms in e, (A,, [»)) have the same expectation, identical to the one evaluated above.
Therefore, we have
n\ (n —m)! m (nA)™ N,
Blen (o] = (1) " () - ) = P2 T

m m! m!

Here, note one special case, m = 2:

n
Ny = Z Alej2 = ZAf’
=1

J1,d2€[n]
J1,J2 not unique

which is a sum of positive semi-definite matrices.

Spectral norm bound. Up to this point, we obtained the following equations for e,, (A, [n])’s:

eo(Agyn)) = 1,
el(Aak[n]) = nA7

i=1
(nA)™ N
E[em(Aak[n])] = l o for m = 3, N
We substitute these to E[Sy] = > _(—1)"E[en (As,[n))] and get
- nnA 77 5 n o N,
-3 SR N
m=0 m=3

and consequently,

n T]m

m=3

" (—pnA)™
Z( Im!)

m=0

IE[Sk]Il <

In what follows, we will bound each of the norms to get an upper bound.
B.6.2 Bounding each term of the spectral norm bound

We first start with HZ;:O (777;7’,4)7”“ Note that for any eigenvalue s of the positive definite

matrix A, the corresponding eigenvalue of > _ % is >, ’772,3) . Recall <

o min{1, /Z} < ;17,500 < nns < 1/4 for any eigenvalue s of A. Since t — > (_n?!

is a positive and decreasing function on [0, 0.25] for any n > 2, the maximum singular value (i.e.,

(=mnA)™
m!

comes from the minimum eigenvalue of A, hence

" (—mmA)™
Z( Um!)

m=0

spectral norm) of > _

n

<y (—n:;t)

m=0

16



As for | N,,,|| where m = 3, ..., n, recall that IN,,, is a sum of n™ — 0 n__ terms, and each of the

Tn—m)!
terms has spectral norm bounded above by L™. Thus,
1 1 | m 1
— [N || £ — (0™ — " L™ = (" Lm < *nmflea
m m! (n—m)! m! \m 2
due to Lemma B.8.

B.6.3 Concluding the proof

Putting the bounds together, we get

m=0 m! 2n m=3
2 m
< Z (=nnp) 1 (nnL)?
B m! 2n1 —nnlL

1 2
<1—mnp+ 5 () + (L),

Here, we used nnL < 1/4, and the fact that 1 — ¢ + % >3 CO” forall t € [0,0.25] and

m)

n > 2. The remaining step is to show that the right hand side of the inequality is bounded above by
1 — Tk for0<n < w%min{l,\/%}.
Define z = nn L. Using this, we have

1 2 nn 3 . n
1- = 2y S (mL)P<1-—Sfor0<n< —— 1,4/—
ﬁnu+2(nnu) +3n(nn )»° < 5 for _n_16anm{, n}

z 22 223 3 n
Sgz)i= = — 2 2 S 0for0<z2< —mindl, /2
9(2) =50 —gm ~ 3, 20for0=z< 16mm{ ’ /{}’

so it suffices to show the latter. One can check that g(0) = 0, ¢’(0) > 0 and ¢’(z) is monotonically
decreasing in z > 0, so g(z) > 0 holds for z € [0, ¢| for some ¢ > 0. This also means that if we have
g(c) > 0 for some ¢ > 0, g(z) > 0forall z € [0, c].

First, consider the case k < n. Then,n/k > 1and k > 1, so

z 22 223 1 22 423 1 9 4 4
———— =—|z-——— > — |z—2*— =2 |.
2k 262 3n 2k Kk 3n/k 2K 3

We can check that the function z +— z — 22 — 223 is strictly positive at z = 1%' This means that

b b 3
g(2) > 0, hence g(z) > 0for0 < z < 2.

Next, consider the case x > n. In this case, set z = c\/% where ¢ = %. Then,

z 22 228 1 n  n 4 [n 1 4¢3 no 5N
— =l —— /= )2 |lc—— ——c = .
2k 2% 3n 2k Kk K2 3 Vk/) 2 3 K K

Note that \/g < 1, and the function ¢t — (¢ — %c?’)t — 22 = fég—it — %IQ is nonnegative on [0, 1].

Therefore, we have g(3 /%) > 0,50 g(z) > 0for0 < z < 3%, /2.

B.7 Proof of Lemma B.5

For this lemma, the proof is an extension of Lemma 8 in [12] from one dimension to higher dimensions.
We use the law of total expectation to unwind the expectation E[t;], and use Z;”:l b; = 0 to write

: binL+1 = - z birn+1’

im1€[M\{i1,...,im } G 1 €{1, . fm }

which turns a sum of n — m terms into m terms. This trick reduces the bound by a factor of n.
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Now, expand the expectation of ¢ as

n J+1 n
Efte] =E Z (H(I NAg, (1)) > ok (7) Z]E

j=1 \t=n j=1

Jj+1
(H (I - nAmt))) bok(j)]

t=n

n n—j 1
=D E|bogy+ D (0" D] (H Ao&(tn) bo)
Jj=1 m=1

JH1<t <--<tm<n \i=m

n
= Z Z em Uk[n];j =+ 17n)b0k(3)] ’

j=1m=1
where the elementary polynomial e, is defined in (B.1). Now, fix any ¢4, ..., t,, satisfying j + 1 <
ty < --- <ty < n. Since all the indices j, ¢, . .., t,, in the product are unique, the expectation is

the same for all (" J ) such terms:

1
<H A(m(h)) bo'k(j) (H Aok > ok ( m+1)] .

We can calculate the expectation using the law of total expectation.

E [Aaku)Aak(m . Aak<m>bak<m+1>}

= Z A“E .. 'Acrk(m)bak(erl) | O'k<1) = il] P[O’k(tl) = ’il]
i1€[n
- — Z A“E oK(2) - Aak(m)bak(m-&-l) | Uk(l) = il]
L1€

X _ .
n(n—1) DY ALALE[AL ) - Asumboyimany | ok(1) = i1, 04(2) = is]
i1€[n] i2€[n]\{i1}

:w Z Z <HA”>E[ka(m+1) |ak(1):i1,...7ak(m)=im]
dim—1}

i1€[n] im €[N\ {i1,...,
Z biynis

ZWZ... Z <ﬁA,l

7;16[71] i?ne[n]\{ilan-yimfl} =1 17n+1€[n]\{7fla 77f7n}

_ w S 3 (ﬁA“) > b

i1€[n] im €M\ {i1,..., im—1} \N=1 1ﬂ1+1€{11,...71m,}

As a consequence, we get
(H Aoy (t: )) akm]
=m

for each term in e, (A, [n); 7 + 1,7)bs, (5)- Applying this to the norm of E[t] gives

,G’

n—m

n n—j
||E[tk]” < Z Z n" HE [em(Aak[n];j + Ln)bo’k(j)] ||
j:lm:l
n n—1
n—j n m
S e R (e
nn_lm n m+1m nnlmmlm
N (m_1>n_L G263 yraniL
j=1m=1 j=1m=1

L
< QnGni < 4nnLG,
1—mnL

where the last steps used nnL < 0.5.
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B.8 Proof of Lemma B.6
B.8.1 Proof outline

First, recall that S; for ¢ > k is independent of o. So
E[S%.Skcksit] = JE[S,{ E[S% i1 Skcki] tk} —E [S] Mt,],

=M

where M is a matrix satisfying || M|| < (1 — nnu)®~* (due to Lemma B.1) that does not depend
on 0. Recall that

n n

Sl{ = H(I - nAo'k(t)) = Z (_n)mem(Aak[n])Tv

t=1 m=0
n J+1 n n—j
tk = Z (H(I - nAo'k(t) ) ok (3) = Z Z (Tk[n] J +1 n)bok(j)v
j=1 \t=n j=1m=1
where the elementary polynomial e, is defined in (B.1). Substituting these into S} M, gives
n 2n—j
SIMt =" " (=)™ Y em, (Ao, ) Mem, (Ag, )i + 1,0)bs, () -
j=1 m=1 0<m1<n
1<ma<n—j
mi+mo=m
The rest of the proof is decomposing and bounding the vector ¢; ,, for each j = 1,...,n and

m=1,...,2n — j to get the desired bound on the norm of E[S} M#y].

B.8.2 Decomposing the terms in the vector c; ,, into three categories

Now fix any j € [n] and m € [2n — j], and consider any m; and mq satisfying my +mg = m. Then,

the product e, (Ag, ()T Mem, (Aqg,m);J + 1,1)bg, () in €jm consists of (ml) ("mj) terms of
the following form:

ma 1

(H Aak(s1,>> M ( 11 Aawi)) bow(5)
i=1 i=mg
where 1 <51 < - <8y, <myandj+1 <4 <+ <ty <.

