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A Properties of Optimal Transport and Sinkhorn scaling

Example A.1. An application of Sinkhorn Scaling and Proposition 1.

Let r = c = ( 3
8 ,

5
8 ), and the cost matrix be C =

(
log 1 1

3
log 2

2
3
log 2 log 1

)
. For λ = 3, we may obtain P (3) by

applying SK scaling on P [3] =

(
e−3 log 1 e

−3· 1
3

log 2

e
−3· 2

3
log 2

e−3 log 1

)
=
(

1 1/2
1/4 1

)
, which proceeds as follows:

(a) row normalizing P [3] such that each row sum equals 1, giving
(
2/3 1/3
1/5 4/5

)
; (b) multiplying the first

row by 3/8 and second row by 5/8 giving L0 =
(
1/4 1/8
1/8 1/2

)
. Then similarly, column normalization

of L0 with respect to c outputs T1 =
(
1/4 1/8
1/8 1/2

)
. As L0 = T1, the SK scaling has converged with

P (3) = T1. In general, multiple iterations may be required to reach the limit.

We now summarize some of important features about OT and SK.

Numerous results on SK iteration have been proved. For instance, assuming uniform marginal
distributions, SK iteration of a square M converges if and only if M has at least one positive diagonal
[Sinkhorn and Knopp, 1967] and the limit must be a doubly stochastic matrix, which can be written
as a convex combination of permutation matrices [Dufossé and Uçar, 2016]. SK iteration can be
viewed as a continuous map [Sinkhorn, 1972]. For positive matrices, we illustrate, this map is in fact
smooth, in particular differentiable. This allows to show that the unifying OT framework is robust
to various perturbations on the common grounds and to derive precise gradient formula to recover
(linear approximate) optimal communication plans (Section 3.2).

After Sinkhorn and Knopp [1967], the convergence results regarding Sinkhorn scaling has further
developed in various fields (see survey [Idel, 2016]). SK converges at a speed that is several orders of
magnitude faster than other transport solvers [Cuturi, 2013, Allen-Zhu et al., 2017]. Sinkhorn plans
have been extensively applied in machine learning algorithms, for example in barycenter estimation
[Altschuler et al., 2017], supervised learning [Frogner et al., 2015], domain adaptation [Courty et al.,
2017] and training GANs [Arjovsky et al., 2017].

There is a strong geometric intuition that underlies SK scaling via the cross-product ratio (Definition 7).
Matrices converge to the same limit under SK scaling if and only if they are cross-ratio equivalent
[Wang et al., 2019]. The spaceK(M) formed by all matrices with the same cross-product ratios as M
is a special manifold Fienberg [1968]. SK scaling moves M along a path in K to M∗ — the unique
intersection between K and the manifold determined by the linear marginal conditions [Fienberg
et al., 1970].
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Preservation of cross-product ratios over SK scaling implies that Sinkhorn Plans of EOT are invariant
under cost matrices constructed for agents with different depths of SK. For instance in the illustration
of Proposition 2 of the main text, instead of being naive, a learner could also be pragmatic who would
reason about his estimation of the teacher’s reasoning and interpret data accordingly using Bayes’
rule, i.e. proportional to elements of L1 which is row normalization of T0. Denote the teacher’s cost
matrices based on L0 and L1 by CT0 and CT1 respectively. Because both L0 and L1 are derived from
M by applying Sinkhorn iteration, they are cross-ratio equivalent. So they have the same SK limit,
i.e. Sinkhorn plans with respect to both CT0 and CT1 are the same. Thus, even though the teacher’s
estimation of the learner was not accurate, the teacher’s plan is still optimal. Indeed, optimal teaching
plans are equivalent for any learning matrix that is cross-ratio equivalent to the common ground M .

Strengthened by the rich theory of OT, our framework can be used to solve much broader questions.
For example, general existence of OT planning between two arbitrary probability measures over any
probability spaces are well-studied [Villani, 2008]. This provides us machinery to study cooperative
communications between agents even when H and D are continuous spaces. Further existence of
optimal communicative plans are guaranteed as general existence of optimal couplings. Moreover,
OT plannings enjoy many other desirable features such as: the optimality passes to subsets, convexity
of OT distance, which enables broader perspectives on approximate inference and computation of
optimal plans.

B Unifying existing theories of cooperative communication

Existing models of cooperative communication can be unified as approximate inference for EOT. In
this section, we demonstrate this point by expressing representatives of three broad classes of models
as EOT.

B.1 Full recursive reasoning is EOT.

Cooperative models that build on the classic Theory of Mind recursion are methods utilizing fully
Bayesian inference. For instance, cooperative inference [Yang et al., 2018, Wang et al., 2019]
and pedagogical reasoning [Shafto and Goodman, 2008, Shafto et al., 2014, 2012]. To simplify
exposition, we will focus on the theory of cooperative inference and illustrate how Bayesian inference
models fit into our unifying EOT framework.

