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Abstract

Cooperative communication plays a central role in theories of human cognition,
language, development, culture, and human-robot interaction. Prior models of
cooperative communication are algorithmic in nature and do not shed light on why
cooperation may yield effective belief transmission and what limitations may arise
due to differences between beliefs of agents. Through a connection to the theory
of optimal transport, we establishing a mathematical framework for cooperative
communication. We derive prior models as special cases, statistical interpretations
of belief transfer plans, and proofs of robustness and instability. Computational
simulations support and elaborate our theoretical results, and demonstrate fit to
human behavior. The results show that cooperative communication provably
enables effective, robust belief transmission which is required to explain feats of
human learning and improve human-machine interaction.

1 Introduction

Cooperative communication is invoked across language, cognitive development, cultural anthropology,
and robotics to explain people’s ability to effectively transmit information and accumulate knowledge.
Theories claim that people have evolved a specialized ecological niche [[Tomasello, 1999, Boyd et al.|
2011] and learning mechanisms [Csibra and Gergelyl [2009, |Grice, |1975], [Sperber and Wilson, |1986],
which explain our abilities to learn and accumulate knowledge; however, we lack mathematical
theories that would allow us analyze basic properties of cooperative communication between agents.

Models of belief updating [Chater et al., 2008, [Tenenbaum et al., 2011, (Ghahramani, 2015]] and action
selection [Luce, 2012} [Sutton et al., [1998]] have recently been combined into models of cooperative
communication in cognitive science [Shafto and Goodman, [2008al [Shafto et al., [2014]], cognitive
development [Eaves Jr et al.|[2016, Bonawitz et al., 2011} [Bridgers et al., 2019]], linguistic pragmatics
[Goodman and Stuhlmiiller, 2013]], and robotics [Ho et al.,[2016} [Hadfield-Menell et al., 2016, [Fisac
et al., 2017, Milli and Dragan, |2019]. These models are algorithms for computing cooperative
communication plans using Theory of Mind reasoning. However, these models do not formalize
the problem mathematically and therefore do not support general conclusions about the nature or
limitations of cooperative communication.

Build upon mathematical and computational analysis, we provide answers to fundamental questions of
cooperative communication. Our contributions are as follows. In Section 2] we interpret cooperative
communication as a problem of optimal transport [Mongel |1781] [Villani, [2008|, [Peyré and Cuturi,
2019]], derive prior models of cooperative communication as special cases, and derive relationships to
rate distortion theory. In particular, we theoretically guarantee the existence of optimal communication
plan and algorithmically ensure the achievablility of such plans. In Section [3] we mathematically
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analyze properties of cooperative communication including statistical interpretations, robustness
to violations of common ground, and instability under greedy data selection. In Section 4 we
computationally analyze robustness to common ground violations, sensitivity to greedy selection of
data, approximate methods of correcting common ground, and demonstrate fit to human data.

2 Cooperative communication as a problem of optimal transport

Communication is a pair of processes considered between two agents, that we will refer to as a
teacher and a learner, wherein the teacher selects data and the learner draws inferences based on
those data. Optimal transport provides a mathematical framework for formalizing movement of
one distribution to another, and therefore a framework for modeling communication. By recasting
communication as belief transport we will gain access to mathematical and computational techniques
for understanding and analyzing the problem of cooperative communication.

2.1 Background on Optimal Transport

Optimal Transport has been discovered in many settings and fields [Villani, 2008, [Kantorovich} 2006
Koopmans| [1949| |Dantzig, |1949| Brenier, |1991]]. The general usefulness of optimal transport can be
credited to the simplicity of the problem it solves. The original formulation, attributable to|Monge
[[1781]], involves minimizing the effort required to move a pile of dirt from one shape to another.
Where Monge saw dirt, we may see any probability distribution.

Entropy regularized Optimal Transport. Formally, let r = (ry,...,7,) and ¢ = (¢1,...,Cm)
be probability vectors of length n and m respectively. A joint distribution matrix P = (P;;) of
dimension n x m is called a transport plalﬂ between r and c if P has r and c as its marginals. Denote
the set of all transport plans between r and c by U (r, ¢). Further, let a non-negative C = (C;; )nxm
be the cost matrix, where C};; measures the cost of transportation between r; and c;.