Among them, (:L;ll) (Z;j ) terms have the property that j ¢ {si,...,Sm,}. The remaining
(n’;__ll) (n 7) terms satisfy j € {s1,...,Sm, }-
Using this observation, we decompose ¢;. ,,, into two terms ¢; , = dj m + 7j,m. Here, d; ,,, is a
sum of terms in ¢; ,, With s1,. .., Sy, that satisfies j ¢ {s1,...,sm, }, and 7} ,,, is the sum of the

remaining terms.

dim = > (ﬁ A,,k(si)> M ( f[ Agk(m> b

0<mi<n—1 1<s1<--<sm;<n 1=1 i=mso
ISma<n—j j41<t; < <tmy<n
{2 P

Tjm i= Cjm — djm.
Then, we will bound the sum of terms in d; ,,, and r; ,,, separately. There are three categories we
consider:

1. Bounding 7; ,,
2. Bounding d; ,,,, for m > n/2,
3. Bounding d; ,,,, for m < n/2.

The first two categories are straightforward, and the last category requires the law of total expectation
trick. We will first state the bounds for the first two and then move on to the third.
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B.8.3 Directly bounding the first two categories

For the first category, the norm of each term in 7 ,,, can be easily bounded:

1
(B

Since there are n- J terms in 7, ,,, for each mq, mo satisfying m; + mo = m, we have
_1 7>

< (1 —nopw) -FLmG.

Ckrm n—1 n—j
il < =m0 )
1<mi<n 1 2
1<ma<n—j

mi+mo=m

_ -1\ /n—7J
< (1 — )R LG (“ )( )
< (1—nnp) Ogmlzgn_l L

0<ma<n—j
mi+mo=m—1

= (1 — nnp)K—* <2"n;i N 1> L™G < (1 —nnp) *@n)™1L™G.  (B.13)

For the second category where m > n/2, the norm of each term in d; ,, can be bounded by

(1 — nnp)X~FL™@ in the same way. Now, since there are (" 11) " ]) terms for each my and mo,

we have
_ n—1\/n—7j
il < 0=tz Y (") (")
0<my<n—1 \ "1 m2
1<mo<n—j

mi1+ma=m

<@ =—mup)Frra Y <nm11) (nmzj)

0<mi;<n—1
0<ma<n—j
mi+ma=m

= (1 — nnu)k=* (Zn T 1) LG < (1 —nnu)K—F <i:) L™@G.

m

Since m > n/2, we can upper-bound (") with a constant multiple of ( *" ):

2n :2n—m+1 2n <4 2n ’
m m m—1/ 7 \m-—1
where the inequality holds because
m>n/2andn>2=5m>2n+1<4m>2n—m+ 1.

Therefore, if m > n/2,

l[djmll < 4(1 — pnp)~F(2n)™ ' L™G. (B.14)

B.8.4 Bounding the third category using the law of total expectation

We will show a similar bound for |E[d; ]| in case of m < n/2 as well, but the third category
requires a bit more care. For m < n/2, we need to use the law of total expectation to exploit the fact
that ), b; = 0 and reduce a factor of n.

Now consider the expectation for a term in d;

ma 1
(H Amsn) M ( II Aakm)) bm(j)] :
=1 i=mso

We will use the law of total expectation to bound the norm of this expectation. One thing we should
be careful of is that there may be overlapping indices between {s1, ..., Sm, } and {¢1, ..., tm, }. For
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now, let us assume that there are no overlapping indices; hence, s1,...,Sm;,t1,...,tm,,J are all
distinct. Then, the expectation can be expanded as the following.

ma 1
E <H Aok(si)> M ( II Aok(m) bokm]
i=1 i=mo
ma 1
= Z E <H Adk(s,;)> M ( H Aak(ti)> b, () | ok(s1) = i11 Plog(s1) = i1]
ire[n] i=1 i=ma
1 ma 1
= ﬁ Z A“E (H Aak(si)> M < H AUk(h)) bUk(j) | ok(sl) = i1‘|
i1€[n] =2 i=ma

1 mi 1 . .
= m Z Z AilAigE l(H Agk(si)> M < H Agk(ti)> bak(j) | O'k(sl) = Zl,O'k(Sg) =12
=3

i1€[n] i2€[n]\{i1} i=mo

ZWZ... )3 3 )

7;16[71] i?nl e[n]\{i1;~--7i7nl—1}l'mZE[n]\{i17'~-7i7n1} lle[n]\{i17--'yi7n17127~-<7l7n2}
ma 1
(HA“> M ( H Alt> E [bgk(j) ‘ O‘k(sl) = ’il, e 7Uk(tm2) = lmz} .
t=1 t=mo
Here,by >, b; =0,
. 1
E[bok(j) |O'k(Sl)=Z1,...,O'k(tm2)=lm2] = — Z b;

—m . -
tem\ {1, yimy l1,elmy

1
T Th—m Z .

€ i1 s esimy sl seeeslmy }

Putting these together, we can get a bound on the norm of the expectation:

mi 1
<H AUk(s'i)> M ( H AUk(ti)> bUk(j)]
=1

i:mz

S(”;!m)! 3 3 S Z

ile[n] i?nl e[n]\{ilxwwi'ml—l}l'mze[n]\{ihnwi?nl} lle[n]\{i17u';i'rr7,17l2;~-7l'mz}

i)l e, 5

t=mg tE{i17-~7im11117---,lm2}

E

<(1- nn,u)K_k%LmG.

What if there are overlapping indices between {s1, ..., Sy, } and {¢1, ..., tm, }? Suppose the union
of the two sets has m < m elements. Notice that even in this case, j does not overlap with any s; or
t;. So, we can do a similar calculation and use the Et b; = 0 trick at the end. This gives

mi 1
E [(H Aak(s,;)> M < H Ao'k(ti)> b”k(j)]
i=1 i=mg

so the same upper bound holds even for the terms with overlapping indices. Now, since there are
) ("_2] ) such terms for each m; and mo, we have

B -1\ /n—j
Eld. <(1— K-k M m n
[Eldsmlll < (1 =) ———L"G 3 ( .

0<m1<n—1
1<ma<n—j
mi+mo=m

< (1 —nnp)E=* "

n—m

e m
< (1 —nnp)® kmL G,
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. m [(2n—3-=1\ _,,
< (1 =) kn_m< m )L G.

Note that

m 2n —j5—1 c_m 2n\  2n—m+1/ 2n <3 2n
n—m m “n—-m\m/)  n—-m m—1)~ \m-1)’

this is because

m<n/2=2m+1<n
<2m+ 14 (2n—3m) <n+ (2n —3m)
2m+1+(2n—3m) 2n—-m+1

= <1.
n+ (2n — 3m) 3n—3m ~
Thus, for m < n/2, we obtain the following bound on ||E[d,; ,,,]||:
IE[d; ]| < 3(1 —nnu)*=*2n)™"1L"G. (B.15)
B.8.5 Concluding the proof
Finally, using the bounds (B.13), (B.14), and (B.15), we get
n 2n—j n 2n—j
[EISEME]| <D0 0™ Blegmlll <D0 0™ (IEldym] | + [Elry.m]l)
j=1 m=1 j=1m=1
n 2n—j
< Z 5(1 _ nn’u)K—k(Zn)m—lnranG
j=1 m=1

L
<5(1- W”M)K_k”Gl_nW <10(1 - W”M)K_knnLGa

1
AnL "

where the last inequality used 7 <
B.9 Technical lemmas on binomial coefficients

Lemma B.7. Foranyn € Nand2 < m < n,
m m—1
2n\ gm (M) < (2n)™ gm (M) < (2n) .
m m/) — ml m) — (m—2)!
Proof The first inequality is straightforward from

Gg) _ 2n(2n — 1)..77;L§Qn—m—|—1) - (2:1)!@

The remaining inequality is shown with mathematical induction. For the base case (m = 2),

COMNP <n> P L (™ N 0

2! 2 2 T 2-2)U

so the inequality holds with equality. For the inductive case, suppose

(2n)™ _Qm(n> _ nmt

m! m (m—2)!

holds, where 2 < m < n — 1. Then,

%_Qmﬂ( n ) o (2n)™ 2(n—m)2m<n>

m+1 m+1 m! m+1 m
2m (2n)™  2(n—m) ()™ _. [N
m+1 m! m-+1 m! m
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2m  (2n)™  2(n—m) (2n)™1
“m+1 m! m+1 (m—2)!
(2n)m—1 4n
- (m+1)(m —2)! (m—l +2(n—m)>
_ (2n)m™= Y 2mn+2n —2m? +2m
 (m+1)(m —2)! m—1
(2n)™ mn+n—m?+m
(m—1)! n(m+1)

2
It now suffices to check that % <1

mn+n—m2—|—m

§1<:>mn+n—m2+m§mn+n<:>m§m2.
n(m+1)

Since m > 2, the inequality holds. This finishes the proof.

Lemma B.8. Foranyn € Nand2 < m <n,
nm n nm—1
_ < -
m! <m> ~ 2(m —2)!

Proof The is shown with mathematical induction. For the base case (m = 2),

W(ﬂ)*n@l) n

2l 2 2 95

so the inequality holds with equality. For the inductive case, suppose
n™ n nml
- < -
m! m/) ~ 2(m—2)!
holds, where 2 < m < n — 1. Then,
nmtl n _on ™ n—-m(n
(m+1)! m+1) m+1m! m+1\m
m n" n—m [(n™ n
= _ + -
m+ 1 m! m—i—l(m! (m))

1 nm n—m nm!