The core of cooperative inference between two agents is that the teacher’s selection of data depends
on what the learner is likely to infer and vice versa. Let PL0

(h) be the learner’s prior of hypothesis
h ∈ H, PT0

(d) be the teacher’s prior of selecting data d ∈ D, PT (d|h) be the teacher’s posterior
of selecting d to convey h and PL(h|d) be the learner’s posterior for h given d. Cooperative
inference emphasizes that agents’ optimal conditional communication plans, T ? = PT (D|H) and
L? = PL(H|D) should satisfy the following system of interrelated equations for any d ∈ D and
h ∈ H, where PL(d) and PT(h) are the normalizing constants:

PL(h|d) =
PT(d|h)PL0

(h)

PL(d)
PT(d|h) =

PL(h|d)PT0
(d)

PT(h)
(1)

Results in Yang et al. [2018] indicates that assuming uniform priors onD andH, Eq.(1) can be solved
using Sinkhorn iteration on the joint distribution M . More generally, we show:

Proposition 3. Optimal conditional communication plans, T ? and L?, of a cooperative inference
problem with arbitrary priors, can be obtained through Sinkhorn scaling. In particular, as a direct
consequence, cooperative inference is a special case of the unifying EOT framework with λ = 1.

B.2 One-step approximate inference

Models in social cognitive development and pragmatic reasoning, including Naive Utility Calculus
[Jara-Ettinger et al., 2016, Jern et al., 2017], Rational Speech Act (RSA) theory [Goodman and
Stuhlmüller, 2013, Goodman and Frank, 2016, Franke and Jäger, 2016] and Bayesian Teaching
[Eaves Jr and Shafto, 2016, Eaves Jr et al., 2016] and their extensions [Jara-Ettinger et al., 2015b,
Baker et al., 2017, Jara-Ettinger et al., 2015a, Liu et al., 2017, Hamlin et al., 2013, Jara-Ettinger
et al., 2015c, Bridgers et al., 2016, Gweon and Asaba, 2018, Gweon et al., 2014, Jara-Ettinger et al.,
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2017, Cohn-Gordon et al., 2018, Ong et al., 2015, 2019] approximate cooperation as a single step of
recursion.

For instance, RSA models the communication between a speaker and a listener, formalizing coopera-
tion that underpins pragmatic language. A pragmatic speaker selects an utterance optimally to inform
a naive listener about a world state. Whereas a pragmatic listener interprets an utterance rationally
and infers the state using one step Bayesian inference. This represents a communicative process
where a speaker-listener pair can be viewed as a teacher-learner pair with world states-utterances
being hypotheses-data points, respectively.

RSA distinguishes among three levels of inference: a naive listener, a pragmatic speaker and
a pragmatic listener [Goodman and Stuhlmüller, 2013]. A naive listener interprets an utterance
according to its literal meaning. That is, given a shared matrix M , the naive listener’s probability of
selecting hi given dj is the ij-th element of L0, which is obtained by row normalization of M .

A pragmatic speaker selects an utterance to convey the state such that maximizes utility. In particular,
they pick di to convey hj by soft-max optimizing expected utility,

PT(di|hj) ∝ eαU(di;hj), (2)

where utility is given by U(di;hj) = logL0(hj |di)−S(di), which minimizes the surprisal of a naive
listener when inferring hj given di with an utterance cost S(di). This formulation is the same as one
step of SK iteration in EOT framework (see Eq.(2) and Eq.(3)) where CT = −U(d;h), λ = −α.

Next, a pragmatic listener reasons about the pragmatic speaker and infers the hypothesis using Bayes
rule,

PL(hj |di) ∝ PT (di|hj)PL(hj), (3)

Here PT(di|hj) represents the listener’s reasoning on the speaker’s data selection and PL(hj) is the
learner’s prior. This is again one step recursion of EOT framework of λ = 1.

As described above, teaching and learning plans in RSA are one-step approximations of the Sinkhorn
plans. EOT framework suggests that in many cases, such approximations are far from optimal. For ex-
ample, world states are often referred at many levels of specificity by human agents [Graf et al., 2016,
Hawkins et al., 2018], which yield a upper triangular joint distribution matrix. EOT would output a
diagonal matrix as optimal plan which achieves the highest communication effectiveness, whereas
cooperative index of one step approximation is much lower. Furthermore, one-step approximation
plans are much more sensitive to agents’ estimation of the other agent. For instance, a pragmatic
speaker’s teaching plan is tailored for a naive listener, in contrast the optimal plan obtained through
fully recursion is stable for any listener derived from the same common ground.