Cuturi|[2013]] proposed Entropy regularized Optimal Transport (EOT). EOT seeks an optimal transport
plan PV that minimizes the entropy regularized cost of transporting r into c. For a parameter A > 0,

1
PX = argmin {(C, P) — ~H(P)}, (1)
PeU(r,c) A
where (C, P) = > ,cp jcy Cij Py is the Frobenius inner product between C' and P, and H(P) :=
>0 27" Pijlog Pyj is the entropy of P. PO s called a Sinkhorn plan with parameter .

Sinkhorn scaling. Sinkhorn plans can be computed efficiently via Sinkhorn scaling with linear
convergence [Knight, 2008].. (r, c)-Sinkhorn scaling (SK) [Sinkhorn and Knopp, |1967|] of a matrix
M is simply the iterated alternation of row normalization of M with respect to r and column
normalization of M with respect to ¢ (See Example [A.T]in Supplementary Text). When marginal
distributions are uniform, we sometimes call it Sinkhorn iteration. It is shown in Cuturi| [2013]] that,

Proposition 1. Given a cost matrix C, a Sinkhorn plan P of transporting r into ¢ can be obtained
by applying (r, c)-Sinkhorn scaling on PW, where matrix P is defined by PZ-[;‘] = e Y%, thus:

PN =sk(PYY  and PW =0 = (%), m. 2)

Much more is known about EOT and SK (see [Idel, 2016] and our Supplemental Text Section [A).

2.2 Cooperative communication as optimal transport

Cooperative communication formalizes a single problem comprised of interactions between two
processes: action selection (teaching) and inference (learning) [Shafto et al.|[2014} Jara-Ettinger et al.}
2016, |Goodman and Frankl, 2016\ |[Fisac et al., 2017]]. The teacher and learner have beliefs about
hypotheses, which are represented as probability distributions. The process of teaching is to select data
that move the learner’s beliefs from some initial state, to a final desired state. The process of learning is
then, given the data selected by the teacher, infer the beliefs of the teacher. The teacher’s selection and

'A general definition can be made for any pair of probability measures.



learner’s inference incur costs. The agents minimize the cost to achieve their goals. Communication is
successful when the learner’s belief, given the teacher’s data, is moved to the target distribution. The
connection between EOT and cooperative communication is established by modeling each process,
teaching and learning, as a classical EOT problem.

Framework. Let H be a hypothesis space and D be a data space. Denote the common ground
between agents: the shared priors on # and D by Py(#) and Py(D), the shared initial matrix over D
and H by M of size |D| x |H|. In general, up to normalization, M is simply a non-negative matrix
which also specifies the consistency between data and hypotheses E]

In cooperative communication, a teacher’s goal is to minimize the cost of transforming the shared
prior over hypotheses Py(H) into shared prior over data points Py(D). We define the teacher’s cost
matrix CT = (Cg;)ID\X\H\ as:

CZ‘ = —log Pr,(h;|d;) + St(d;), 3)

where Pr,(h;|d;) is the learner’s likelihood of inferring hypothesis h; given data d;, and St(d;) is
determined by the teacher’s prior on the data d; which can be interpreted as teacher’s expense of
selecting data d;. Thus, taking cooperation into consideration, data d is good for a teacher who
wishes to communicate A if d has a low selecting expense and the learner assigns a high probability
to h after updating with d. Symmetrically, a learner’s cost matrix C'* = (C{})‘m || 18 defined as

CZ-L]- = —log Pr(d;|h;) + Sr(h;), where Pr(d;|h;) is the teachers’s likelihood of choosing data d;
given hypothesis h; and Sy, (h;) is determined by the learner’s prior on the hypothesis h;.