<
S mtim—1 T mt12m—2).

%m!ﬁé%&ﬂ<£?l+nm)

- nm1 mn+n—m?2+m
- 2(m+1)(m —2)! m—1
n"m mn+n—m?+m

~2(m—1)! n(m+1)

It now suffices to check that % <1

mn+n—m2+m

Sl@mn—i—n—mQ—l—mSmn—i—n@mng.
n(m+ 1)

Since m > 2, the inequality holds. This finishes the proof.
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C RANDOMSHUFFLE: Tail average bound for strongly convex quadratics

In this section, we provide details for Remark 3. We first state the theorem for the tail average iterate,
which improves the leading constants of Theorem 2 by a factor of x. We will then provide the proof
for Theorem C.1 in the subsequent subsections.

Theorem C.1 (Tail averaging). Assume that F(x) := 237" | fi(x) = +&T Az and F is p-strongly
convex. Let fi(x) := jaT A;x + bl x and f; € C}(R?). Consider RANDOMSHUFELE for the
number of epochs K satisfying K > 128k max{1, \/g} log(nK), step size nf =1 := 161%(;[{),
and initialization xo. Then for G := max;c[y) ||b; || and some constant ¢ = O(x?),

1 ||z N c-G? - log*(nK) c-G?-log*(nk)

ElF(@)] - F" < 16n2K?2 n2K?2 nk?3 ’
where x is the tail average of the iterates * = %
C.1 Proof outline
Recall the definitions
filx) = iz" Az + bz, F(z Zfz = 12" Az,

where f;’s are L-smooth and F is p strongly convex. This is equlvalent to saying that ||A;|| < L
and A := 135" | A; = uI. Also note that F' is minimized at z* = O and )", b; = 0. We let
G := max;c[y ||bi]|.

In order to get a bound for tail average of the iterates, we need to modify our proof technique a bit.
Instead of unrolling all the update equations (as done in Theorem 2), we only consider one epoch,
and derive a per-epoch improvement bound. In the Proof of Theorem 2, we derived the epoch update
equation:

1 n ]+1
k! = [H(I NAq, (1) ] n > (H (I - ﬂAak(t))) bow(h)

t=n j=1 n
=:Sk =ty
= Skm'g — ntg.
Using this update, the expected distance to the optimum squared ||£BO+ |? given =f is
2
Eflet™||") = El|Skwb|’] — 20E( S, )] + 7Bl |

= E[||Skb|"] - 2n (b, EIST ts]) + n°Eftel|*
E[||Siab|| " + 2n b [EIST tel |+ Elles]),

where the last inequality is due to Cauchy-Schwarz. We now bound each term in the right hand side.
The first term can be bounded by a slight refinement of the first contraction bound (Lemma B.1).

Lemma C.2 (3rd contraction bound). Forany 0 < n < g min{1, \/2},
BllSuat | < (1 - 22 b - 200 F (o).

The next two terms can be bounded using Lemmas B.6 and B.2:
|E[STt)|| < 10nnLG, E[||t4]*] < 189°n*L?*G*logn.
Substituting these bounds, we get

IE[H$§+1H2] < (1 - %) || OH — 2 F (xf) + 20n*nLG H:c’gH + 18n*n3L2G? log n.
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. . 2 p2 20203202 LG _
Wei then use the AM-GM inequality ab < “Z3>- ona = nul—/; and b = /"G |
ge

400m3nL*G?
H:BkHH (1 - w) H OH — 2 F(xh) + et M S 187*n3L?G?logn. (C.1)
I
Now, consider the following rearrangement of (C.1)

3., 7202
nnu)E[H k||2 H 0+1|| M—i—lSn‘ln?’LQGzlogn.

2mnE[F(xk)] < (1 - x;

Summing up both sides of the inequality for k = [K/2], ..., K gives

K
2 Y EF@h < (1-TH)E [H WQM

k=[K/2]
K 4 3 L2 2
" (K _ {QW n 1) <00772G + 18n*n3L2G? logn) .

Unwinding the recursion (C.1) from k = [K/2] — 1 until £ = 1 (while using F'(x) > 0), we obtain

ol < (- )™

K 4 3 L2 2
+ GJ - 1> <00"”G 4187 P22 10gn> ,
1

so by substitution we have

K

[K/2] 400n3n K L*G?

2nn Z E[F(zf)] < (1 - w) ||ac%)||2 p TR 18n*n* K L*G? log n.
k=[K/2] 4 #

Now, we take the average of both sides by dividing both sides by K — [K/2] + 1. We then
further divide both sides by 2nn and apply Jensen’s inequality to get a bound on the tail average

T o= Zf:(}(/z] mg
= K—[K/2]+1"

_ Z?:(K/z} E[F(z()]
EF@)] < = tk/a+1

1 1 nnu [K/2] 40077LG
1y 0

IA

+ 187*n*L2G? logn,

where the last inequality used K — [K /2] + 1 > K/2. Lastly, substituting n = % gives us

nnu [5/2] 4lognK [K/21 _ 2lognK [K/21 1
(1 )Py dlesni) <L
4 K [K/2] n2K?

This results in the bound

2
~ o il L2G? (log?(nK) log*(nkK)
— <
ElF(@) - Fl < T2k O\ 73 K2 nK® ’

as desired. Recall that the bound holds for n < &%L min{1, \/g }, so K must be large enough so that

161log nK 1 1. n
———— < ——min — 0.
unK T 8nL K
This gives us the epoch requirement K > 128x max{1, /% } log nK.
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C.2 Proof of the third contraction bound (Lemma C.2)

The proof is an extension of the proof of Lemma B.1, so we recommend the authors to read Section B.3
before reading this subsection. From the definiton F(zf) = £ (xf)” Azf, we have

B[S ]

(x8)"E[Si Sklzg

= (x0)" (B[S} Si] +nnA) x5 — nn(zg)" Azg

< ||E[ (ST Sy] | +nnAl| ||a:0|| — 2 F(xh).

The remainder of the proof is to bound ||E[S{Si]+nnA| < 1 — 23 for 0
&%L min{1, \/Z}.

As seen in (B.7) (Section B.3), the expectation of STSk reads

E[S{Sk]:Z(QLA 22A2+Z ( ]—fn";Nm>

m=0

+Z (—n)"E[Cnm],

m=n+1
where C,,, R,,, N,,, are defined in (B.3), (B.5) and (B.6). Then,

nmA + Z anA ‘

IN
=
IN

|E[S{ Sk] + nnAl| <

+ Z "™ [E[Cy]l
m=n+1
2n

2nnA 1 .
<|mA+ Z +o > (2mL)
m=3
where the bounds for ||E[R,,]|| , [ Nl , |[E[Cy,]| are from Eqs (B.8), (B.9), and (B.10). So, it is
left to bound the term HnnA +30 o % ]

Note that for any eigenvalue s of the positive definite matrix A, the corresponding eigenvalue
of pnA+ " % ismms+ >0 % Recall 77 < 3 L min{1, /2} < g

0 < 2nns < 1/4 for any eigenvalue s of A. Since t — % + Zmz

function on [0, 1/4] for any n > 2, the matrix nnA + > _, % is positive definite and its
maximum singular value (i.e., spectral norm) comes from the minimum eigenvalue of A, hence

nmA + Z 277” < mnnu+ Z 277””

is a positive and decreasmg

Putting the bounds together, we get

HE [STS] +77nAH <nnu + Z 777”&# + - Z (2nnL)™

m=0

217nu 1 (2nnL)?
<
STt Z nl—2nnL

1 2
<1 —nnu+ 5(27771;1)2 + f(2nnL)3.

Here, we used 2nnL < 1/2, and the fact that 1 — ¢ +E >0 m)m forall t € [0,1/4] and

n > 2. The remaining step is to show that the right hand 51de of the 1nequa11ty is bounded above by
1— 22 for 0 < n < gy min{1, /2}.

26



Define z = 2nn L. Using this, we have

2 1
(277nL)3 <1- %forOSng 8Lmin{l, n}

n n K

z 22 223 1 . n
@g(z):MWn20f0r0§z§4mm{l, F&},

so it suffices to show the latter. One can check that g(0) = 0, ¢’(0) > 0 and ¢’(z) is monotonically
decreasing in z > 0, so g(z) > 0 holds for z € [0, ¢| for some ¢ > 0. This also means that if we have
g(c) > 0 for some ¢ > 0, g(z) > 0 forall z € [0, c].

1
1—nnu+ 5(27]n,u)2 +

First, consider the case £ < n. Then, n/x > 1and k > 1, so
> —(z—2z2—8z3).
K

We can check that the function z + z — 222 — 823 is zero at z = i. This means that g(z) > 0 for
0<z< 4.

