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Notations We recall the notations of the paper. We consider two datasets represented by matrices
X = [x1, . . . ,xn]T ∈ Rn×d and X′ = [x′1, . . . ,x

′
n′ ]

T ∈ Rn′×d′ . The rows of the datasets are
denoted as samples and their columns as features. Let µ =

∑n
i=1 wiδxi and µ′ =

∑n′

i=1 w
′
iδx′i

be two empirical distributions related to the samples, where xi ∈ Rd and x′i ∈ Rd′ . We refer in
the following to w = [w1, . . . , wn]> and w′ = [w′1, . . . , w

′
n′ ]
> as to sample weights vectors that

both lie in the simplex (w ∈ ∆n and w′ ∈ ∆n′). In addition to them, we also introduce weights
for the features that are stored on vectors v ∈ ∆d and v′ ∈ ∆d′ . Finally, we let vec denote the
column-stacking operator.

We define the CO-Optimal Transport (COOT) problem as follows:

min
πs∈Π(w,w′)
πv∈Π(v,v′)

∑
i,j,k,l

L(Xi,k, X
′
j,l)π

s
i,jπ

v
k,l = min

πs∈Π(w,w′)
πv∈Π(v,v′)

〈L(X,X′)⊗ πs,πv〉, (1)

where L : R×R→ R+ is a divergence measure between 1D variables, L is the tensor of all pairwise
divergences between the elements of the matrices and Π(·, ·) is the set of linear transport constraints:

Π(w,w′) = {π|π ≥ 0,π1n′ = w,π>1n = w′}.

The rest of the supplementary is organized as follows. After the MNIST-USPS illustration (Section
2 of the main paper), Section 1 presents the proof of Proposition 1 from the main paper and the
computational complexity of calculating the value of the COOT problem as mentioned in Section
2.3 of the main paper. We provide the proofs for the equivalence of COOT to Gromov-Wassserstein
distance (Propositions 2 and 3 from the main paper and algorithmic implications discussed after
Proposition 3), InvOT and election isomorphism problem in Section 2. Finally, in Section 3, we
provide additional experimental results for heterogeneous domain adaptation problem and precise the
simulation details for the co-clustering task.

Illustration on MNIST-USPS task

We provide a comparison between the coupling matrices obtained using GW and COOT on the
MNIST-USPS problem from Section 2 of the main paper in Figure 1 and show the results of
transporting the USPS samples to MNIST and vice versa using barycentric mapping in Figures 2 and
3.
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Figure 1: Comparison between the coupling matrices obtained via GW and COOT on MNIST-USPS.
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Figure 2: Linear mapping from USPS to MNIST using πv. (First row) Original USPS samples,
(Second row) Samples resized to target resolution, (Third row) Samples mapped using πv , (Fourth
row) Samples mapped using πv with entropic regularization.
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Figure 3: Linear mapping from MNIST to USPS using πv. (First row) Original MNIST samples,
(Second row) Samples resized to target resolution, (Third row) Samples mapped using πv , (Fourth
row) Samples mapped using πv with entropic regularization.

1 Proofs from Section 2

1.1 Proof of Proposition 1

Proposition 1 (COOT is a distance for n = n′, d = d′). Suppose L = | · |p, p ≥ 1, n = n′, d = d′

and that the weights w,w′,v,v′ are uniform. Then COOT(X,X′) = 0 iff there exists a permutation
of the samples σ1 ∈ Sn and of the features σ2 ∈ Sd, s.t, ∀i, k Xi,k = X′σ1(i),σ2(k). Moreover, in
general for n 6= n′, d 6= d′ and potentially non uniform weights, it is symmetric and satisfies the
triangle inequality as long as L satisfies the triangle inequality COOT(X,X′′) ≤ COOT(X,X′) +
COOT(X′,X′′).

Proof. The symmetry follows from the definition of COOT. To prove the triangle inequality of
COOT for arbitrary measures, we will use the gluing lemma (see [1]) which states the existence of
couplings with a prescribed structure. Let X ∈ Rn×d,X′ ∈ Rn′×d′ ,X′′ ∈ Rn′′×d′′ associated with
w ∈ ∆n,v ∈ ∆d,w

′ ∈ ∆′n,v
′ ∈ ∆′d,w

′′ ∈ ∆′′n,v
′′ ∈ ∆′′d . Without loss of generality, we can
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suppose in the proof that all weights are different from zeros (otherwise we can consider w̃i = wi if
wi > 0 and w̃i = 1 if wi = 0 see proof of Proposition 2.2 in [2])

Let (πs1,π
v
1) and (πs2,π

v
2) be two couples of optimal solutions for the COOT problems associated

with COOT(X,X′,w,w′,v,v′) and COOT(X′,X′′,w′,w′′,v′,v′′) respectively.

