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Abstract

This is the supplementary material for the paper ‘Pruning Filter in Filter’. Section
1 shows that we can use SWP to continue pruning the network pruned by other FP
(filter pruning) based methods. Section 2 shows that Filter Skeleton is better than
lasso regularization in the SWP framework. Section 3 displays more visualization
results.

1 Continual Pruning in SWP

Since SWP can achieve finer granularity than traditional filter pruning methods, we can use SWP
to continue pruning the network pruned by other methods without obvious accuracy drop. Table 1
shows the experimental results. It can be observed that SWP can help other FP-based pruning towards
higher pruning ratios.

Table 1: This table shows variant pruning methods on CIFAR-10 dataset. A+B denotes that first
prune the network with method A, then continue pruning the network with method B.

Backbone Metrics FLOPS (M) Params (M) Accuracy
Baseline 14.72 627.36 93.63

VGG16 Network Slimming [1] 1.44 272.83 93.60
Network Slimming + SWP 1.09 204.02 93.62

Baseline 20.04 797.61 93.92
VGG19 DCP[2] 10.36 398.42 93.6

DCP+SWP 3.40 253.24 93.4
Baseline 0.86 251.49 93.1

ResNet56 GBN [3] 0.30 112.77 92.89
GBN+SWP 0.24 81.26 92.67

2 Filter Skeleton v.s. Group Lasso

In the paper, we use Filter Skeleton (FS) to learn the optimal shape of each filter and prune the
unimportant stripes. However, there exist other techniques to regularize the network to make it sparse.
For example, Lasso-based regularizer [4], which directly regularizes the network weights. We offer a
comparison to Group Lasso regularizer in this section. Figure 1 shows the results. We can see under
the same number of parameters or Flops, PFF with Filter Skeleton achieves a higher performance.

1In the author list, ∗ denotes that authors contribute equally; † denotes corresponding authors. The work is
conducted while Fanxu Meng works as an internship at Tencent Youtu Lab.
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Figure 1: Comparing Filter Skeleton with Lasso regularizer on CIFAR-10. The backbone is VGG16.
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Figure 2: In the figure, We exhibit the ratio of remaining stripes of each layer. Each filter has 9 stripes
indexed from s1 to s9.

3 More Visualization Results

In this section, we show how the pruned network look like by SWP. Figure 2 shows the visualization
results of ResNet56 on CIFAR-10. It can be observed that (1) SWP has a higher pruning ratio on the
middle layers, e.g., layer 2.3 to layer 2.9. (2) The pruning ratio of each stripe is different and varies
on each layer. Table 2 shows the pruned network on ImageNet. For example, in layer1.1.conv2, there
are original 64 filters whose size is R62×3×3. After pruning, there exists 300 stripes whose size is
R62×1×1. The pruning ratio in this layer is 1− 300×62×1×1

64×62×3×3 = 0.47.

2



Table 2: This table shows the structure of pruned ResNet18 on ImageNet.

keys modules
(conv1): Strip(3,324)
(bn1): BatchNorm(64)

(layer1.0.conv1): Strip(64,102)
(layer1.0.bn1): BatchNorm(57)

(layer1.0.conv2): Strip(57,164)
(layer1.0.bn2): BatchNorm(64)

(layer1.1.conv1): Strip(64,175)
(layer1.1.bn1): BatchNorm(62)

(layer1.1.conv2): Strip(62,300)
(layer1.1.bn2): BatchNorm(64)

(layer2.0.conv1): Strip(64,475,stride=2)
(layer2.0.bn1): BatchNorm(119)

(layer2.0.conv2): Strip(119,636)
(layer2.0.bn2): BatchNorm(128)

(layer2.1.conv1): Strip(128,662)
(layer2.1.bn1): BatchNorm(128)

(layer2.1.conv2): Strip(128,648)
(layer2.1.bn2): BatchNorm(128)

(layer3.0.conv1): Strip(128,995,stride=2)
(layer3.0.bn1): BatchNorm(252)

(layer3.0.conv2): Strip(252,1502)
(layer3.0.bn2): BatchNorm(256)

(layer3.1.conv1): Strip(256,1148)
(layer3.1.bn1): BatchNorm(256)

(layer3.1.conv2): Strip(256,944)
(layer3.1.bn2): BatchNorm(256)

(layer4.0.conv1): Strip(256,1304,stride=2)
(layer4.0.bn1): BatchNorm(498)

(layer4.0.conv2): Strip(498, 2448)
(layer4.0.bn2): BatchNorm(512)

(layer4.1.conv1): Strip(512, 3111)
(layer4.1.bn1): BatchNorm(512)

(layer4.1.conv2): Strip(512, 2927)
(layer4.1.bn2): BatchNorm(512)

(fc): Linear(512,1000)
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