Next, consider the case x > n. In this case, set z = c\/g where ¢ = i. Then,

z 22 223 1 n  2cn n 1 n n
e N —83 2} > = ((c—8c%), /2 — 222
4k 22 n 4k (C kK K2 ¢ /{) T 4k ((C <) Kk

Note that \/Z < 1, and the function ¢ — (c — 8¢®)t — 2¢*t* = § — % is nonnegative on [0, 1].
Therefore, we have g(§/2) > 0,50 g(z) > 0for 0 < z < 1,/Z.

D Analysis of varying step sizes (Proofs of Theorems 3 and 4)

Throughout this section, since Theorems 3 and 4 assume the bounded iterates assumption (Assump-
tion 1) and the L-smoothness of f;’s, one can assume that f;’s are Lipschitz continuous. In particular,
one can assume that there exists G > 0 such that HVfL(mf) H < Gforalli,j € [n]and k& > 1.

D.1 Preliminaries: existing per-iteration/-epoch bounds

We first review the progress bounds for RANDOMSHUFFLE developed in Nagaraj, Jain, and Netra-
palli [8], which are crucial for our varying step sizes analysis. Note that for RANDOMSHUFFLE, there
are two different types of analyses:

1. Per-iteration analysis where one characterizes the progress made at each iteration.

2. Per-epoch analysis where one characterizes the aggregate progress made over one epoch.
For per-iteration analysis, [8] develops coupling arguments to prove that the progress made by
RANDOMSHUFFLE is not worse than SGD. In particular, their coupling arguments demonstrate the

closeness in expectation between the iterates of without- and with-replacement SGD. The following
is a consequence of their coupling argument:

Proposition D.1 (Per-iteration analysis [8, implicit in Section A.1]). Assume for L, G, > 0 that
each component function f; is convex, G-Lipschitz and L-smooth and the cost function F is p-strongly
convex. Then, for any step size for the (i + 1)-th iteration of the k-th epoch such that n¥ " < % the
following bound holds between the adjacent iterates:

2 2 .

IE||‘B;:€-|-1 - 37*” < (1 - 777]',C+1ﬂ/2) : ]EHmf - 33*“ + 3(777]',C+1)2G2 + 4(771]‘€+1)3’€LG2 - (DD
where the expectation is taken over the randomness within the k-th epoch.

However, with the above analysis, one can only obtain results comparable to SGD, as manifested

in [8, Theorem 2]. In order to characterize better progress, one needs to characterize the aggregate
progress made over one epoch as a whole:
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Proposition D.2 (Per-epoch analysis [8, implicit Section 5.1]). Under the same setting as Proposi-
tion D.1, let ni, < % be the step size for the k-th epoch, i.e., n¥ = ny, fori =1,2,...,n. Then, the

following bound holds between the output of the k-th and (k — 1)-th epochs wgﬂ and xk:

]’EHa:gJrl - az*H2 < (1= 3npp/4 4+ n?(ne)’L?) - ||l — cc*||2

D.2)
—2nm (1 — dnmpsL) - (EF(xf) — F(x*)) 4 2002 (ng >k LG? + 5n® () L2G> .

where the expectation is taken over the randomness within the k-th epoch.

Having these per-iteration/-epoch progress bounds, the final ingredient of the non-asymptotic conver-
gence rate analysis is to turn these bounds into across-epochs global convergence bounds.

D.2 Chung’s lemma: an analytic tool for varying stepsize

To illustrate our varying step sizes analysis, let us warm up with the per-iteration progress bound
in Proposition D.1. Since Proposition D.1 works for any iterations, one can disregard the epoch
structure and simply denote by x; the ¢-th iterate and by 7, the step size used for the ¢-th iteration.

Choosing 1y = 2a . _L_ forall t > 1 with the initial index kg, where we choose ko = « - & to ensure
no ko+t

e < % the per-iteration bound (D.1) becomes (we also use (1;)3 < (nt)Zg):

a?G?(12u72 + 32K3)
(ko +t+1)2

>
ko+t+1

Ell@; i —x*|* < (1 ) E| — ¥ + (D.3)

In fact, for the bounds of type (D.3), there are suitable tools for obtaining convergence rates: versions
of Chung’s lemma [1], developed in the stochastic approximation literature. Among the various
versions of Chung’s lemma, there is a non-asymptotic version [1, Lemma 1]:

Lemma D.3 (Non-asymptotic Chung’s lemma). Let {{y, }r>0 be a sequence of positive real numbers.
Suppose that there exist an initial index ko > 0 and real numbers A > 0, a« > 8 > 0 such that &}, 1
satisfies the following inequality:

« A
ngSeXp(k0+k+1)§k+(ko+k+1)ﬁ+1 forany k > 0. (D.4)
Then, for any K > 1 we have the following bound.:
K 1 ohofl . A =
1 o ero eko+1 A

< —a- — |- D.5

fK_exp< a i_zlkoJri) &+ o TE)P +(k0+K)5+1 (D.5)

(ko +1)* - &o aiﬁeﬁ A eForl . A 6

(ko + K)© (ko-i-K)ﬂ (ko—‘rK)B*l ' )

Proof Unfortunately, the original “proof” contains some errors as pointed out by Fabian [2,
Discussion above Lemma 4.2]. We are able to correct the original proof; for this, see Section E. [

Let us apply Lemma D.3 to (D.3) as a warm-up. From (D.3), one can see that A in Lemma D.3 can
be chosen as G?(12p72 + 32x3). Hence, we obtain:

Corollary D.4. Under the setting of Proposition D.1, let o > 1 be a constant, and consider the step

2a/p for ko := « - k. Then the following convergence rate holds for any K > 1:

ok
SIZC T = Fon(k—1)+4

2 _ (ko + 1) o —a*|? F5He?GP(12u72 4+ 326%)  ea?GP(12u72 + 32k°)

K .
Bzt 27" < (ko + nK)® ko +nK (ko +nkK)?
(D.7)

Notably, Corollary D.4 is an improvement over [8, Theorem 2] as it gets rid of extra poly-logarithmic
terms.
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D.3 Anillustrative failed attempt using Chung’s lemma

Now, let us apply Lemma D.3 to the per-epoch progress bound (Proposition D.2). For illustrative
purpose, consider an ideal situation where instead of the actual progress bound (D.2), a nicer epoch

progress bound of the following form holds (that is to say, the coefficient of E||y;, — *||* does not
contain the higher order error terms):

Ellzgt! — ar:*H2 < (1—nmyp/2) - E||af — ﬂL‘*H2 + 20n% () K LG? 4 503 (ny)*L2G* . (D.8)
Following the same principle as the previous section, let us take ny = (i/ “k for some constant

a > 2. On the other hand, to make things simpler, let us assume that one can take ko = 0. Plugging
this stepsize into (D.8), we obtain the following bound for some constants ¢ > 0:

o! a2 c/n
< (17) e
which then yields the following non-asymptotic bound due to Lemma D.3:

| <0< >+o( ;(2>+o< ;(3) (D9)

Although the last two terms in (D.9) are what we desire, the first term is undesirable. Even though
we choose « large, this bound will still contain the term O(1/x*) which does not match the rate in
Theorem 3. Therefore, for the target convergence bound, one needs other versions of Lemma D.3.

EHwkH x* ?

EHwKH x*

D.4 A variant of Chung’s lemma

As we have seen in the previous section, Chung’s lemma is not enough for capturing the desired
convergence rate. In this section, to capture the right order for both n and K, we develop a variant of
Chung’s lemma.

Lemma D.5. Let n > 0 be an integer, and {{, } >0 be a sequence of positive real numbers. Suppose
that there exist an initial index ko > 0 and real numbers A1, As > 0, « > 3 > 0 and € > 0 such
that the following are satisfied:

&1 < exp (—az " ) to+ A, and (D.10)

1 € A2
< — —_—+ — k>1. (D.11
S = ( a; Fotnk+i k2> S o rnk+ e ekl ©1D

Then, for any K > 1 we have the following bound for ¢ := e’ /6.
clko+1)*- &  c-(ko+n+1)>- A me’”‘”"“ Ay ceForET L A,

< .
K S (kg 4 nk)e (ko + nK)® (ko T nK)? " (ko T k)P T

(D.12)

Proof See Section E.2. O

D.5 Sharper convergence rate for strongly convex costs (Proof of Theorem 3)

2
kL _ || fork > 1

and & := |z — *||>. Let a > 2 be an arbitrarily chosen constant. For the first epoch we take the
following iteration-varying step size: 7} = 270‘ ko ;> Where ko = a - K to ensure 7} S =. Then,
similarly to Corollary D.4, yet this time by using the bound (D.5) in Lemma D.3, one can derlve the

the following bound:

Now we use Lemma D.5 to obtain a sharper convergence rate. Let & := EH(L’

" 1 a
€1 < exp <—a-Zko+i> ot (D.13)
i=1
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where a; = a?G? - [=55 (1272 + 3263) + ea® G2 (12 L™ + 3262)], ie., a1 = O (K%).