We define:

S1 = πs1diag
(

1

w′

)
πs2, S2 = πv1diag

(
1

v′

)
πv2

Then, it is easy to check that S1 ∈ Π(w,w′′) and S2 ∈ Π(v,v′′) (see e.g Proposition 2.2 in [2]). We
now show the following:

COOT(X,X′′,w,w′′,v,v′′)
∗
≤ 〈L(X,X′′)⊗ S1, S2〉 = 〈L(X,X′′)⊗ [πs1diag(

1

w′
)πs2], [πv1diag(

1

v′
)πv2 ]〉

∗∗
≤ 〈[L(X,X′) + L(X′,X′′)]⊗ [πs1diag(

1

w′
)πs2], [πv1diag(

1

v′
)πv2 ]〉

= 〈L(X,X′)⊗ [πs1diag(
1

w′
)πs2], [πv1diag(

1

v′
)πv2 ]〉+ 〈L(X′,X′′)⊗ [πs1diag(

1

w′
)πs2], [πv1diag(

1

v′
)πv2 ]〉,

where in (*) we used the suboptimality of S1, S2 and in (**) the fact that L satisfies the triangle
inequality.

Now note that:

〈L(X,X′)⊗ [πs1diag(
1

w′
)πs2], [πv1diag(

1

v′
)πv2 ]〉+ 〈L(X′,X′′)⊗ [πs1diag(

1

w′
)πs2], [πv1diag(

1

v′
)πv2 ]〉

=
∑

i,j,k,l,e,o

L(Xi,k, X
′
e,o)

πs1i,eπ
s
2e,j

w′e

πv1k,oπ
v
2o,l

v′o
+

∑
i,j,k,l,e,o

L(X ′e,o, X
′′
j,l)

πs1i,eπ
s
2e,j

w′e

πv1k,oπ
v
2o,l

v′o

∗
=
∑
i,k,e,o

L(Xi,k, X
′
e,o)π

s
1i,eπ

v
1k,o +

∑
l,j,e,o

L(X ′e,o, X
′′
j,l)π

s
2e,jπ

v
2o,l

where in (*) we used:∑
j

πs2e,j
w′e

= 1,
∑
l

πv2o,l
v′o

= 1,
∑
i

πs1i,e
w′e

= 1,
∑
k

πv1k,o
v′o

= 1

Overall, from the definition of πs1,π
v
1 and πs2,π

v
2 we have:

COOT(X,X′′,w,w′′,v,v′′) ≤ COOT(X,X′,w,w′,v,v′) + COOT(X′,X′′,w′,w′′,v′,v′′).

For the identity of indiscernibles, suppose that n = n′, d = d′ and that the weights w,w′,v,v′ are
uniform. Suppose that there exists a permutation of the samples σ1 ∈ Sn and of the features σ2 ∈ Sd,
s.t ∀i, k ∈ [[n]]× [[d]], Xi,k = X′σ1(i),σ2(k). We define the couplings πs, πv supported on the graphs
of the permutations σ1, σ2 respectively, i.e πs = (Id× σ1) and πv = (Id× σ2). These couplings
have the prescribed marginals and lead to a zero cost hence are optimal.

Conversely, as described in the paper, there always exists an optimal solution of (1) which lies
on extremal points of the polytopes Π(w,w′) and Π(v,v′). When n = n′, d = d′ and uniform
weights are used, Birkhoffs theorem [3] states that the set of extremal points of Π(1n

n ,
1n

n ) and
Π(1d

d ,
1d

d ) are the set of permutation matrices so there exists an optimal solution (πs∗,π
v
∗) sup-

ported on σs∗, σ
v
∗ respectively with σs∗, σ

v
∗ ∈ Sn × Sd. Then, if COOT(X,X′) = 0, it implies that∑

i,k L(Xi,k, X
′
σs
∗(i),σ

v
∗(k)) = 0. If L = | · |p then Xi,k = X ′σs

∗(i),σ
v
∗(k) which gives the desired result.

If n 6= n′, d 6= d′ the COOT cost is always strictly positive as there exists a strictly positive element
outside the diagonal.

1.2 Complexity of computing the value of COOT

As mentionned in [4], if L can be written as L(a, b) = f(a) + f(b)− h1(a)h2(b) then we have that

L(X,X′)⊗ πs = CX,X′ − h1(X)πsh2(X′)T ,
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where CX,X′ = Xw1Tn′ + 1nw
′TX′T so that the latter can be computed in O(ndd′ + n′dd′) =

O((n+n′)dd′). To compute the final cost, we must also calculate the scalar product with πv that can
be done in O(n′2n) making the complexity of 〈L(X,X′)⊗πs,πv〉 equal to O((n+n′)dd′+n′2n).

Finally, as the cost is symmetric w.r.t πs,πv, we obtain the overall complexity of O(min{(n +
n′)dd′ + n′2n; (d+ d′)nn′ + d′2d}).