B.3 Single-step argmax approximation

Many recent advances in robotics involve artificial agents that implement human-like inverse planning
[Fisac et al., 2017, Jara-Ettinger, 2019], such as simple or structured desire inference [Baker et al.,
2009, Velez-Ginorio et al., 2017, Reddy et al., 2018], path and motion planning Kim and Pineau
[2016], Dragan et al. [2013], pedagogical interaction [Ho et al., 2016, 2018] and value alignment
Hadfield-Menell et al. [2016], Milli et al. [2017]. In cooperative inverse reinforcement learning,
instead of selecting acts probabilistically, the maximum probability action is selected. For example,
[Fisac et al., 2017] introduces Pragmatic-Pedagogic Value Alignment, a framework that is grounded
in empirically validated cognitive models related to pedagogical teaching and pragmatic learning.

Pragmatic-pedagogic value alignment formalizes the cooperation between a human and a robot
who perform collaboratively with the goal of achieving the best possible outcome according to an
objective. The true objective however is only known to the human. The human performs pedagogical
actions to teach the true objective to the robot. After observing human’s action, the robot, who is
pragmatic, updates his beliefs and perform an action that maximizes expected utility. The human,
observing this action, can then update their beliefs about the robot’s current beliefs and choose a
new pedagogic action. Denote actions by d and objectives by h. We can see that when the human
performs the action they act as a teacher and when robot is performing the action it is vice versa.

In particular, the pedagogic human selects an action di to teach the objective hj according to Eq. (2),
where U is the utility that captures human’s best expected outcome. As described in Section B.2, this
is equivalent to a single step recursion in the EOT framework.
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Denote the robot’s prior belief distribution on the objectives by PR(hj). The robot interprets the
human’s action di rationally and updates his beliefs about the true objective using Bayes rule as
Eq. (3). Then acting as a teacher, the robot chooses an action that maximizes the human’s expected
utility using argmax function:

PR(di) = arg max
dR

∑
dH ,hj

U(dR, dH ;h) · PR(hj)

where, dR denotes the robot’s actions and dH denotes the human’s actions. Unlike in human
communication [Eaves Jr and Shafto, 2016, Eaves Jr et al., 2016] where the plans are chosen
proportionally to a probability distribution, here the robot chooses a deterministic action using argmax
function.

As described above, inverse planning in robotics is modeled by computing a single step of Sinkhorn
iteration and selecting the action that maximizes the outcome. Unlike full recursive reasoning is EOT,
which tends to select the leading diagonal of the common ground M as λ → ∞ (Proposition 8),
inverse planning methords like pragmatic-pedagogic value alignment selects the maximal element
in each column of M , which is not even guaranteed to form a plan to distinguish every hypothesis.
Hence a big concern of such argmax method is that for large hypothesis spaces, multiple hypotheses
may reach argmax on the same data which lead to low communication efficiency. Further, continuity is
generally lost for deterministic methods as argmax, which reduces the models’ robustness comparing
to EOT.

In summary, EOT framework unifies existing models of cooperative communication in social cognitive
development, pragmatic reasoning and robotics with cooperative agents for specific missions and
inference with different Sinkhorn iteration depths. This unification not only allows one to draw strong
comparison of the relative merits and predictions of different theories, but also establish a potential
toolbox for one to design assignment tailored models, which could achieve the best balance between
efficiency and accuracy.

C Further discussion on Sensitivity for large λ

Sensitivity to perturbations is a concern as λ → ∞. Figure 1 demonstrates an example where a
slight variation on the initial matrices M1 and M2 can result a huge difference on M (λ)

1 and M (λ)
2

as λ approaches infinity. The figure plots the Sinkhorn plans derived from M
(λ)
i with the starting

matrices M1, M2 differing from M only by 2% on their l∞-distance. However, in this particular
case, the change makes a huge difference: M has two leading diagonals, while the perturbed M1 and
M2 of M enhanced one for each, making each M1 and M2 has only one leading diagonal. When λ
approaches zero, all products of diagonals tends to be the same, thus the curves (red for M , green for
M1 and blue for M2) converges to a common limit point, the uniform matrix. But as λ increases, the
leading diagonals overwhelm other diagonals, and results in a fixed divergence on the limit when
λ → ∞. Therefore, in this case, no matter how slight the changes are, as long as they modify the
set of leading diagonals, there will be a fixed difference on the limits when λ→∞ according to the
leading diagonals. Thus, M (∞) is no longer continuous on the initial matrix M .

In particular, as λ increases, the cooperative index, CI(M
(λ)
1 ,M

(λ)
2 ), between two agents with initial

matrix M1 and M2 will be very small, even zero, if there is no overlapping positive element between
M

(λ)
1 and M (λ)

2 whereas CI(M
(1)
1 ,M

(1)
2 ) is bounded from below by the reciprocal of the number of

diagonals of M .