Next, let us establish bounds of the form (D.11) for the k-th epoch for & > 2. From the second epoch

on, we use the same step size within an epoch. More specifically, for the k-th epoch we choose

Mei =Nk = ki”jr/rfk Let us recall the per-epoch progress bound from Proposition D.2:

& < (1= 3nmep/4+n®(nk)’L?) - &a
—2nny, (1 — dnmkL) - (BEF(zf) — F(2*)) + 2002 ()36 LG? + 503 (ni ) L2G? .

Since EF(z§) — F(x*) > 0, one can disregard the second term in the upper bound (D.2) as
long as 4dnnpxL < 1. If i, small enough that 4nnyxL < 1 holds, then since we also have
ML > n?(1)? L2, the per-epoch bound (D.2) becomes:

&k < (1 — nngpe/2) Ex—1 + 200 (ny) K LG? + 5n° (g, ) ' L2G? . (D.15)
<exp (—nmppt/2) - & + 2003 (ne) 2k LG? 4 5n® () L2G? . (D.16)

Since 4nnpxL < 1 is fulfilled for k& > 8ax? (note that for k > 8ak?, nk > 8ar’n = (2a/u) -
4nk L), we conclude that (D.16) holds for k& > Sax?.

For k < 8ax?, recursively applying Proposition D.1 with the fact (nn)~! < 4k L + L/(2n) implies:

(D.14)

& < exp (—nnpp/2) - Ep_1 + 302 () >G? (4L + L/ (2n)) + 4n(ng)>xLG* . (D.17)
Therefore, combining (D.16) and (D.17), we obtain the following bound which holds for any k£ > 2:
&k < exp (—nmp/2) - Ep—1 + ag - (nk)? (D.18)

where ap := 126 LG? + (3L/2+4kLG?) /n+ 20k LG? +5u%G? /8, i.e., az = O (k). Let us modify
the coefficient of & in (D.18) so that it fits into the form of (D.11) in Lemma D.5. First note that
exp (—nnrp/2) = exp (—an/(ko + nk)). Now, this expression can be modified as

)

exp [_a';ko+n(k—1)+i+a';<k0+n(k—1)+i_ko+nk>

which is then upper bounded by exp {—a DD k0+n(,1€_1)+i + (kf‘l)z}. Thus, (D.18) can be

rewritten as:

n 1 6% 80,2@3”2/40_3
B o P L e D.1
&exP( * ;ko+n(k—1)+i+(k—1)2> St (ko + nk)3 -1

Now applying Lemma D.5 with (D.13) and (D.19) implies the following result:

D.6 Sharper convergence rate for quadratic costs (Proof of Theorem 4)

Now let us use again Lemma D.5 to obtain a sharper convergence rate. We follow the notations in
Section D.5. Again, we use the following bound (which we derived in (D.13) in the main text) for the
first recursive inequality (D.10) in Lemma D.5:

- 1 aq
=1

where a1 := o?G? - [ (12072 + 32%) + ea®G2(12p 7 L™ + 32k7%)], ie., a1 = O (K?).

a—1

For the second recursive inequalities (D.11) in Lemma D.5, in order to obtain better convergence
rate, we use the following improved per-epoch bound for quadratic costs due to Rajput, Gupta, and
Papailiopoulos [10]:

Proposition D.6 ([10, implicit in Appendix A]). Under the setting of Proposition D. 1, assume further
that F is quadratic. Then for any step size for the k-th epoch n, < % the following bound holds

between the output of the k-th and k — 1-th epochs mg'H and xk:
EHmlgH - a:*||2 < (1= 3nmip/2 + 502 (ne)*L? + 8n® (g )*k L?) ||l — a:*||2
+ 1013 () L2 G? + 40n* (1) K L3G? + 32n(ny, )3k LG? .

where the expectation is taken over the randomness within the k-th epoch.

(D.20)
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For k > 16ak?, we have nng < %% Using this bound, it is straightforward to check that (D.20)
can be simplified into:

& < exp (—nmpp/2) &1 + 1503 (i) *L2G? + 32n(ny, )3k LG? . (D.21)

For k < 16ax?, recursively applying Proposition D.1 with the fact (nny1)~! < 8xL + L/(2n)
implies:

& < exp (—nipp/2) - & + 3n° () ' G* (8K L + L/(2n))? + 4n(ng)*k LG?. (D.22)
Therefore, combining (D.21) and (D.22), we obtain the following bound which holds for any £ > 1:
&k < exp (—nipp/2) - Ex—1 +bo -0 ()t +bs - n(m)?, (D.23)

where by := 15L%G? + 3G?(8xL + L/(2n))? and b3 := 32kLG?, i.e., by = O(k?) and b3 = O (k).
Following Section D.4, one can similarly modify the coefficient of £ in (D.23) to obtain the following
for k > 2:

n 1 a 16bgatn3pu=  8bzalnpu™3
< —o- E '
s < ka1t = 1)2> S Ty k) T (o + )P
(D.24)

However, one can notice that (D.24) is not quite of the form (D.11), and Lemma D.5 is not directly
applicable to this bound. In fact, we need to make some modifications in Lemma D.5. First, for
As > 0 and v > 0, there is an additional term to the recursive relations (D.11): for any £ > 1, the
new recursive relations now read

T B o
P SO T Sy rnk i k2 )T (ko + (kD) (ko + (kD)L
(D.25)

It turns out that for these additional terms in the recursive relations, one can use the same techniques
to prove that the corresponding global convergence bound (D.12) has the following additional terms:

e

_C ok . e
aiﬁe oFnFT . Ag ceFotntT . Aq

Wk ¥ iKY (ho+ k)l (D.26)

Now using this modified version of Lemma D.5, the proof is completed.

E Proofs of the versions of Chung’s lemma (Lemmas D.3 and D.5)

We begin by introducing an elementary fact that we will use throughout the proofs:

Proposition E.1 (Integral approximation; see e.g. [6, Theorem 14.3])). Let f : et — e be a
non-decreasing continuous function. Then, for any integers 1 < m < n, f; f(x)dx + f(m) <
ST f() < f; f(x)dx+ f(n). Similarly, if f is non-increasing, then for any integers 1 < m <mn,

i=m

[ fayde+ f(n) <S50 F() < [ f(x)da + f(m).

We first prove Lemma D.3, and hence proving the non-asymptotic Chung’s lemma [1, Lemma 1]
which has an incorrect original proof.

E.1 A correct proof of Chung’s lemma (Proof of Lemma D.3)

‘We first restate the lemma for reader’s convenience:

Lemma E.2 (Restatement from Section D.2). Let {{x }r>0 be a sequence of positive real numbers.
Suppose that there exist an initial index ko > 0 and real numbers A > 0, a > 8 > 0 such that &}, 1
satisfies the following inequality:

@ A
< — k>0. E.1
Ekt1 exp( k0+k+1)fk+ T T k£ 1) forany k > (E.1)
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Then, for any K > 1 we have the following bound.:

K 1 kofHA _a
1 aieo o+l . A
&<§emp<—a~§: ‘>'€0+ + (E2)

k0+Z

(ko4 1) & ape™ T A eRT A

ot K | (ot K (ko t K)PF1 (E3
For simplicity, let us define the following quantities for & > 1:
@ A
ay ‘= exp (k‘o-i-k‘) and ¢ := W.
Using these notations, the recursive relation (E.1) becomes:
k1 < agy1 - &k +cpy1  for any integer k > 1. (E4)

After recursively applying (E.4) for k = 0,1,2,..., K — 1, one obtains the following bound:

-1

K K K k
ex<&[[a+{T]ai] Do T]as] el - (E.5)

j=1 j=1 k=1 \j=1

Now let us upper and lower bound the product of a;’s. Note that

k k
1
a; =exp | —« - forany k > 1.

Using Proposition E.1 with f(z) = koi_i, we get
g Kotk z’“: Gtk 1
k+1— k0+z k0+1 ko+1°

« k «@
__a_[(ky+1 ko+1
ko+1 < . < . E.6
e %o <k0+k;) A||aj<k0+k> (E.6)
Therefore, we have

-1
K

K e} @ K

a ko +k A eFoFT . A

Il < k+1§ . - E (k k) B-1
k=1 —a] a= k_1<k0+1) (lfO‘*‘k)ﬁJrl (ko + 1) k=1 o

Applying Proposition E.1 with f(z) = (ko + 2)* 77" to the above, since ;15 (ko +)*~ 7 is an
anti-derivative of f, we obtain the following upper bounds:

T A atg (ko + E)*=F — (ko + 1)*7F) + (ko + K)*~P~1, ifa > B +1,
K ifoo=pF+1
(ko + 1) ’ ifa=p+1,

=7 (ko + K)*7P — (ko +1)*7P) + (ko + 1) 771 ifa < +1.

Combining all three cases, we conclude:

—1

K

k koa 1. a—p
Z H a; | e B <(k° + 5) + (ko + K)”‘ﬁl) . (E.7)
j=1

k=1 a—p

Indeed, for the cases « > § — 1 and a = [ + 1, the above upper bound follows immediately;
for the case @ < (8 + 1, note (from the assumption « > () that « — 8 € (0,1), which implies
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— 25 (ko + 1) P (ko + 1) < —(ko+1)* P+ (ko +1)* P71 = —(ko+1)* P71 ko < 0,
which then implies the desired upper bound.