2 Proofs from Section 3

2.1 Equivalence between BAP and QAP

As pointed in [5], we can relate the solutions of a QAP and a BAP using the following theorem:
Theorem 1. If Q is a positive semi-definite matrix, then problems:

maxx f(x) = cTx + 1
2x

TQx
s.t. Ax = b, x ≥ 0

(2)

maxx,y g(x,y) = 1
2c
Tx + 1

2c
Ty + 1

2x
TQy

s.t. Ax = b,Ay = b, x,y ≥ 0
(3)

are equivalent. More precisely, if x∗ is an optimal solution for (2), then (x∗,x∗) is a solution for (3)
and if (x∗,y∗) is optimal for (3), then both x∗ and y∗ are optimal for (2).

Proof. This proof follows the proof of Theorem 2.2 in [5]. Let z∗ be optimal for (2) and (x∗,y∗)
be optimal for (3). Then, by definition, for all x satisfying the constraints of (2), f(z∗) ≥ f(x).
In particular, f(z∗) ≥ f(x∗) = g(x∗,x∗) and f(z∗) ≥ f(y∗) = g(y∗,y∗). Also, g(x∗,y∗) ≥
maxx,x s.t Ax=b,x≥0 g(x,x) = f(z∗).

To prove the theorem, it suffices to prove that

f(y∗) = f(x∗) = g(x∗,y∗) (4)

since, in this case, g(x∗,y∗) = f(x∗) ≥ f(z∗) and g(x∗,y∗) = f(y∗) ≥ f(z∗).

Let us prove (4). Since (x∗,y∗) is optimal, we have:

0 ≤ g(x∗,y∗)− g(x∗,x∗) =
1

2
cT (y∗ − x∗) +

1

2
x∗TQ(y∗ − x∗)

0 ≤ g(x∗,y∗)− g(y∗,y∗) =
1

2
cT (x∗ − y∗) +

1

2
y∗TQ(x∗ − y∗).

By adding these inequalities we obtain:

(x∗ − y∗)TQ(x∗ − y∗) ≤ 0.

Since Q is positive semi-definite, this implies that Q(x∗ − y∗) = 0. So, using previous inequalities,
we have cT (x∗ − y∗) = 0, hence g(x∗,y∗) = g(x∗,x∗) = g(y∗,y∗) as required.

Note also that this result holds when we add a constant term to the cost function.

2.2 Proofs of Propositions 2 and 3

We now prove all the theorems from Section 3 from the main paper. We first recall the GW problem
for two matrices C,C′:

GW (C,C′,w,w′) = min
πs∈Π(w,w′)

〈L(C,C′)⊗ πs,πs〉. (5)

We will now prove the Proposition 2 in the main paper stated as follows.

Proposition 2. Let L = | · |2 and suppose that C ∈ Rn×n,C′ ∈ Rn′×n′ are squared Euclidean
distance matrices such that C = x1Tn + 1nx

T − 2XXT ,C′ = x′1Tn′ + 1n′x
′T − 2X′X′T with

x = diag(XXT ),x′ = diag(X′X′T ). Then, the GW problem can be written as a concave quadratic
program (QP) which Hessian reads Q = −4 ∗XXT ⊗K X′X′T .
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This result is a consequence of the following lemma.
Lemma 1. With previous notations and hypotheses, the GW problem can be formulated as:

GW (C,C′,w,w′) = min
πs∈Π(w,w′)

−4vec(M)T vec(πs)− 8vec(πs)TQvec(πs) + Cte

with

M = xx′T − 2xw′TX′X′T − 2XXTwx′T and Q = XXT ⊗K X′X′T ,

Cte =
∑
i

‖xi − xj‖42wiwj +
∑
i

‖x′i − x′j‖42w′iw′j − 4wTxw′Tx′

Proof. Using the results in [4] for L = | · |2, we have L(C,C′) ⊗ πs = cC,C′ − 2CπsC′ with
cC,C′ = (C)2w1Tn′ + 1nw

′T (C′)2, where (C)2 = (C2
i,j) is applied element-wise.

We now have that

〈CπsC′,πs〉 = tr
[
πsT (x1Tn + 1nx

T − 2XXT )πs(x′1Tn′ + 1n′x
′T − 2X′X′T )

]
= tr

[
(πsTx1Tn + w′xT − 2πsTXXT )(πsx′1Tn′ + wx′T − 2πsX′X′T )

]
= tr

[
πsTxw′Tx′1Tn′ + πsTxx′T − 2πsTxw′TX′X′T + w′xTπsx′1Tn′ + w′xTwx′T − 2w′xTπsX′X′T

− 2πsTXXTπsx′1Tn′ − 2πsTXXTwx′T + 4πsTXXTπsX′X′T
]

∗
= tr

[
πsTxw′T (x′1Tn′ + 1n′x

′T ) + πsTxx′T + w′xTwx′T − 2πsTxw′TX′X′T − 2w′xTπsX′X′T

− 2πsTXXTπsx′1Tn′ − 2πsTXXTwx′T + 4πsTXXTπsX′X′T
]
,

where in (*) we used:

tr(w′xTπsx′1Tn′) = tr(x′1Tn′w
′xTπs) = tr(πsTxw′T1n′x′T ).