Optimal Planning. A reaching plan is a joint distribution T' = (T;;) over D and H, where each
element T;; = Pr(d;, h;) represents the probability of the teacher selecting d; to convey h;. Similarly
a learning plan is a joint distribution L = (L;;), where L;; = Pr(d;, h;) represents the probability
of the learner inferring h; given d;. Column normalization of 7" and row normalization of L are
called conditional communication plans.

Under our framework, the optimal cooperative communication plans that minimize agents’ costs on
transmitting between H and D are precisely the Sinkhorn plans as in Equation (T)). Hence, as a direct
application of Proposition|l} we have

Proposition 2. Optimal cooperative communication plans, T and L™V, that achieve Sinkhorn
plans of EOT with given \, can be obtained through Sinkhorn Scaling on matrices determined by the
common ground between agents: priors Py(H), Po(D) and shared consistency matrix M.

Construction of optimal plans 7*) and L™ using Prop. is illustrated as follows. Assume zero
expense of data selection and uniform priors on both D and H. A natural estimation of the learner
is a naive learner whose learning plan is fully based on the shared M. In this case, the teacher may
approximate the learner’s likelihood matrix by Lg, the row normalization of M. Hence the teacher’s
cost matrix defined in Eq. has the form C* = —log Lg. As in Eq., the optimal teaching plan
with regularizer \, denoted by 7'), can be obtained by applying Sinkhorn iterations on T, i.e.

7O = SK(TWN) = SK(e") = SK (eMoglo) = SK(LYY), )
where L([)’\] represents the matrix obtained from Ly by raising each element to the power of \.
Symmetrically, the optimal learning plan with regularizer A, denoted by L(*), can be reached by
Sinkhorn iteration on LN = ¢~ C" — TO[/\], where Tj is the column normalization of M. Parameter
A controls the agents’ greediness towards deterministic plans, which is investigated in Section[3.3]

2.3 Unifying existing theories of cooperative communication

A wide range of existing cooperative models in pragmatic reasoning, social cognitive development
and robotics can be unified as approximate inference for EOT. The major variations among these
models are: depth of Sinkhorn scaling and choice of parameter \. See a brief summary in Table([]

Fully recursive Bayesian reasoning. The first class is based on the classic Theory of Mind recursion,
including pedagogical reasoning [Shafto and Goodman, 2008b, Shafto et al., 2012} [2014]] and

’Data, d;, are consistent with a hypothesis, h;, when M;; > 0.



Table 1: Unifying existing cooperative models by EOT framework

Example of Existing Models Depth of SK choice of A Stochasticity
Pedagogical Reasoning [Shafto et al., [2014]] until converge fit per data probabilistic
Cooperative Inference [Yang et al.,|2018]| until converge 1 probabilistic
Bayesian Teaching [Eaves Jr et al., 2016] 1 step 1 probabilistic
Machine Teaching [Zhu| [2013]] 1 step N.A. (argmax) deterministic
Naive Utility Calculus [Jara-Ettinger et al., 2016] 1 step 1 probabilistic
RSA [|Goodman and Frank}2016] 1-2 steps fit per data probabilistic
Value Alignment [Fisac et al.;,|2017|] 1 step fit per data deterministic

cooperative inference [Yang et al., [2018], Wang et al., 2019]. These models use fully Bayesian
inference to compute the exact Sinkhorn plans (i.e. Sinkhorn scaling until convergence) for the case
of A = 1. In more detail, these models emphasize that agents’ optimal conditional communication
plans, 7* = Pr(D|H) and L* = P (H|D) should satisfy the following system of interrelated
equations, each of which is in form of the Bayes’s rule:

Pr(d|h) Pr,(h)
Pr(d)

Pr(h|d) Pr,(d)

Pr(d|h) = (&)

where Pr(d) and Pr(h) are the normalizing constants. The main theorem in|Yang et al.[[2018]] shows
that assuming P, (h) and Pr,(d) are uniform priors over 7 and D, Eq.(3) can be solved using SK
iteration on the shared matrix M. Hence coincide with Sinkhorn plans of EOT. Moreover, benefiting
directly from the EOT framework, Prop. [2]implies and extends this result to arbitrary priors:

Proposition 3. Optimal conditional communication plans, T* and L*, of a cooperative inference
problem with arbitrary priors, can be obtained through Sinkhorn scaling. In particular, as a direct
consequence, cooperative inference is a special case of the unifying EOT framework with A\ = 1.