Example C.1. Assume that the teacher has the accurate M =

(
1 5 0
0 1 6
0 0 1

)
. For any λ, the optimal

teaching plan T (λ) = I3. Suppose the learner gets constant noise of size 0.1 in the position of

M31. When λ = 1, the learner’s initial matrix is L[λ=1] =

(
1 5 0
0 1 6
0.1 0 1

)
, the corresponding optimal

plan is L(λ=1) =

(
0.41 0.51 0
0 0.41 0.51

0.51 0 0.41

)
and CI(T (λ), L(1)) = 0.41. Similarly when λ = 2, we have

L[λ=2] =

(
1 25 0
0 1 36

0.01 0 1

)
, L(λ=2) =

(
0.25 0.75 0
0 0.25 0.75

0.75 0 0.25

)
and CI(T (λ), L(2)) = 0.25. Furthermore,
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Figure 1: Lost of Continuity when λ→∞

as λ → ∞, L(λ) →
(

0 1 0
0 0 1
1 0 0

)
and CI(T (λ), L(λ)) → 0 . Thus, in this case communication

efficiency is completely vanished due to deviations between the teacher and learner are exaggerated
by greedy selection of examples.

D Simulations

D.1 Perturbation on common ground and Greedy selection of data

a. b.

c. d.
Figure 2: a. The Cooperative Index (CI) of Sinkhorn plans (SK) and its one step approximation
(onestep) as total perturbation increases. b-d. r = 0.03, ε = 1, dimension of M varies as shown
in x-axis. b. The probability of SK has higher CI than onestep. c. The average communication
effectiveness for SK and onestep with and without perturbations denoted by SK-p, onestep-p, SK-np,
onestep-np accordingly. d. The average difference of the teaching (and learning) plan for SK (and
one-step approximation) before and after perturbations, measured by the L1-distance.

Rectangular matrices. Figure 2 are plots based on stimulation of matrix perturbation on rectangular
matrices. The number of columns for sampled matrices is fixed to be 50. The number of rows varies
as in [10, 25, 50, 100, 150, 200]. All the other parameters are the same as in the main text: r = 0.03,
ε = 1 and parameter of Dirichlet distribution is 0.1 for both initial matrix M and prior overH.

Prior perturbation. Figure 3 are plots based on stimulation of prior perturbation on square matrices.
In (a-c), the matrix size varies as in [25, 50, 100, 200, 400], parameter of Dirichlet distribution is 0.1
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for both initial matrix M and prior overH. We increase the perturbation rate to r = 0.07 and reduce
the magnitude to ε = 0.15 as the prior overH contains considerably fewer number of elements than
M . In (d), the matrix size is fixed to be 50× 50, parameter of Dirichlet distribution for initial matrix
is 10, for prior is 1, r = 0.3 and ε = 0.3. In general, we observer that both Sinkhorn plans and its
one step approximation are much more sensitive to matrix perturbations than prior perturbations.

a. b.

c. d.
Figure 3: a-c. r = 0.07, ε = 0.15, dimension of M varies as shown in x-axis. a.The probability
of SK has higher CI than onestep. b. The average communication efficiency for SK and onestep
with and without perturbations denoted by SK-p, onestep-p, SK-np, onestep-np accordingly. c. The
average difference of the learning plan for SK and one-step approximation before and after per-
turbations, measured by the L1-distance. d. The average CI for 50 × 50 matrices as λ varies in
[0.1, 0.5, 1, 5, 10, 20].

D.2 Linear Approximations

Figure 4 shows the result of comparisons on different approximations of Sinkhorn limits of perturbed
matrices/marginals, with different choices of Dirichlet hyperparameter α = 0.1, 10 (α = 1 in the
main paper). Other parameters (matrix size, sample size and method, and perturbation patterns) are
the same as in the main text.

E Proofs of Propositions

Proposition 3. Optimal conditional communication plans, T ? and L?, of a cooperative inference
with arbitrary priors denoted by PT0(D) and PL0(H), can be obtained through Sinkhorn scaling.
In particular, as a direct consequence, cooperative inference is a special case of the unifying EOT
framework with λ = 1.