Moreover, since:

tr(πsTXXTπsx′1Tn′) = tr(1Tn′π
sTXXTπsx′) = tr(wTXXTπsx′) = tr(πsTXXTwx′T )

and tr(w′xTπsX′X′T ) = tr(πsTxw′TX′X′T ), we can simplify the last expression to obtain:

〈CπsC′,πs〉 = tr
[
πsTxw′T (x′1Tn′ + 1n′x

′T ) + πsTxx′T + w′xTwx′T

− 4πsTxw′TX′X′T − 4πsTXXTwx′T + 4πsTXXTπsX′X′T
]
.

Finally, we have that

〈CπsC′,πs〉 = tr
[
πsTxw′Tx′1Tn′ + πsTxw′T1n′x

′T + πsTxx′T

+ w′xTwx′T − 4πsTxw′TX′X′T − 4πsTXXTwx′T + 4πsTXXTπsX′X′T
]

= tr
[
2w′xTwx′T + 2πsTxx′T − 4πsTxw′TX′X′T − 4πsTXXTwx′T + 4πsTXXTπsX′X′T

]
= 2wTxw′Tx′ + 2〈xx′T − 2xwTX′X′T − 2XXTwx′T ,πs〉+ 4tr(πsTXXTπsX′X′T ).

The term 2wTxw′Tx′ is constant since it does not depend on the coupling. Also, we can verify that
cC,C′ does not depend on πs as follows:

〈cC,C′ ,πs〉 =
∑
i

‖xi − xj‖42wiwj +
∑
i

‖x′i − x′j‖42w′iw′j

implying that:

〈cC,C′ − 2CπsC′,πs〉 = Cte− 4〈xx′T − 2xwTX′X′T − 2XTXwx′T ,πs〉 − 8tr(πsTXXTπsX′X′T ).

We can rewrite this equation as stated in the proposition using the vec operator.

Using a standard QP form cTx + 1
2xQ

′xT with c = −4vec(M) and Q′ = −4XXT ⊗K X′X′T

we see that the Hessian is negative semi-definite as the opposite of a Kronecker product of positive
semi-definite matrices XXT and X′X′T .
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Using previous propositions we are able to prove the Proposition 3 of the paper.

Proposition 3. Let C ∈ Rn×n,C′ ∈ Rn′×n′ be any symmetric matrices, then:

COOT(C,C′,w,w′,w,w′) ≤ GW (C,C′,w,w′).

The converse is also true under the hypothesis of Proposition 2. In this case, if (πs∗,π
v
∗) is an optimal

solution of (1), then both πs∗,π
v
∗ are solutions of (5). Conversely, if πs∗ is an optimal solution of (5),

then (πs∗,π
s
∗) is an optimal solution for (1) .

Proof. The first inequality follows from the fact that any optimal solution of the GW problem is
an admissible solution for the COOT problem, hence the inequality is true by suboptimality of this
optimal solution.

For the equality part, by following the same calculus as in the proof of Proposition 1, we can verify
that:

COOT(C,C′,w,w′,w,w′) = min
πs∈Π(w,w′)

−2vec(M)T vec(πs)

− 2vec(M)T vec(πv)− 8vec(πs)TQvec(πv) + Cte,

with M,Q as defined in Proposition 1.

Since Q is negative semi-definite, we can apply Theorem 1 to prove that both problems are equivalent
and lead to the same cost and that every optimal solution of GW is an optimal solution of COOT and
vice versa.

2.3 Equivalence of DC algorithm and Frank-Wolfe algorithm for GW

Let us first recall the general algorithm used for solving COOT for arbitrary datasets.

Algorithm 1 BCD for COOT

1: Input: maxIt, thd
2: πs(0) ← ww′T , πv(0) ← vv′T , k ← 0

3: while k < maxIt and err > thd do
4: πv(k) ← OT (v,v′, L(X,X′)⊗ πs(k−1))

5: πs(k) ← OT (w,w′, L(X,X′)⊗ πv(k−1))

6: err ← ||πv(k−1) − πv(k)||F
7: k ← k + 1

Using Proposition 3, we know that when X = C, X′ = C′ are squared Euclidean matrices, then
there is an optimal solution of the form (π∗,π∗). In this case, we can set πs(k) = πv(k) during the
iterations of Algorithm 1 to obtain an optimal solution for both COOT and GW. This reduces to
Algorithm 2 that corresponds to a DC algorithm where the quadratic form is replaced by its linear
upper bound.