One-step approximate inference. The second class is based on human behaviors such as Naive
Utility Calculus [Jara-Ettinger et al., 2016, Jern et al., 2017]], Rational Speech Act (RSA) theory
[Goodman and Frank| 2016, [Franke and Jager, [2016] and Bayesian Teaching [Eaves Jr and Shafto|
2016} [Eaves Jr et al.,|2016]], and recent advances in robotics and machine learning, such as machine
teaching [Zhu, 2013 2015]], pedagogical interaction [Ho et al.l 2016, 2018|] and value alignment
[Hadfield-Menell et al.l 2016, [Fisac et al. 2017, Jara-Ettinger, [2019]. These models compute
one or two steps of the Sinkhorn scaling, then approximate the Sinkhorn plans of EOT either
with the resulting probability distribution or form a deterministic plan using argmax (See detailed
demonstrations in Supplementary Text Sec.[B). Greediness parameter A is fitted as hyperparameter
for different applications. The EOT framework suggests in many cases, such approximations are far
from optimal (illustrated in Fig.|l)) and are much more sensitive to agents’ estimation of the other

agent (see Sec.[3.2).

2.4 Connections to Information theory

Cooperative communication, like standard information theory, involves communication over a
channel. It is therefore interesting and important to ask whether there is a formal connection.
The EOT formulation shows that the cooperative communication is closely related to lossy data
compression in rate-distortion theory as follows.

Let X = {z;}]", be the source (input) space, Y = {y;}}_, be the receiver (output) space, Py(X)
be a fixed prior on X and Q = P(y,|x;) be a compression scheme. Denote the distortion between x;
and y; by d(x;,y;), which measures the cost of representing x; in terms of y;. The distortion of a
given compression scheme () is defined to be: Do (X,Y) = >_, ; Po(;) - P(y;lz:) - d(wi, y;) =
> P(@i,yi) - d(xi,y;). The amount of information (bits per symbol) communicated through
scheme () is measured by the mutual information, [ (X,Y) = H(X)+ H(Y) — H(X,Y), where

3 All proofs are included in Sectionof Supplementary Text (ST).



H(X),H(Y)and H(X,Y) are entropy of Py(X), Po(Y) and P(X,Y) respectively. The classical
Distortion-rate function, formulates the problem of minimizing distortion while passing at most R-bit
per input symbol of information, thus find:

Q" = arginf Dg(X,Y) subject to I(X,Y) < R. (6)
Q

EOT minimizes the communication distortion by replacing the hard constraint on mutual information
in Eq. (6) by a soft regularizer. Consider the case where X = H, Y = D, EOT is the problem that
among all the compression scheme (communication plans) satisfying Py(#) = c and Py(D) =,
find the optimal plan that minimizes the distortion subject to penalties on bits per symbol. The penalty
level is controlled by A. Thus, in the notation of rate-distortion theory, Eq. (T) of EOT is equivalent

to: PN = arginf Dp(#H,D) + lI('H,D).
PeU(r,c) A

3 Analyzing models of cooperative communication

3.1 EOT is statistically and information theoretically optimal

Optimal cooperative plans of EOT solves entropy minimization with marginal constraints through
Sinkhorn scaling. Let M be a joint distribution matrix over D and H. Denote the set of all possible
joint distribution with marginals r = Py(D) and ¢ = Py(#) by U(r, ¢). Consider the question of
finding the approximation matrix P* of M in U(r, c) that minimizes its relative entropy with M:

@)

P* = arginf Dy (P||M), where Dk (P||M) = Pj;In Y
0,J

PeU(r,c) ij
The (r, c)-SK scaling of M converges to P* if the limit exists [Csiszar, |1989| Franklin and Lorenz,
1989]]. We therefore directly interpret cooperative communication under EOT as minimum discrimi-

nation information for pairs of interacting agents.