Plugging (E.7) back to (E.5) and using (E.6) to upper bound Hjil aj, we obtain:

K K _a
et - A (ko + K)* P 5
< . . . . k K\ B—1
ﬁK_fogag+ j];[l% (ko + 1)@ ( a—38 + (ko + K)
o1l +<%+1yly&hA C%+maﬂ+%+Kfﬁl)
aj . .
ST\ K)o+ 1) a_3 0
K 1 %ot A =5
1 a—pt’ efoFl . A
< —Q - .
_exp< e ;k0+i> §o + (ko + K)P +(k0+K)B+1’
which is precisely (E.2). Using (E.6) once again to upper bound the term exp(—a - Zfil ﬁ) we

obtain (E.3), which completes the proof.

E.2 Proof of Lemma D.5

We first restate the lemma for reader’s convenience:

Lemma E.3 (Restatement from Section D.4). Let n > 0 be an integer, and {y; } >0 be a sequence of
positive real numbers. Suppose that there exist an initial index ko > 0 and real numbers Ay, A5 > 0,
a > B > 0and e > 0 such that the following are satisfied:

1
< — A d E.8
51_6XP< a;k0+i>&)+ 1 an (E.8)

n
1 € Ag
< — E — + = kE>1. (E9
fk"‘l—eXp( a¢:1 k()+nk+i+k2>§k+(k()+n(k+1))6+1 Joramyh = )

Then, for any K > 1 we have the following bound for ¢ := e’ /6.

o

clko+1)-& c-(ko+n+1)*- A gogeroT T Ay N ceFOFTFT . Ay
(ko + nK)e (ko + nK)® n(ko +nK)» (ko +nK)B+1~

r <

(E.10)

The proof is generally analogous to that of Lemma D.3, while some distinctions are required so
that the final bound captures the desired dependencies on the two parameters n and K. To simplify
notations, let us define the following quantities for £ > 1:

i: ! b € and Az

ap :=exp | —«- =exp | ———= cp =
FEOP T o+ ) TP ) M T Gk
Using these notations, the recursive relations (D.10) and (D.11) become:

S1<ar-§o+ A (E.11)
k1 < agt1bi+1 - &€k + cpy1  for any integer k > 1. (E.12)

Recursively applying (E.12) for k = 1,2,..., K — 1 and then (E.11), we obtain:

-1

K K K [ k
Ex < aéo H ajbj + H ajbj AL+ Z H ajbj cr| - (E.13)
Jj=2 j=2 k=2 \j=2
Note taht from the fact 3 -, i = %2, one can upper and lower bound the product of b;’s:
K K .
2
1< 1;[219 < exp <§_; (2_1)2> < exp (en?/6) . (E.14)
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Applying (E.14) to (E.13), we obtain the following bound (recall that ¢ := ecm”/ 6):

-1

K K K k
ex <& [Jas+e]fai |A+d (]ai| ex|- (E.15)
j=1 j=2 k=2 \j=2
To obtain upper and lower bounds on the product of a;’s, again note that for any 2 < k,
k (k=1)n 1
gajfexp ; ko+n+il’

which can then be estimated as follows using Proposition E.1 similarly to (E.6):

RN - T /{30+TL+1 @ b ]Co-i—TL—FI o
FoTntl v ot - <I| A - — . E.16
c ( ko + nk ) _j:2a]_ ko + nk (£16)

Therefore, we have

i ﬁw ck<eko+an+1§:( ko + nk >a Ao
k=2 \j=2 ’ B — \ko+n+1 (ko + nk)A+1
K
6k0+n+1 AQ
- - . k + kafﬁfl.
(ko+n+1)° ;(0 nk)

Applying Proposition E.1 with f(z) = (ko + nz)*~#~! to the above, since (7(160 +nz)* P is
an anti-derivative of f, we obtain the following upper bounds:

N A2 atag (ko +nK)*=F — (ko +2n)*77) + (ko + nK)*~P~", ifa > B +1,
0 m ((ko +nK)*=F — (ko + 2n)*=P) + (ko 4+ 2n)* P71 ifa<B+1.
Akin to (E.7), one can combining all three cases and conclude:

-1
K

b oA . A ko + nK)2=b8
Z Haj x S (6 0 2 . (( 0+TL ) +(ko+nK)aﬁl> )
j=2

k=2 ko +n+ 1)~ n(a —B)

Plugging this back to (E.15), and using (E.16) to upper bound the product of a;’s, we obtain:

§K<c£0Haj+cHa]

A+

T . Ay ((k0+nK)a—ﬂ

n a—pB—1
(ko +n+1)° n(a— ) * ko nk) )]

ko+n+1 eFornTT . A, (ko +nK)*=8 a—f1
SC&OH“J‘“(M) i (S gy oK)
k‘ 1 A k0+”+1 A Fotn+1 +n+1 A
o fTo Clatrt ot ERTE L 0T
k0+nK) (k0+nK) (ko+ﬂK)ﬁ+1

«
Now similarly to (E.16), one obtains the upper bound Hszl a; < (’Z%ﬁ_’;?) , which together with

the last expression deduces (E.10) and hence completes the proof.

F Tight convergence bound for SINGLESHUFFLE

In this section, we provide a tight convergence bound for SINGLESHUFFLE on smooth strongly
convex functions, which also holds for strongly convex quadratic functions.
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Theorem F.1 (Strongly convex costs). Assume that F is ji-strongly convex and each f; € C}(R?).
Consider SINGLESHUFFLE for the number of epochs K satisfying K > 10x> log(nl/QK), step
2log(n'/?K)
g,unK
constant ¢ = O(k%),

size Nk =n = , and initialization x. Then for G := max;c[,) |V fi(x*)|| and some

2L ||xo — z*||? Lo G? -log® (nK)

E[F(mé(Jrl)] - < nk? nk?2

Proof: The proof technique builds on the proof of Theorem 2, using the idea of the end-to-end
analysis from [12]. See the subsequent subsections for the full proof. [

Optimality of convergence rate. Theorem F.1 provides a tight (up to poly-log factors) bound that
matches the known lower bound 2 (1/nk?) [12], which was proven for strongly convex quadratic
functions. Since Theorem F.1 applies to subclasses of smooth strongly convex functions, it also gives
the minimax optimal rate (up to log factors) for strongly convex quadratic functions (see Table A).
Note that the theorem does not require the convexity of component functions or bounded iterates
assumption (Assumption 1), in the same spirit as our RANDOMSHUFFLE results (Theorems 1 and 2).

Remark F.1 (RANDOMSHUFFLE v.s. SINGLESHUFFLE). It is often conjectured that
RANDOMSHUFFLE performs better than SINGLESHUFFLE due to multiple shuffling. The class of
strongly convex quadratic functions aligns with this intuition, because there is a gap between optimal

convergence rates O(1/(nk)? + 1/nk?) (RANDOMSHUFFLE) and O(1/nk?) (SINGLESHUFFLE) for
quadratic functions. In contrast, for a broader class of smooth strongly convex functions, Theorems 1
and F.1 reveal a rather surprising fact: the optimal rates of RANDOMSHUFFLE and SINGLESHUFFLE
have the same dependence on n and K. Although Theorem F.1 shows the same rate in n and K as The-
orem 1, we note that its epoch requirement K > k2 log(n'/2K) is worse than Theorem 1 by a factor
of k; however, it matches the epoch requirement of the existing bound for RANDOMSHUFFLE [8].

Remark F.2 (Proof techniques). The Hoeffding-Serfling inequality used in the proof of Theorem 1
for RANDOMSHUFFLE requires that the vectors V f;(§)’s, to which we apply the Hoeffding-Serfling
inequality, have to be independent of the permutation oy. This is no longer true for SINGLESHUFFLE,
because in SINGLESHUFFLE, once a permutation o is fixed, it is used over and over again. The
iterates become dependent on the choice of o, hence rendering a direct extension of Theorem 1 to
SINGLESHUFFLE impossible. For the proof of Theorem F.1, we instead take an end-to-end approach
following [12]. Taking this approach, we apply the Hoeffding-Serfling inequality to the vectors
V fi(x*)’s, i.e., gradients evaluated at the global minimum x*, which are independent of permutations
sampled by the algorithm. This way, we can prove a bound for SINGLESHUFFLE. In fact, this proof
technique can be easily extended to any reshuffling schemes that lie between RANDOMSHUFFLE and
SINGLESHUFFLE, modulo some additional union bounds. For instance, our proof can be extended to
the scheme where the components are reshuffled every 5 epochs.