Proof. Consider cooperative inference as in Eq. (5) of the main content, we may rewrite it as follows:

PL(h|d)PT0
(d) =

PT (d|h)PL0(h)PT0(d)

PL(d)

PT (d|h)PL0(h) =
PL(h|d)PT0

(d)PL0
(h)

PT (h)
(4)
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a. b.

c. d.
Figure 4: a. Perturb on row sums, with α = 0.1; b. Perturb on row sums, with α = 10; c. Perturb on
matrices, with α = 0.1; d. Perturb on matrices, with α = 10.

which is equivalent to

PL(h|d)PT0
(d) =

PT (d|h)PL0
(h)

PL(d)/PT0
(d)

, (5a)

PT (d|h)PL0
(h) =

PL(h|d)PT0(d)

PT (h)/PL0
(h)

. (5b)

Notice that Eq. (5) is the stable condition of Sinkhorn scaling on M̃ = PL(h|d)PT0(d) with
r = PT0(D), c = PL0(H). Hence Eq. (5) can be solved using fixed-point iteration as explored
in [Shafto et al., 2014]: for the first evaluation of the left hand side of (5a), initialize PL(h|d)
by PL0

(h|d) which is the row normalization of the shared distribution M = P (d, h) and denote
PL0

(h|d) · PT0
(d) by L̃0. Then the first evaluation of the left hand side of (5b), denoted by T̃1,

can be obtained by column normalizing L̃0 with respect to c. Next, the second evaluation of (5a)
is achieved by row normalizing of T̃1 with respect to r, and iterate this process until convergence.
This is precisely (r, c)-Sinkhorn scaling starting with L̃0. Symmetrically, (5) can also be solved by
(r, c)-Sinkhorn scaling starting with T̃0 = PT0

(d|h) · PL0
(h).

Let M be the shared distribution, r = PT0(D) be the teacher’s prior and c = PL0(H) be learner’s
prior. As shown in the above paragraph, after cooperative inference, the teacher’s conditional
communication plan T ? is the limit of (c, r)-SK scaling of L̃0 = (PL0

(hj |di)PT0
(di)). On the

other hand, under the unifying EOT framework, the optimal teaching plan T (λ=1) is the limit of
(c, r)-SK scaling of L̂0 = (PL0(hj |di)eST (di)) based on Eq. (4). When the teacher’s expense ST (di)

of selecting di is proportional to logPT0
(di), T (1) = T ?. Symmetrically, one may check the same

holds for L(1) = L?.

Proposition 8. Assuming uniform marginals, M (λ) is concentrating around the leading diagonals
of M as λ→∞.

Proof. Let Dσ, Dσ′ be two diagonals of a n× n shared matrix M and dσ, dσ′ be products of their
elements respectively (Definition 6). Further, let the diagonals in M [λ] determined by the same σ
and σ′ be D[λ]

σ and D[λ]
σ′ . Their cross product ratio is denoted by CR(D

[λ]
σ , D

[λ]
σ′ ). If Dσ′ is a leading
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diagonal and Dσ is not, then dσ/dσ′ < 1, and so CR(D
[λ]
σ , D

[λ]
σ′ ) = (dσ/dσ′)

λ → 0 as λ → ∞
(Fact A). If both Dσ and Dσ′ are leading diagonals, then dσ/dσ′ = 1, and so CR(D

[λ]
σ , D

[λ]
σ′ ) =

(dσ/dσ′)
λ → 1 as λ→∞. We now show that for any element M (λ)

st of M (λ), if the corresponding
elementMst is not on a leading diagonal ofM , thenM (λ)

st → 0. It is clear that ifMst is not contained
in any positive diagonal of M , then M (λ)

st → 0 as off diagonal elements vanishes along Sinkhorn
iteration [Wang et al., 2019]. Now suppose that Mst is contained in a non-leading positive diagonal
determined by permutation σ. If M (λ)

st does not vanish, there exists an ε > 0 such that M (λ)
st > ε for

any λ. And so M (λ)
st must be contained in a positive diagonal of M (λ). Without loss, we may assume

M
(λ)
st is the smallest non-vanishing element that is off leading diagonals of M . Then d(λ)

σ > εn, and
so d(λ)

σ /d
(λ)
σ′ > εn because d(λ)

σ′ ≤ 1 (M (λ) is a joint distribution). This is contradiction to Fact A.
Therefore, M (λ) is concentrating around the leading diagonals of M as λ→∞.

Wang et al. [2019] explored the sensitivity of Φ to perturbation on elements in M . They showed
that Φ is continuous on M . In particular, they demonstrated that Φ is robust to any amount of
off-diagonal perturbations on M . SK scaling is also continuous on its scalars. Let rε and cε be
vectors obtained by varying elements of r and c at most by ε, where ε > 0 quantifies the amount
of perturbation. Distances between vectors or matrices are measured by l∞ norm (the maximum
element-wise difference), e.g. d(rε, r) ≤ ε. We prove that Φ is continuous on r and c, thus the
following holds:

Proposition 4. For any joint distribution M and positive marginals r and c, if Φ(M, rε, cε) and
Φ(M, r, c) exist, then Φ(M, rε, cε)→ Φ(M, r, c) as rε → r, cε → c.