Sinkhorn scaling also arises naturally as a maximum likelihood estimation. Let P be the empirical
distribution of i.i.d. samples from a true underlying distribution, which belongs to a model family.
Then the log likelihood of this sample set over a distribution M in the model family is given by

ny, j 13i ; log M;;, where n is the sample size. Comparing with Eq. (7),, it is clear that maximizing the

log likelihood (so the likelihood) over a given family of M is equivalent to minimizing Dy, (P||M).
When the model is in the exponential family, the maximum likelihood estimation of M can be
obtained through SK scaling with empirical marginals [Darroch and Ratcliffl [1972} (Csiszar, |1989].
Therefore, EOT planning can also be viewed as the maximum likelihood belief transmission plan.

3.2 Robustness to violations of common ground

In EOT, for a fixed regularizer ), optimal plans are obtained through SK scaling on a matrix
determined by M w.r.t. r = Py(D) and ¢ = Py(#H). This can be viewed as a map @, from (M, r, c)
to the SK limit, where the Common ground — priors Py(D) & Py(H), and mappings from beliefs
to data, M — represent the assumption that cooperating agents share knowledge of each others’
beliefs. However, it is implausible (even impossible) for any two agents to have exactly the common
ground. We now investigate differentiability of EOT. This ensures robustness of the inference where
agents’ beliefs and mappings from beliefs to data differ, which shows the viability of cooperative
communication in practice.

Let M**, r*> and c®® be vectors obtained by varying elements of M, r and c at most by ¢;, where
€; > 0 quantifies the amount of perturbation. We show that:

Proposition 4. For any non-negative shared M and positive marginals v and c, if (M, r2, c)
and ®(M, r, c) exist, then D(M v c3) — &(M,r,c) as Mt — M,r2 = r,c= — c

Continuity of ® implies that small perturbations on M, r, c, yield close solutions for optional plans.
Thus cooperative communicative plans are robust to deviations from common ground between agents
(see demonstrations in Sec. . 1). In particular, if agents empirically estimate relevant aspects of
common ground, derived cooperative plans will stabilize as the sample size increases.



Moreover, deviations in common ground are repairable in EOT without recomputing communication
plans. When restricted to positive distribution M, Luise et al.[[2018]] shows that (M, r, c) is in fact
smooth on r and c. We further prove that ® is also smooth on M. Therefore, the following holds:

Theorem 5. E]Let M be the set of positive matrices of shape |D| x |H|, representing all possible
shared distributions, let AIEI and AIJ;-H be the set of all positive prior distributions over D and H,

respectively. Then ® : M X AI—;?\ X Aﬁ;_” — M is C.

Theorem [5] guarantees that the optimal plans obtained through SK scaling are infinitely differentiable.
Gradient descent can be carried out via Automatic Differentiation as in|Genevay et al.| [2017]]. We
explicitly derive the gradient of ® with respect to both marginals and M analytically in Sec [E.2]of
Supp.Text. Based on the derived closed form, we demonstrate that EOT agents can reconstruct a better
cooperative plan using linear approximation once they realized the deviation from the previously
assumed common ground in Sec. In human communication, common ground is often inferred as
part of the communication process [Luise et al.|[2018|Hawkins et al.| 2018]]. Thus, the differentiability
and the gradient formula significantly increase the flexibility and practicality of the EOT framework.

3.3 Instability under greedy data selection

We now explore the effect of A on EOT plans. To simplify notation, we focus on square matrices,
similar analysis applies for rectangular matrices using machinery developed in|Wang et al.|[2019].
Definition 6. Let A = (A;;) be an n x n square matrix and .S,, be the set of all permutations of
{1,2,...,n}. Given o € S,,, the set D% of n-elements {A1601)s -+ A o(n)} is called a diagonal
of A determined by . If Ay () > 0 for all k, we say that D? is positive. Df is called a leading
diagonal if the product d? = I} A; 5(4), is the largest among all diagonals of A.