Remark F.3 (Possible improvements for quadratics). Notice that if the component functions f;’s are
quadratic, then their Hessians are constant, which implies that the matrix S}, (B.2) that appears in the
update equation of RANDOMSHUFFLE is now constant (S} = S) over epochs of SINGLESHUFFLE.
We believe that leveraging this fact could lead to a tighter epoch requirement than Theorem F.1.
However, proving such an epoch requirement demands deriving a contraction bound that is more
involved than the ones proven for RANDOMSHUFFLE (e.g., Lemma B.1), because one has to now
bound || E[(S¥)T SX]||, in place of ||E[S™'S]||. We leave this refinement for future work.

F.1 Proof outline

The proof of Theorem F.1 builds on the proof of Theorem 2 presented in Section B. We first recursively
apply the update equations over all iterations and obtain an equation that expresses the last iterate

sr:é( *1 in terms of the initialization x} = xo. By proving new lemmas in a similar flavor to the ones

developed in Section B, we will bound E[[|z5 ™" — x*||?] to get our desired result.

Since the algorithm is SINGLESHUFFLE, we fix the permutation ¢ and use it for all epochs. If the
component functions f;’s were quadratic functions as in Theorem 2, Sy, and £}, (B.2) defined in the
proof of Theorem 2 would have been constant over epochs of SINGLESHUFFLE, given the choice of
o; however, this is not true in the non-quadratic case, because the Hessians of f;’s are not constant.
We have to take this into account in the proof.
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Table A: A summary of existing convergence rates and our results for SINGLESHUFFLE. All the convergence
rates are with respect to the suboptimality of objective function value. Note that since the function classes
become more restrictive as we go down the table, the noted lower bounds are also valid for upper rows, and
the upper bounds are also valid for lower rows. In the “Assumptions” column, inequalities such as K 2> k*
mark the requirements K > C'k® log(nK) for the bounds to hold, and (A1) denotes the assumption that all the
iterates remain in a bounded set (see Assumption 1). Also, (LB) stands for “lower bound.”

Convergence rates for SINGLESHUFFLE
Settings | References Convergence rates Assumptions
, Nguyen et al. [9] O(i> K>1
(1) F pg, | Ji smooth IS
Lipschitz | Safran and Shamir [12] Q (#) (LB) const. step size
Nguyen et al. [9] O(%) K>1
; smooth
2 F ! Ours (Thm E.1) O(logj(T"QK)) K > k?
strongly
convex f; smooth Giirbiizbalaban et al. [3] o (%) asymptotic & (A1)
n 2
convex Mishchenko et al. [7] (0] (e’TK + %) K>1
Safran and Shamir [12] Q( ) (LB) const. step size
f; smooth | Ours (Thm F.1) 0] (%) K > k?
Q) F o ;
strongly £, smooth Giirbiizbalaban et al. [3]* o (ﬁ asymptotic
convex : . log* (nK) _
) quadratic Safran and Shamir [12] O<72> d=1,K Z #/n
nk ~
quadratic | . oo
Safran and Shamir [12] Q (%) (LB) const. step size

t additionally requires p-strong convexity of f;’s.
¥ does not require that f;’s are convex.

Throughout the proof, we assume without loss of generality that the global minimum is achieved at
x* = 0. Thatis, >/ | Vf;(0) = 0. We define G := max;c,,) |V £i(0)].

We first decompose the gradient estimate V f, ;) (x¥ ) at the i-th iteration of the k-th epoch (i €
[n], k € [K]) into a sum of three different parts:

V oy (2 )me(>+Vfg<<>(w’5)—Vfa<><)+me< 1) =V foiiy(®h)

_vfcr(z |:/ v2f0 (2) two)dt:| wO |:/ vzfa(z wO —|—t($ -1 $0))dt (CL‘ i—1 iL'IS

::Ak(.) ::Bk(.)
=V fo()(0 )+Aa'(7, x5 + B ()(w' |~ T).

As discussed in Section A.2, the integrals AZ(Z.) and ij(i) exist due to smoothness of f5(#)’s. Note
that || A% ;|| < Land | B%, || < L due to L-smoothness of fo(;’s, and ;- 37i ; ALy = pI due to
p-strong convexity of F.

o’(z

Plugging this into the update equation of =¥, we get
wlf_wo 77Vfa ( )_mO (Vfa ( )+A0'(1 wO)
=~ UAI;@))“’O — 1V fo(1)(0).
Substituting this to the update equation of 5,
xf = @ — 77Vfa(2)(m1)
=&} — 1(Vfo(2)(0) + Af )5 + Byy) (@) — ()
$1 MVie(2) a(2)%o c2)\T1 — &g
= (I =Bl )T = nAL )@l — 1V f21)(0)] = 0V fo(2)(0) — nAL o xf + 1B oy 26

36



= [I =A%) — (I —nBL )AL @G — 0V fo(2)(0) = n(T = 1B (5))V fo(1)(0).

k+1

Repeating this, one can write the last iterate ¥ (or equivalently, i ") of the epoch as the following:

n j+1 n Jtl
xp = | T - 772 <H (I - nB§<t>)> Ay | 26 - Z (H (I - ”B§<t>)> Vo) (0)
t=n n

=:Sk ::Zk
= Skfltlg — ntk.
Now, repeating this K times, we get the equation for the iterate after K epochs, which we take as the
output of the algorithm:
k+1

:13(1)<+1 (H Sk) wo 772(1_[ St> tk—SK 1:130 ZSK/H-ltk

K+1H ]

We aim to get an upper bound on E[||x , where the expectation is over the randomness of

permutation ¢. To this end, using ||a + b||* < 2|a|®

2

[Eraadlls <2H5K1%H + 2 (F.1)

Z Srkt1ts

k=1

The remaining proof bounds each of the terms, using the following two lemmas. The proofs of
Lemmas F.2 and F.3 are deferred to Sections F.2, and F.3, respectively.

Lemma F.2. Forany 0 <n < any permutation o, and k € [K|, we have

5nLi<;
8] <175~
2
Lemma F.3. Forany (0 <n < 5nLH
2
~ ~ 66nL2G?logn
S Swuniy| | < SOnLiCosn
k=1 K

Since Lemma F.2 holds for any permutation o and k € [K] (for n < ﬁ), we have

] 1|2 s I 1|2 nmmpN2E 2
focosi]” < (T 1807 1t < (- 2 he
The second term is bounded by Lemma F.3, which uses Lemma F.2 in its proof.

Substituting these bounds to (F.1), we have
132n*nL2G? 1
Bl ) < 2 (1= ) |+ SRR

0 2

I
Now substitute the step size n = %}ffﬂ. Then, we get
2
B2+ ] < 2 ||| s L2G?log® (nK)
nk?2 uinkK? ’

and in terms of the function value,
2LH.’E H L3G?log® (nK)
K+1 * 0 g

Recall that the bound holds for n < so K must be large enough so that

Sain
2log(n'/ 2K) 1
unkK 5nL/i
This gives us the epoch condition K > 10x2 log(n'/2K).
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F.2 Proof of Lemma F.2

Decomposition into (modified) elementary polynomials. We expand §k in the following way:

n Jj+1 n
Sp=1- ”Z (H (I - ”Bf<t>)> ALy =2 6™ X0 Bl Bl Ab),

m=0 1<t1 < <tm<n

where ¢,,, be viewed as a modified version of noncommutative elementary polynomial (B.1). Since k
and o are fixed in this section, we use A to denote the mean % Z?:l A’; (i) Recall that by definition
of A’; (i)’s and strong convexity of F' := %ZZ fi» we have A > pI. In what follows, we will

decompose S}, into the sum of 1 — nnA and remainder terms. By bounding the spectral norm of
1 — nn A and the remainder terms, we will get the desired bound on the spectral norm of Sk.

Spectral norm bound. It is easy to check thatép = Tand &3 = ) | A o(i) = NA, 50

Sy =I—nnA+ Z (=) em,
m=2

and we get the spectral norm bound
|86 < 1T = Al + > 0 el (F2)
m=2
It is now left to bound each of the norms.

Bounding each term of the spectral norm bound. First, note that for any eigenvalue s of the
positive definite matrix A, the corresponding eigenvalue of I —nnAis 1 —nns. Recall n < & L <
571 sonns < 1/5 for any eigenvalue s of A. Since the function ¢ — 1 —t is positive and decreasmg
on O 0.2], the maximum singular value (i.e., spectral norm) of I — nnA comes from the minimum

eigenvalue of A. Hence,

1 —nnAll <1—mnnu.

Next, consider ||&,,||. It contains ( ) terms, and each of the terms have spectral norm bounded above
by L™. This gives

el < ()27 < (nry

Concluding the proof. Substituting the bounds to (F.2) yields

n
~ nL)? 5
HSkH <1—nnp+ z:(nnL)mél—nmmLM < 1—nnu+ < (nnL)?,
= nL 4
where the last inequality used nnL < 1/5. The remaining step is to show that the right hand side of

the inequality is bounded above by 1 — 5 for 0 < 7 <

51’LLK
Define z = nnL. Using this, we have

5 nn
1- “(mmL)? <1- for0 <n <
nnu+4(nn )= < 5 or 0 U
z 522 1
== — >0for0<2< —
< g(z) 5~ 4 Ofor0<z< e
so it suffices to show the latter. One can check that g(0) = 0, ¢’(0) > 0 and ¢’(z) is monotonically
decreasing in z > 0, so g(z) > 0 holds for z € [0, ¢| for some ¢ > 0. This also means that if we have
g(c) > 0 for some ¢ > 0, g(z) > 0 forall z € [0, c].