Below, we prove that this DC algorithm for solving GW problems is equivalent to the Frank-Wolfe
(FW) based algorithm presented in [6] and recalled in Algorithm 3 when L = | · |2 and for squared
Euclidean distance matrices C′,C′′.

Algorithm 2 DC Algorithm for COOT and GW with squared Euclidean distance matrices

1: Input: maxIt, thd
2: πs(0) ← ww′T

3: while k < maxIt and err > thd do
4: πs(k) ← OT (w,w′, L(C,C′)⊗ πs(k−1))

5: err ← ||πs(k−1) − πs(k)||F
6: k ← k + 1

6



Algorithm 3 FW Algorithm for GW [6]

1: Input: maxIt, thd
2: π(0) ← ww′>

3: while k < maxIt and err > thd do
4: G← Gradient from Eq. (5) w.r.t. πs(k−1)

5: π̃s(k) ← OT (w,w′,G)

6: zk(τ)← πs(k−1) + τ(π̃s(k) − πs(k−1)) for τ ∈ (0, 1)

7: τ (k) ← argmin
τ∈(0,1)

〈L(C,C′)⊗ zk(τ), zk(τ)〉

8: πs(k) ← (1− τ (k))πs(k−1) + τ (k)π̃s(k)

9: err ← ||πs(k−1) − πs(k)||F
10: k ← k + 1

The case when L = | · |2 and C,C′ are squared Euclidean distance matrices has interesting implica-
tions in practice, since in this case the resulting GW problem is a concave QP (as explained in the
paper and shown in Lemma 1 of this supplementary). In [7], the authors investigated the solution
to QP with conditionally concave energies using a FW algorithm and showed that in this case the
line-search step of the FW is always 1. Moreover, as shown in Proposition 1, the GW problem can be
written as a concave QP with concave energy and is minimizing a fortiori a conditionally concave
energy. Consequently, the line-search step of the FW algorithm proposed in [6] and described in
Algorithm3 always leads to an optimal line-search step of 1. In this case, the Algorithm.3 is equivalent
to Algorithm 4 goven below, since τ (k) = 1 for all k.

Algorithm 4 FW Algorithm for GW with squared Euclidean distance matrices

1: Input: maxIt, thd
2: π(0) ← ww′>

3: while k < maxIt and err > thd do
4: G← Gradient from Eq. (5) w.r.t. πs(k−1)

5: πs(k) ← OT (w,w′,G)

6: err ← ||πs(k−1) − πs(k)||F
7: k ← k + 1

Finally, by noticing that in the step 3 of Algorithm 4 the gradient of (5) w.r.t πs(k−1) is 2L(C,C′)⊗
πs(k−1), which gives the same OT solution as for the OT problem in step 3 of Algorithm 2, we can
conclude that the iterations of both algorithms are equivalent.

2.4 Relation with Invariant OT

The objective of this part is to prove the connections between GW, COOT and InvOT [8] defined as
follows:

InvOTLp (X,X′) := min
π∈Π(w,w′)

min
f∈Fp

〈Mf ,π〉F ,

where (Mf )ij = L(xi, f(x′j)) and Fp is a space of matrices with bounded Shatten p-norms, i.e.,
Fp = {P ∈ Rd×d : ||P||p ≤ kp}.
We prove the following result.

Proposition 4. Using previous notations, L = | · |2, p = 2, (i.e F2 = {P ∈ Rd×d : ||P||F =√
d}) and cosine similarities C = XXT ,C′ = X′X′T . Suppose that X′ is w′-whitened, i.e

X′T diag(w′)X = I . Then, InvOTL2 (X,X′), COOT(C,C′) and GW (C,C′) are equivalent, namely
any optimal coupling of one of this problem is a solution to others problems.

In order to prove this proposition, we will need the following proposition:

7



Proposition 5. If L = | · |2, we have that

GW (C,C′,w,w′) = min
πs∈Π(w,w′)

cT vec(πs) +
1

2
vec(πs)TQvec(πs)

COOT(C,C′,w,w′) = min
πs,πv∈Π(w,w′)

1

2
cT vec(πs) +

1

2
cT vec(πv) +

1

2
vec(πs)TQvec(πv).

with Q = −4C⊗C′, c = vec(Cw1Tn′ + 1nw
′C′).

Proof. For GW, we refer the reader to [6, Equation 6]. For COOT we have:

COOT(C,C′,w,w′) = min
πs∈Π(w,w′),πv∈Π(w,w′)

〈L(C,C′)⊗ πs,πv〉

= min
πs∈Π(w,w′),πv∈Π(w,w′)

1

2
〈L(C,C′)⊗ πs,πv〉+ 1

2
〈L(C,C′)⊗ πs,πv〉

= min
πs∈Π(w,w′),πv∈Π(w,w′)

1

2
〈L(C,C′)⊗ πs,πv〉+ 1

2
〈L(C,C′)⊗ πv,πs〉

= min
πs∈Π(w,w′),πv∈Π(w,w′)

1

2
〈Cw1T

n′ + 1nw
′C′,πs〉+ 1

2
〈Cw1T

n′ + 1nw
′C′,πv〉 − 2〈CπsC′,πv〉.