Definition 7. Let A, B be two n x n square matrices and DZ and Dg‘, be two diagonals of A
determined by permutations o, o’. Denote the products of elements on D2, D;‘, by d2, df,. Then
CR(D2,D%,) = d2/d? is called the cross-product ratio between D7 and DZ,. Further, let the
diagonals in B determined by the same o and o’ be DZ and DZ,. We say A is cross-ratio equivalent
to B, if d2 # 0 <= dZ # 0 and CR(D24, D4) = CR(DEZ, DB) holds for any o, o’

Given M, consider the EOT problem for the teacher (similarly, for the learner). Recall that, as in

Eq. (@), the optimal teaching plan T™) is the limit of SK iteration of L([f‘]. Note that the limits of
SK scaling on LB’\] and M (obtained from L or M by raising each element to power of \) are
the same as they are cross-ratio equivalent (shown in [Wang et al|[2019]]). Therefore to study the

dynamics of \ regularized EOT solutions, we may focus on MY and its Sinkhorn limit MV,

One extreme is when A gets closer to zero. If A — 0, M, i[;\} = (M;;)* — 1 for any nonzero element

of M. Thus M converges to a matrix filled with ones on the nonzero entries of M, and M ™)
converges to matrix 77 ¢ if M has no vanishing entries. Hence MM reaches low communicative
effectiveness as A goes to zero (demonstrated in Sec. .2 with Fig. [T[b-c)).

The other extreme is when A gets closer to infinity. In this case, assuming uniform priors, we show:

Proposition 8. M) concentrates around the leading diagonals of M as \ — .

As A\ — oo, the number of non-zero elements in M *) decreases. In the case when M has only one
leading diagonal, as A — oo, M) converges to a diagonal matrix (up to permutation). Thus, it
forms a bijection between D and H, and achieves the highest effectiveness.

The value of \ causes variations on cross-ratios of M (’\), which affects the model’s sensitivity
to violations of common ground. Since M and M) are cross-ratio equivalent, M) has the
same cross-ratio as the shared M only when A\ = 1. M #1) either exaggerates or suppresses the
cross-product ratios of M, depending on whether A is greater or less than 1. Hence, deviations on
common ground are amplified by large A\, which reduces the communication effectiveness. Indeed,
when deviation causes two agents have different leading diagonals in their estimations of M, their
optimal plans will be completely mismatched as A — oo (See detail examples in Supp. Text Sec. [C).

*General result on non-negative shared distributions is stated and proved in Supp.Text Section
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Figure 1: a. The Cooperative Index (CI) of Sinkhorn planning (SK) and its one step approximation
(onestep) as total perturbation increases. b-c. The average CI of Sinkhorn planning for 50 x 50
matrices as A varies. d-f. »r = 0.03, ¢ = 1, dimension of M varies as shown in x-axis. d. The
probability that CI of SK planning is higher than its one step approximation. e. The average
communication effectiveness for SK and onestep with and without perturbations denoted by SK-p,
onestep-p, SK-np, onestep-np accordingly. f. The average difference of the teacher’s (and learner’s)
SK plans (and one-step approx.) before and after perturbations, measured by the L'-distance.

4 Experiments

We will now further illustrate properties of EOT through simulations. Effectiveness of communication
will be measured via the Cooperative Index (CI) CI(T, L) := ﬁ Zij L;;T;; [Yang et al., 2018].
It ranges between 0 and 1 and measures the communication effectiveness of a pair of plans /" and L.
Intuitively, CI(7T', L) quantifies the effectiveness as the average probability that a hypothesis can be
correctly inferred by a learner given the teacher’s selection of data.

4.1 Perturbation on common ground

In this section, we stimulate perturbations by Monte Carlo method to compare the robustness of the
Sinkhorn planning and its one-step approximation.

Basic Set-Up. Assume a uniform prior on D and A = 1. Shared matrix M and prior over H are
sampled from symmetric Dirichlet distribution with hyperparameter o = 0.1|ﬂ Sample size is 10°
per plotted point. The scale of perturbations are controlled by two parameters: r, the percentage
of elements to be perturbed; €, the magnitude of the perturbation on each element. For example,
ar = 0.03, e = 0.5 perturbation on M represents that 3% randomly selected elements of M will
be increased by 0.5 * | M |, where | M|, denotes the largest element of M. The communication
effectiveness under perturbation is measured when one agent’s common ground has varied. Results
on square matrices with perturbations on shared M are presented here. Simulations on priors and
rectangular matrices exhibit similar behaviors, see plots in Supp. Text Sec.