. 1 . . .
Consider z = £-. Substituting to g gives

1y 1 N S
I\56) T 1052 20s2  20m2

This means that g(z) > 0 for 0 < z < %, hence proving the lemma.
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F.3 Proof of Lemma F.3

First, note thatif 0 < n < = L ,
any underlying permutation o:

Lemma F.2 tells us that the following holds for any k € [K] and
il =15~

Therefore, for any permutation o, we have

2 K 2 K Kk 2
< (Sloa]) = (S0-2""l8]) - @
k=1 k=1

Now, it is left to bound the right hand side of the inequality (F.3), which involves ||£;]|. The proof

technique used to bound ||£,]| is similar to Lemma B.2; we use the Hoeffding-Serfling inequality [13]
and union bound.

Due to summation by parts, the following identity holds, even when multiplication of a; and b; is
noncommutative:

j=1 j=1
We can apply the identity to ¢, by substituting a; = HJH I- nBﬁ(t)) and b; = V f5(;)(0):

i = 1 (T -0t w200

Jj=1 t=n

n n—1 [i+2 i+1
- vaa( Z (H I—nBﬁ(t))—H(I an )vaff(])
j=1 i=1

t=n t=n

n—1 /142 [
= > (H(I - 77B§(t)>> Bl ) Via(;)(0)
i=1 \t=n j=1

n—1 i+2 i
<0y, (H(I - ’735(0)> Bl Y Ve (0)|| < nL(1+nL)" Z Z Vs () (0

i=1 t=n Jj=1 1=

(F4)

where the last step used ||Bk( pll < L. Recall thatn < 5
l/5

L < L which implies that (1 +nL)" <

. Also, note that the right hand side of the 1nequa11ty now does not depend on k. Thus, any
bound on the norm of partial sums HZ;:1 V f+(j)(0)|| applies to all t;. Next, we use the Hoeffding-
Serfling inequality (Lemma A.1) for bounded random vectors. We restate the lemma here, for readers’
convenience.

Lemma A.1 ([13, Theorem 2]). Suppose n > 2. Let v1,vs, ..., v, € R satisfy |v;|| < G forall j.
Letv = % Z?Zl v;. Let 0 € S, be a uniform random permutation of n elements. Then, fori < n,
with probability at least 1 — 0, we have

8(1 —

n )log(S
)

1 &
=D V)~ || <G
i

Recall that v = % Z?:l V £;(0) = 0 in our setting, so with probability at least 1 — §, we have

: 2
> Via)(0)|| < Gy[8ilog .
j=1
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Using the union bound for all i = 1,...,n — 1, we have with probability at least 1 — 4,

Z vaU(J) <G\/QZ\/<G\/E/ Vydy < Gm 3/2.

) (E5)

Substituting this to (F.4) leads to the following bound that holds for all k£ € [K], without having to
invoke any union bounds over different k’s:

~ 44/2e1/5 [ 2
HtkH Si\f; m®2LG long.

Using this bound, we can bound the right hand side of (F.3) as follows:

o)) 5 (Mo S -]
(02"l o33 (1-254)"
\[61/5711/2 n

<82 - LG /log26>

128¢2/5n[2G2 | on

= —9M2 og ?

which holds with probability at least 1 — 4.

Now, set § = 1/n, and let E be the probabilistic event that (F.5) holds. Let £ be the complement of
E. Given the event £, directly bounding (F.4) leads to

Y502 LG
1/5 (& nn
HtkH <e / WL E E Vfo' g) < 9 ;

i1=1 Jf

which yields the following bound on (F.3), conditional on E°:

K 2 2
(; <1 - M) H H) < anLG Z (1 — %) ) < <61/5ZLG> _ 62/571:21;26'2.

Finally, putting everything together and using log 2 = log(2n?) < 3logn,

| E | E¢| PEY]

128¢2/5nL2G?logn  €*/°n’L*G? 1
= 312 112
< 66nL2G?logn
= T>

n

which finishes the proof.

References

[1] Kai Lai Chung. On a stochastic approximation method. The Annals of Mathematical Statistics,
pages 463483, 1954.

[2] Vaclav Fabian. Stochastic approximation of minima with improved asymptotic speed. The
Annals of Mathematical Statistics, pages 191-200, 1967.

[3] Mert Giirbiizbalaban, Asu Ozdaglar, and Pablo Parrilo. Convergence rate of incremental gradient
and incremental Newton methods. SIAM Journal on Optimization, 29(4):2542-2565, 2019. doi:
10.1137/17M1147846. URL https://doi.org/10.1137/17M1147846.

40


https://doi.org/10.1137/17M1147846

[4] Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the Polyak-tojasiewicz condition. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pages 795-811. Springer, 2016.

[5] Zehua Lai and Lek-Heng Lim. Recht-Ré noncommutative arithmetic-geometric mean conjecture
is false. In International Conference on Machine Learning, 2020.

[6] Eric Lehman, Tom Leighton, and Albert Meyer. Mathematics for computer science. Technical
report, Lecture notes for 6-042J, MIT, 2017. Available at https://courses.csail.mit.
edu/6.042/springl7/mcs. pdf.

[7] Konstantin Mishchenko, Ahmed Khaled, and Peter Richtarik. Random reshuffling: Simple
analysis with vast improvements. arXiv preprint arXiv:2006.05988, 2020.

[8] Dheeraj Nagaraj, Prateek Jain, and Praneeth Netrapalli. SGD without replacement: Sharper
rates for general smooth convex functions. In International Conference on Machine Learning,
pages 4703-4711, 2019.

[9] Lam M. Nguyen, Quoc Tran-Dinh, Dzung T. Phan, Phuong Ha Nguyen, and Marten van
Dijk. A unified convergence analysis for shuffling-type gradient methods. arXiv preprint
arXiv:2002.08246, 2020.

[10] Shashank Rajput, Anant Gupta, and Dimitris Papailiopoulos. Closing the convergence gap of
SGD without replacement. In International Conference on Machine Learning, 2020.

[11] Benjamin Recht and Christopher Ré. Beneath the valley of the noncommutative arithmetic-
geometric mean inequality: conjectures, case-studies, and consequences. arXiv preprint
arXiv:1202.4184, 2012.

[12] Itay Safran and Ohad Shamir. How good is sgd with random shuffling? In Conference on
Learning Theory, pages 3250-3284. PMLR, 2020.

[13] Markus Schneider. Probability inequalities for kernel embeddings in sampling without replace-
ment. In Artificial Intelligence and Statistics, pages 66—74, 2016.

41


https://courses.csail.mit.edu/6.042/spring17/mcs.pdf
https://courses.csail.mit.edu/6.042/spring17/mcs.pdf

	Analysis for PŁ costs (Proofs of Theorem 1 and Corollary 1)
	Proof outline
	The 1st case: characterizing aggregate update over an epoch
	The 1st case: bounding noise term using Hoeffding-Serfling inequality
	The 1st case: getting a per-epoch progress bound
	The 2nd case: escape implies desired best iterate suboptimality
	Proof of Corollary 1

	Analysis on RandomShuffle for quadratics (Proof of Theorem 2)
	Additional notation on matrices
	Proof outline
	Proof of the first contraction bound (Lemma B.1)
	Decomposition into elementary polynomials
	Bounding each term of the spectral norm bound
	Concluding the proof

	Proof of Lemma B.2
	Proof of Lemma B.3
	Proof of the second contraction bound (Lemma B.4)
	Decomposition into elementary polynomials
	Bounding each term of the spectral norm bound
	Concluding the proof

	Proof of Lemma B.5
	Proof of Lemma B.6
	Proof outline
	Decomposing the terms in the vector cj,m into three categories
	Directly bounding the first two categories
	Bounding the third category using the law of total expectation
	Concluding the proof

	Technical lemmas on binomial coefficients

	RandomShuffle: Tail average bound for strongly convex quadratics
	Proof outline
	Proof of the third contraction bound (Lemma C.2)

	Analysis of varying step sizes (Proofs of Theorems 3 and 4)
	Preliminaries: existing per-iteration/-epoch bounds
	Chung's lemma: an analytic tool for varying stepsize
	An illustrative failed attempt using Chung's lemma
	A variant of Chung's lemma
	Sharper convergence rate for strongly convex costs (Proof of Theorem 3)
	Sharper convergence rate for quadratic costs (Proof of Theorem 4)

	Proofs of the versions of Chung's lemma (Lemmas D.3 and D.5)
	A correct proof of Chung's lemma (Proof of Lemma D.3)
	Proof of Lemma D.5

	Tight convergence bound for SingleShuffle
	Proof outline
	Proof of Lemma F.2
	Proof of Lemma F.3