Last equality gives the desired result.

Proof of Proposition 4. Without loss of generality, we suppose that the columns of C =
XXT ,C′ = X′X′T are normalized. Then, we know from [8, Lemma 4.3], that GW (C,C′)

and InvOT||·||
2
2

2 (X,X′) are equivalent. It suffices to show that GW (C,C′) and COOT(C,C′) are
equivalent. By virtue of Proposition 5 the Q associated with the QP and BP problems of GW and
COOT is Q = −4XXT ⊗K X′X′T which is a negative semi-definite matrix. This allows us to apply
Theorem 1 to prove that GW (C,C′) and COOT(C,C′) are equivalent.

2.5 Relation with election isomorphism problem

This section shows that COOT approach can be used to solve the election isomorphism problem
defined in [9] as follows: let E = (C, V ) and E′ = (C ′, V ′) be two elections, where C =
{c1, . . . , cm} (resp. C ′) denotes a set of candidates and V = (v1, . . . , vn) (resp. V ′) denotes a set of
voters, where each voter vi has a preference order, also denoted by vi. The two elections E = (C, V )
and E′ = (C ′, V ′), where |C| = |C ′|, V = (v1, . . . , vn), and V ′ = (v′1, . . . , v

′
n), are said to be

isomorphic if there exists a bijection σ : C → C ′ and a permutation ν ∈ Sn such that σ(vi) = v′ν(i)

for all i ∈ [n]. The authors further propose a distance underlying this problem defined as follows:

d-ID(E,E′) = min
ν∈Sn

min
σ∈Π(C,C′)

n∑
i=1

d
(
σ(vi), v

′
ν(i)

)
,

where Sn denotes the set of all permutations over {1, . . . , n}, Π(C,C ′) is a set of bijections and
d is an arbitrary distance between preference orders. The authors of [9] compute d-ID(E,E′) in
practice by expressing it as the following Integer Linear Programming problem over the tensor
Pijkl = MijNkl where M ∈ Rm×m, N ∈ Rn×n

min
P,N,M

∑
i,j,k,l

Pk,l,i,j |posvi(ck)− posv′j (c′l)|

s.t. (N1n)k = 1, ∀k, (N>1n)l = 1, ∀l (6)

(M1m)i = 1, ∀i, (M>1m)j = 1, ∀j
P ≤ Nk,l, Pi,j,k,l ≤Mi,j , ∀i, j, k, l∑
i,k

Pi,j,k,l = 1, ∀j, l (7)

where posvi(ck) denotes the position of candidate ck in the preference order of voter vi. Let us
now define two matrices X and X′ such that Xi,k = posvi(ck) and X′j,l = posv′j (c′l) and denote

8



Decaf→ GoogleNet

Domains Baseline CCA KCCA EGW SGW COOT

nt = 1

C→W 30.47±6.90 13.37±7.23 29.21±13.14 10.21±1.31 66.95±7.61 77.74±4.80
W→C 26.53±7.75 16.26±5.18 40.68±12.02 10.11±0.84 80.16±4.78 87.89±2.65
W→W 30.63±7.78 13.42±1.38 36.74±8.38 8.68±2.36 78.32±5.86 89.11±2.78
W→A 30.21±7.51 12.47±2.99 39.11±6.85 9.42±2.90 80.00±3.24 89.05±2.84
A→C 41.89±6.59 12.79±2.95 28.84±6.24 9.89±1.17 72.00±8.91 84.21±3.92
A→W 39.84±4.27 19.95±23.40 38.16±19.30 12.32±1.56 75.84±7.37 89.42±4.24
A→A 42.68±8.36 15.21±7.36 38.26±16.99 13.63±2.93 75.53±6.25 91.84±2.48
C→C 28.58±7.40 18.37±17.81 35.11±17.96 11.05±1.63 61.21±8.43 78.11±5.77
C→A 31.63±4.25 15.11±5.10 33.84±9.10 11.84±1.67 66.26±7.95 82.11±2.58