Scaling Perturbation Size. We investigate effectiveness under increasing perturbation. Matri-
ces of size 100 x 100 are sampled as described above. Fixing » = 0.03, € is altered as in
[0,0.2,0.4,0.6,0.8,1]. As shown in Fig. , effectiveness drops for the one-step approximation
comparing to Sinkhorn plans when the magnitude of perturbation increases, illustrating robustness of
EOT to violations of common ground.

Varying Matrix Dimension. Fig.[Td shows the effects of matrix dimension. We fix r = 0.03, ¢ = 1
and consider the dimension of M in [25, 50, 100, 200, 400]. The probability that SK plans has higher

>The hyperparameter is set to be 0.1 as sparse matrices are in general more sensitive to perturbations.



CI than its one-step approximation increases with the dimension of M. Moreover, the advantage of
Sinkhorn planning is an effect that is increased in the presence of perturbations.

Fig.[Tk. plots the average communication effectiveness for SK Plans and its one-step approximation
with and without perturbations. Since the communication problem naturally gets harder as the
dimension of M increases, we use the ratio between CI and the dimensional baseline to measure the
communication effectiveness, in stead of CI. E] Fig.|lg. suggests that communication effectiveness is
more stable for SK plans under perturbations. Fig.[1f. plots the average difference in L!-distance
of the teaching (and learning) plan before and after perturbations. For instance, given M, denote
the matrix after perturbation by M,. Let TSk, T, Ifk be the teacher’s SK plans obtained from EOT on

M and M, respectively. Their difference is measured as 7% — T;k |z, Fig. . shows that under
perturbation, the deviations on SK plans are considerably smaller than its one-step approximations.

4.2 Greedy selection of data

We investigate the effect of greedy parameter A on EOT when deviation occurs on agents’ common
ground. Fig. [Ip-c plot the average CI of Sinkhorn planning for 50 x 50 matrices as X varies
[0.1,0.5,1, 5,10, 20, 40]. Fixing r = 0.3, e = 0.3, the hyperparameter « of Dirichlet distribution
for sampling M is set to be 10 in Fig. , and 1 in Fig. . (a for Py(H) is set to be 10 in both).
The gap between the two curves expands in both Fig.[Ip-c, which illustrates that the robustness of
EOT decreases as A grows. As shown in Proposition agents’ optimal plan mainly concentrated
on leading diagonals of their initial matrices. When deviation on M causes mismatching leading
diagonals for agents, A > 1 exaggerates the difference, hence the drop on the CI. Notice that the
rate of reduction of CI is more severe in[Ib than[lk as A increases. This is consistent with the model
prediction (Section [3.3) that under the same scale of perturbations, agents’ plans are more likely
to have variation on leading diagonals when element of the initial matrices are closer to evenly
distributed.
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Figure 2: Mean and stdev of the L;-distance between SK plan M}S)‘)

of M), and its three estimations:
original SK plan M (blue), linear approximation M." (orange), and one step approximation

Mlo‘) (green).

4.3 Linear approximation

The gradient guaranteed by Theorem [5]allows online correction of deviations in common ground
via linear approximation. Let M, be a deviation of M obtained by perturbing elements of M. To

estimate the SK plan (M,S)‘)) of M, we benchmark this linear approximation Mé)‘) =M™ 4+
Vie® - d(r,c) + Var® - 6 M against the original SK plan M®), and the one-step approximation
M.fA) of Mé’\) We use L;-distance from each approximation to M,EA) to measure the error.

Fig.|2{shows the Monte-Carlo result of 10° samples. A = 1, r and c are uniform, and fix the number
of rows to be 50. Matrices, which differ in the number of columns (labeled on x-axes, varying from 2

The dimensional baseline for a N x N matrix M is set to be 1 /N, which is the probability that the learner
infers the hypothesis teacher has in mind without communication.