Proof. Note that the continuity of Φ on the marginals is independent of the choice of a particular
λ, we will drop the λ for the rest of the proof to make the notation neater. Sinkhorn scaling of
M converges with marginal conditions (r, c) and (rε, cε) implies that

∑n
i=1 ri =

∑m
j=1 cj and∑n

i=1 r
ε
i =

∑m
j=1 c

ε
j (see Menon and Schneider [1969]). Let k =

∑n
i=1 ri and kε =

∑n
i=1 r

ε
i . We

will prove in three steps. First, we show the claim when k = kε. As k = kε, at least two elements in r
(or c) are perturbed. Without loss, we will assume that only two elements, rs and rt in r, are varied by
amount ε since the general case may be treated as compositions of such. Then for rε = (rε1, . . . , r

ε
n),

we have rεs = rs + ε, rεt = rt − ε and rεi = ri if i 6= s or t. Let Φ(M, r, c) = M∗, M∗ε be the
matrix obtained from varying the element M∗s1 and M∗t1 of M∗ by ε and −ε, i.e. M∗εs1 = M∗s1 + ε,
M∗εt1 = M∗t1 − ε and M∗εij = M∗ij otherwise. Then the statement can be verified as following:

d(Φ(M, r, c),Φ(M, rε, c))
(a)
= d(M∗,Φ(M∗, rε, c))

(b)

≤ d(M∗,Φ(M∗ε, rε, c)) + d(Φ(M∗ε, rε, c),Φ(M∗, rε, c))

(c)
= d(M∗,M∗ε) + d(Φ(M∗ε, rε, c),Φ(M∗, rε, c))

(d)
= ε+ d(Φ(M∗ε, rε, c),Φ(M∗, rε, c))

(e)→ 0 as ε→ 0

where (a) holds sinceM∗ andM are cross-ratio equivalent and must converge to the same limit under
any Sinkhorn scaling; (b) is triangle inequality; (c) holds since M∗ε is already (rε, c)-normalized,
hence Φ(M∗ε, rε, c) = M∗ε; (d) holds as d(M∗,M∗ε) = ε by construction; (e) holds because Φ is
continuous on M proved in Sinkhorn [1972].

Now we show the case where k 6= kε, but the proportion between corresponding elements in r
and rε are the same, thus rεi/ri = rεj/rj = α . Let M∗α = α ∗M∗, i.e. M∗αij = α ∗M∗ij . Since
M∗α is (rε, c) normalized and also has the same cross ratios of M , Φ(M, rε, c) = M∗α. Note that
d(M∗α,M∗) ≤ ε, so Φ(M, rε, c)→ Φ(M, r, c) as ε→ 0.

Finally for the general case, where k 6= kε and elements of r and rε are not proportional. Let
rα = (kε/k) ∗ r. Then elements of r and rα are proportional and

∑
rαi =

∑
rεi = kε. Thus based

on the previous two cases, we have d(Φ(M, r, c),Φ(M, rε, c)) ≤ d(Φ(M, r, c),Φ(M, rα, c)) +
d(Φ(M, rα, c),Φ(M, rε, c))→ 0 as ε→ 0. Hence, we are done.
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E.1 General version of Theorem 5

Enlightened by Luise et al. [2018], we can conclude a stronger version of the smoothness of Φ in the
following way:
Definition. A pattern P is a subset of {1, 2, . . . , n} × {1, 2, . . . ,m}, and a matrix M = (Mij) of
pattern P is a non-negative matrix with Mij > 0 if and only if (i, j) ∈ P. In this paper, M is not
allowed to have a vanishing row or column.
Theorem 5 (General venison of Theorem 5). Let (P,D) be a pair where P is a pattern, and where
D ⊆ (R+)n × (R+)m is the set consisting of vectors (r, c) ∈ (R+)n × (R+)m satisfying the
equivalent conditions in Theorem 2 of Rothblum and Schneider [1989], in other words, pattern P
is exact (r, c)-scalable. LetMP = (R+)P be the open cone of nonnegative matrices of pattern P,
then for a given λ ∈ (0,∞), Φ :MP ×D→MP is smooth.

Proof. We use the same strategy as the proof of Theorem 2 in Luise et al. [2018]. Throughout the
proof, let λ ∈ (0,∞) be a fixed positive real number.

First we make a decomposition of Φ. This is possible because the exact scaling conditions guarantee
the existence of diagonal matrices D1, D2 such that Φ(M, r, c) = M (λ) = D1M

[λ]D2, equivalently,
there exist a pair of vectors (α, β) ∈ Rn × Rm such that Φ(M, r, c) = diag(eλα)M [λ]diag(eλβ).
The pair (D1, D2) is unique up to a scalar d ∈ R+ with actions d : (D1, D2) 7→ (dD1, d

−1D2), thus
the pair of vectors (α, β) is unique up to a constant δ : (α, β) 7→ (α+ δ, β− δ) (plus/minus the same
number on each element of the vectors). So we may always assume that the last component of β
vanishes, i.e., βm = 0. In the following text, we use β̄ to denote the first m− 1 components of β,
and if β̄ occurs, the corresponding β is the vector by appending a 0 at the end of β̄.