Mean 33.61±5.77 15.22±2.44 35.55±3.98 10.80±1.47 72.92±6.37 85.50±4.89

nt = 5

C→W 74.27±5.53 14.53±7.37 73.27±4.99 11.40±1.13 84.00±3.99 85.53±2.67
W→C 90.27±2.67 21.13±6.85 85.00±3.44 10.60±1.05 95.20±2.84 94.53±1.83
W→W 90.93±2.50 15.80±3.27 90.67±2.95 9.80±2.60 95.40±2.47 94.93±2.70
W→A 90.47±2.92 16.67±4.85 87.93±2.47 9.80±2.68 95.40±1.53 95.80±2.15
A→C 88.33±2.33 15.73±4.64 83.13±2.84 10.40±1.89 84.47±5.81 91.47±1.45
A→W 88.40±3.17 13.60±6.25 87.27±2.82 11.87±2.40 87.87±4.66 93.00±1.96
A→A 86.20±3.08 14.07±2.93 87.00±3.48 14.07±1.65 89.80±2.58 92.20±1.69
C→C 75.93±4.83 13.13±2.98 70.47±3.45 11.13±1.52 85.73±3.54 84.60±2.32
C→A 73.47±3.62 15.47±6.50 74.13±5.42 11.20±2.47 85.07±3.26 87.20±1.78

Mean 84.25±7.01 15.57±2.25 82.10±7.03 11.14±1.23 89.21±4.64 91.03±3.97

Table 1: Semi-supervised Heterogeneous Domain Adaptation results for adaptation from Decaf
to GoogleNet representations with different values of nt. Note that the case nt is provided in the
main paper.

by πs∗,π
v
∗ a minimizer of COOT(X,X′,1n/n,1n/n,1m/m,1m/m) with L = | · | and by N∗,M∗

the minimizers of problem (6), respectively.

As shown in the main paper, there exists an optimal solution for COOT(X,X′) given by permutation
matrices as solutions of the Monge-Kantorovich problems for uniform distributions supported on
the same number of elements. Then, one may show that the solution of the two problems coincide
modulo a multiplicative factor, i.e., πs∗ = 1

nN
∗ and πv∗ = 1

mM∗ are optimal since |C| = |C ′| and
|V | = |V ′|. For πs∗ (the same reasoning holds for πv∗ as well), we have that

(πs∗)ij =

{
1
n , j = ν∗i
0, otherwise.

where ν∗i is a permutation of voters in the two sets. The only difference between the two solutions πs∗
and N∗ thus stems from marginal constraints (6). To conclude, we note that COOT is a more general
approach as it is applicable for general loss functions L, contrary to the Spearman distance used in
[9], and generalizes to the cases where n 6= n′ and m 6= m′.

3 Additional experimental results

3.1 Complementary results for the HDA experiment

Here, we present the results for the heterogeneous domain adaptation experiment not included in
the main paper due to the lack of space. Table 1 follows the same experimental protocol as in the
paper but shows the two cases where nt = 1 and nt = 5. Table 2 and Table 3 contain the results for
the adaptation from GoogleNet to Decaf features, in a semi-supervised and unsupervised scenarios,
respectively Overall, the results are coherent with those from the main paper: in both settings, when
nt = 5, one can see that the performance differences between SGW and COOT is rather significant.
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GoogleNet→ Decaf

Domains Baseline CCA KCCA EGW SGW COOT

nt = 1

C→A 31.16±6.87 12.16±2.78 33.32±2.47 7.00±2.11 77.16±8.00 83.26±5.00
C→C 30.42±3.73 13.74±5.29 32.58±9.98 12.47±2.81 76.63±8.31 86.21±3.26
W→A 37.68±4.04 15.79±3.71 34.58±5.71 14.32±1.77 86.68±1.90 89.95±3.43
A→C 35.95±3.89 15.32±8.18 40.16±17.54 13.21±3.49 87.89±4.03 90.68±7.54
A→A 36.89±4.73 13.84±2.47 34.84±10.44 13.16±1.56 89.79±3.93 94.68±2.21
W→W 32.05±4.63 19.89±11.82 36.26±21.98 10.00±2.59 84.21±4.55 90.42±2.66
W→C 32.68±5.56 21.53±21.01 33.79±22.72 11.47±3.03 86.26±3.41 89.53±1.92
A→W 33.84±4.75 16.00±7.74 39.32±18.94 11.00±4.01 87.21±3.67 91.53±5.85
C→W 32.32±7.76 15.58±7.72 34.05±15.96 12.89±2.52 81.84±3.51 84.84±5.71

Mean 33.67±2.45 15.98±2.81 35.43±2.50 11.73±2.08 84.19±4.43 89.01±3.38

nt = 3

C→A 76.35±4.15 17.47±3.45 73.94±4.53 7.41±2.27 88.24±2.23 89.88±0.94
C→C 78.94±3.61 18.18±3.44 69.94±3.51 14.18±3.16 89.71±2.25 91.06±1.91
W→A 85.41±3.25 19.29±3.10 80.59±3.82 14.24±2.72 94.76±1.45 95.29±2.35
A→C 89.53±4.05 23.18±7.17 80.59±6.30 13.88±2.69 93.76±2.72 94.76±1.83
A→A 89.76±1.92 17.00±3.11 83.71±3.30 14.41±2.28 93.29±2.09 95.53±1.45
W→W 86.65±5.07 21.88±4.78 84.65±3.67 9.94±2.37 94.88±1.79 94.53±1.66
W→C 88.94±5.02 22.59±9.23 80.06±5.65 13.65±3.15 96.18±1.15 95.29±2.91
A→W 90.29±1.35 22.35±7.00 87.88±2.53 13.88±3.60 94.53±1.54 95.35±1.59
C→W 78.59±3.44 22.53±13.42 80.12±2.95 11.59±3.25 89.29±1.86 89.59±2.22