"Thus, M I(A) is obtained from M, by one step Sinkhorn scaling.
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Figure 3: Green and blue bars plot the models’ predictions regarding the learner’s inference about the
actual number of red apple based on the teacher’s statement. The orange bars plot the empirical mean
wager by the learner on each word state from|Goodman and Stuhlmiiller|[2013].

to 200), are sampled so that each column follows Dirichlet distribution with parameter o = 1. The
perturbation on marginals are taken by adding 10% to the sum of the first row while subtracting the
same value from the sum of the second row (Fig.[2la). The perturbation on matrices is the same as
in Sec. .| with = 0.03 and € = 0.5 (Fig.[2]b). Linear approximation shows a modest effect for
perturbations on the marginals, but is remarkably effective for perturbations on the matrix M.

4.4 An application to human data

We explore the following scenario from (Goodman and Stuhlmiiller| [2013]]. Three apples, which
could be red or green, are on a table. The teacher looks at the table and make a statement quantifying
the number of red apples such as "Some of the apples are red". The learner then infers the number
of red apples based on the teacher’s statement. The hypothesis set H = {0°,°1,2°,‘3’} represents
the true number of red apples, and the data space D = {none, some, all} contains all the relevant

quantifier words the teacher may choose. Hence, the shared (unnormalized) consistency matrix for
‘0’ ‘1 2’ 3

o =0

none 1 0 0
both agents is M = some ( o }) Both agents may estimate each other’s likelihood

all
matrix by normalizing M. The data were fit with a binomial prior distribution. Parameters for the
one-step approximation as [Goodman and Stuhlmiiller, 2013|] were base rate 0.62, and A = 3.4 and
for EOT were base rate 0.82 (any choice of A). Fig.[3(a) plots both models’ predictions (i.e. learning
plan) and the mean wager on the actual number of red apple by experimental participants, based on
the teacher’s statement[°| In this case, both models successfully capture that ‘some’ implies ‘not all’.

We further compare EOT and its one step approximation on interpretation of numerals. The setting is
the same as above, except after looking at the table, the teacher makes a numeric statement such as
"Two of the apples are red". Fig.[3(b-d) shows simulation results with priors over 7 and D be uniform
and A\ = 1. Notice that the EOT plan is in fact the identity matrix I,. It is both more consistent with
the human behavior experiments, and achieves the highest possible communicate effectiveness as
CI(14, I4) = 1, whereas the one-step approximation only has CI = 0.5.

5 Conclusions

Formalizing cooperative communication as Entropy regularized Optimal Transport, we show that
cooperative communication is provably effective in terms of maximizing likelihood of belief trans-
mission and is robust and adaptable to violations of common ground, with probabilistic reasoning
optimizing the trade-off between effective belief transmission and robustness to deviations in common
ground. Thus, claims regarding cooperative communication of beliefs between quite different agents,
such as parents and children, speakers and listeners, teachers and learners, across cultures, or even
between humans and machines, are mathematically well-founded. Our approach, based on unifying
probabilistic and information theoretic models under Entropy regularized Optimal Transport, may
lead to new formal foundations for theories of human-human and human-machine cooperation.

$Human data are measured based on Fig.2 of (Goodman and Stuhlmiiller [2013].



Broader Impact

The theoretical approach introduced in this paper unifies models that have been proposed in the
literatures on human language, education, and human-robot interaction—domains with significant
societal implications. Our analysis highlights conditions under which they may be robust to violations
of assumptions, and through mathematical analysis of previously algorithmic proposals, provides
a means by which we may understand and improve the robustness of these models. This provides
a mathematical framework within which we may understand their safe and responsible use in
applications. More generally, the field of machine learning has not traditionally considered possibility
that humans are a collaborative partner both in generating the datasets of interest and in using model’s
predictions. The theory advanced herein is explicitly models this collaboration toward the goal
of more effective human-machine teaming. Thus, while the contributions of the current work are
primarily theoretical, there are potential positive implications in areas of society interest.
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