Then we can decompose the map Φ into the composition of two other maps: Φ = µ ◦ (ρ,Ψ). Here
the map ρ : MP × D → MP is the regularization map (regardless of the marginal conditions)
ρ(M, (r, c)) = M [λ], the map Ψ : MP × D → Rn × Rm maps (M, r, c) to the pair of vectors
(α, β) with βm = 0 as in the above discussion (such that Φ(M, r, c) = diag(eλα)M [λ]diag(eλβ)),
and the map µ :MP×Rn×Rm →MP is such that µ(P, α, β) = diag(eλα)(P )diag(eλβ). It can
be easily seen that from the definitions the decomposition Φ = µ ◦ (ρ,Ψ) is valid.

Next, having this decomposition, we just need to show that µ, ρ and Ψ are smooth, then Φ as the
composition of smooth maps remains smooth.

(Smoothness of Ψ:) We use the same strategy as Theorem 2 in Luise et al. [2018]. Define the
Lagrangian

L(M, r, c;α, β) = −r>α− c>β +
∑

(i,j)∈P

eλαiMλ
ije

λβj

λ
.

where Ψ(M, r, c) = (α, β) optimizes L for fixed M , r, c as proved in Luise et al. [2018], Cuturi
[2013]. By smoothness of L (easy to see from expression), we may conclude that N := ∇(α,β̄)L is
Ck for any k ≥ 0 and∇(α,β̄)L(M, r, c; Ψ(M, r, c)) = 0 for any M, r, c.

Fix (M0, r0, c0;α0, β0) such that N(M0, r0, c0;α0, β0) = 0 and (β0)m = 0. Since ∇(α,β̄)N =

∇(α,β̄)⊗∇(α,β̄)L is the Hessian of the strictly convex function L, then∇(α,β̄)N(M0, r0, c0;α0, β0)

is invertible. Thus by Implicit Function Theorem, there exists a neighbourhood U of (M0, r0, c0) in
MP ×D and a map ψ : U → Rn × Rm such that

1. ψ(M0, r0, c0) = (α0, β0),

2. denote ψ(M, r, c) = (α, β), then the last component of β vanishes, βm = 0, for any
(M, r, c) ∈ U ,

3. N((M0, r0, c0;ψ(M0, r0, c0)) = 0, thus ψ(M, r, c) = Ψ(M, r, c), ∀(M, r, c) ∈ U , by
strict convexity of L and uniqueness of (α, β),

4. ψ ∈ Ck(U).

For the choice of k is arbitrary and the choice of (M, r, c) as an interior point ofMP ×D is also
arbitrary, we may see that Ψ is smooth in the interior ofMP ×D.
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In fact, we can show that (MP ×D)◦ =MP ×D, thus Ψ is smooth onMP ×D.

MP is isomorphic to an open subset (R+)
|P| of R|P|. The set D is a subset of (R+)

n+m, defined
by finitely many equations and strict inequalities given in [Rothblum and Schneider, 1989, Theorem
2], especially part (e): for every subset I ⊆ {1, 2, . . . , n} and J ⊆ {1, 2, . . . ,m}, where Mij = 0
for all (i, j) ∈ Ic × J (Ic is the complement of I), we have∑

i∈I
ri ≥

∑
j∈J

cj

with equality holds if and only if Mij = 0 for all (i, j) ∈ I × Jc. The above condition means that
the conditions are either equations or strict inequalities since the pattern P is fixed. Among all these
constraints, set of equations E define a linear subspace V (E) of Rn+m and the set of strict inequalities
N draws an open subset U(E ,N ) on V (E). And D = (R+)

n+m ∩ U(E ,N ) is open in U(E ,N ), so
(D)◦ = D.

(Smoothness of ρ:) Since λ > 0 and for each (i, j) ∈ P, Mij > 0, then ρ is smooth from the
smoothness of xλ on (0,∞).

(Smoothness of µ:) µ is the composition of exponential functions, multiplications and additions, all
of which are smooth.

Thus Φ = µ ◦ (ρ,Ψ) is smooth onMP ×D.

E.2 Calculation of gradient of Φ

We make use of the decomposition Φ = µ ◦ (ρ,Ψ) to calculate the gradient of Φ.