Mean 84.94±5.19 20.50±2.34 80.16±5.12 12.58±2.31 92.74±2.72 93.48±2.38

nt = 5

C→A 84.20±2.65 18.60±3.75 84.33±2.33 6.40±1.27 92.13±2.61 91.93±2.05
C→C 85.33±2.76 21.80±5.91 78.60±2.74 13.47±2.00 91.33±2.48 92.27±2.67
W→A 95.13±2.29 31.00±9.67 91.93±2.82 14.67±1.40 96.13±2.04 96.40±1.84
A→C 91.67±2.60 21.80±4.35 85.33±3.27 13.40±3.63 95.47±1.51 94.87±1.27
A→A 93.20±1.57 23.33±4.66 89.67±1.98 13.27±2.10 95.33±1.07 95.00±1.37
W→W 95.00±2.33 23.80±5.48 92.13±1.78 11.20±2.58 96.47±1.93 96.67±1.37
W→C 95.67±1.50 28.27±9.71 87.67±3.79 14.27±3.19 97.67±1.31 96.93±2.25
A→W 92.13±2.36 22.67±3.94 89.20±3.14 11.67±2.50 93.60±1.40 94.27±2.11
C→W 84.00±3.45 20.40±4.31 82.53±3.56 11.07±3.70 90.20±2.23 92.40±1.69

Mean 90.70±4.57 23.52±3.64 86.82±4.26 12.16±2.37 94.26±2.42 94.53±1.85

Table 2: Semi-supervised Heterogeneous Domain Adaptation results for adaptation from
GoogleNet to Decaf representations with different values of nt.

GoogleNet→ Decaf

Domains CCA KCCA EGW COOT

C→A 11.30±4.04 14.60±8.12 8.20±2.69 25.10±11.52
C→C 13.35±4.32 17.75±10.16 11.90±2.99 37.20±14.07
W→A 14.55±10.68 25.05±24.73 14.55±2.05 39.75±17.29
A→C 13.80±6.51 20.70±17.94 16.00±2.44 30.25±18.71
A→A 16.90±10.45 28.95±30.62 12.70±1.79 41.65±16.66
W→W 14.50±6.72 24.05±19.35 9.55±1.77 36.85±9.20
W→C 13.15±4.98 14.80±8.79 11.40±2.65 30.95±17.18
A→W 10.85±4.62 14.40±12.36 12.70±2.99 40.85±16.21
C→W 18.25±14.02 25.90±25.40 11.30±3.87 34.05±13.82
Mean 14.07±2.25 20.69±5.22 12.03±2.23 35.18±5.24

Table 3: Unsupervised Heterogeneous Domain Adaptation results for adaptation from GoogleNet
to Decaf representations.
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3.2 Complementary information for the co-clustering experiment

Table 4 below summarizes the characteristics of the simulated data sets used in our experiment.

Data set n× d g ×m Overlapping Proportions
D1 600× 300 3× 3 [+] Equal
D2 600× 300 3× 3 [+] Unequal
D3 300× 200 2× 4 [++] Equal
D4 300× 300 5× 4 [++] Unequal

Table 4: Size (n× d), number of co-clusters (g ×m), degree of overlapping ([+] for well-separated
and [++] for ill-separated co-clusters) and the proportions of co-clusters for simulated data sets.

4 Initialization’s impact

We conducted a study regarding the convergence properties of COOT in the co-clustering application
when the πs, πv and Xc are initialized randomly over 100 trials. This leads to a certain variance in the
obtained value of the COOT distance as expected when solving a non-convex problem. The obtained
CCEs remain largely in line with the obtained results even for different random initializations.

Data set
Characteristics

Runtime(s) BCD #iter. (COOT+Xc) BCD #iter. (COOT) COOT value
D1 4.72±6 21.5±24.57 3.16±0.37 0.46±0.25
D2 0.64±0.81 9.77±11.53 3.4±0.58 1.35±0.16
D3 0.95±1.55 8.47±11.11 3.01±0.1 2.52±0.24
D4 6.27±5.13 33.15±23.75 4.21±0.41 0.06±0.005

Table 5: Mean (± standard-deviation) of different runtime characteristics of COOT.
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[2] Gabriel Peyré and Marco Cuturi. Computational optimal transport. Foundations and Trends in
Machine Learning, 11:355–607, 2019.

[3] Garrett Birkhoff. Tres observaciones sobre el algebra lineal. Univ. Nac. Tucumn Rev. Ser. A,
1946.
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