By implicit function theorem,

(∇rΨ)i =
∂Ψ

∂ri

= −
(
∇(α,β̄)N

)−1

(∇rN)i

= −
(
∇2

(α,β̄)L
)−1

(∇rN)i

= − 1

λ

(
diag(r) M (λ)

M (λ)
>

diag(c̄)

)−1(
(δi)n

0(m−1)

)

= − 1

λ

(
diag(r) M (λ)

M (λ)
>

diag(c̄)

)−1

col-i

In the last equality, the subscript col-i means the i-th column of the inverse matrix with 1 ≤ i ≤ n.

(∇MΨ)ij =
∂Ψ

∂Mij

= −
(
∇2

(α,β̄)L
)−1

(∇MN)ij

=
1

λ

(
diag(r) M (λ)

M (λ)
>

diag(c̄)

)−1

· λeλ(αi+βj)Mλ−1
ij

(
δi
δ̄j

)

=
M

(λ)
ij

Mij

( diag(r) M (λ)

M (λ)
>

diag(c̄)

)−1

col-i

+

(
diag(r) M (λ)

M (λ)
>

diag(c̄)

)−1

col-(n+j̄)


j̄ means that term does not exist if j = m.
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In addition, to calculate

(
diag(r) M (λ)

M (λ)
>

diag(c̄)

)−1

, we can use the formula

(
A B
C D

)−1

=

(
M −MBD−1

−D−1CM D−1 +D−1CMBD−1

)
where M = (A−BD−1C)−1.

For ρ:
∂ρ

∂Mij
= λMλ−1

ij E(i, j) (6)

with E(i, j) a n×m-matrix where E(i, j)ij = 1 and all other entries vanish. And

∇(r,c)ρ = 0. (7)

For µ:
∂µ

∂αi
(P, α, β) = λdiag(δiλα)Pdiag(λβ) = λP ∗(i,_)

where P ∗(i,_) is a matrix with i-th row the same as i-th row of P ∗ and vanishes elsewhere.

Similarly,
∂µ

∂βj
(P, α, β) = λdiag(λα)Pdiag(δjλβ) = λP ∗(_,j)

with j ≤ m− 1 but the size of P ∗(_,j) is still n×m.

And
∂µ

∂Pij
= diag(λα)E(i, j)diag(λβ) =

P ∗ij
Pij

E(i, j)

where P ∗ is the (r, c)-Sinkhorn scaling limit matrix of P .

Finally, we can combine all the results above to calculate the gradient of Φ. We will use (α, β) for Ψ,
use P for ρ when it is convenient.

(∇rΦ)t =
∂Φ

∂rt

=

n,m∑
i,j=1

∂µ

∂ρij

∂ρij
∂rt

+

n∑
i=1

∂µ

∂αi

∂αi
∂rt

+

m−1∑
j=1

∂µ

∂βj

∂βj
∂rt

= 0 +

n∑
i=1

(
∂Ψi

∂rt

)
∂µ

∂αi
+

m−1∑
j=1

(
∂Ψn+j

∂rt

)
∂µ

∂βj

If we write the column t of matrix

(
diag(r) M (λ)

M (λ)
>

diag(c̄))

)−1

in terms of
(

u
v̄

)
with u ∈ Rn and

v ∈ Rm with the last entry vm = 0 then

(∇rΦ)t = −diag (u)M (λ) −M (λ)diag (v)

To calculate∇cΦ, we choose an elegant way by using the above calculations. We rewrite the map
Φ as Φ(M, r, c) = (Φ(M∨, r∨, c∨))> with M∨ = M>, r∨ = c and c∨ = r. The transpose of M ,
after regularization, scaled to (c, r) is exactly (M (λ))>.

So we have ∇cΦ(M, r, c) = ∇r∨(Φ(M∨, r∨, c∨))>, thus

(∇cΦ(M, r, c))s = ((∇r∨Φ(M∨, r∨, c∨))s)
>

= −M (λ)diag(u)− diag(v)M (λ),
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where
(

u
v̄

)
is the s-th column of matrix

(
diag(c) M (λ)

>

M (λ) diag(r̄)

)−1

.

At last,

(∇MΦ)st =
∂Φ

∂Mst

=

n,m∑
i,j=1

∂µ

∂ρij

∂ρij
∂Mst

+

n∑
i=1

∂µ

∂αi

∂αi
∂Mst

+

m−1∑
j=1

∂µ

∂βj

∂βj
∂Mst

= λ
M

(λ)
st

Mst

(
E(s, t)− diag (u)M (λ) −M (λ)diag (v)

)
where u ∈ Rn, v ∈ Rm with the last entry vm = 0, and(

u
v̄

)
=

( diag(r) M (λ)

M (λ)
>

diag(c̄))

)−1

col-s

+

(
diag(r) M (λ)

M (λ)
>

diag(c̄))

)−1

col-(n+t̄)

 ,
for (s, t) ∈ P, and t̄ means that term does not exist if t = m.
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