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Abstract

Multivariate regression (or multi-task learning) concerns the task of predicting
the value of multiple responses from a set of covariates. In this article, we pro-
pose a convex optimization formulation for high-dimensional multivariate linear
regression under a general error covariance structure. The main difficulty with
simultaneous estimation of the regression coefficients and the error covariance
matrix lies in the fact that the negative log-likelihood function is not convex. To
overcome this difficulty, a new parameterization is proposed, under which the
negative log-likelihood function is proved to be convex. For faster computation,
two other alternative loss functions are also considered, and proved to be convex
under the proposed parameterization. This new parameterization is also useful for
covariate-adjusted Gaussian graphical modeling in which the inverse of the error
covariance matrix is of interest. A joint non-asymptotic analysis of the regression
coefficients and the error covariance matrix is carried out under the new param-
eterization. In particular, we show that the proposed method recovers the oracle
estimator under sharp scaling conditions, and rates of convergence in terms of vec-
tor `∞ norm are also established. Empirically, the proposed methods outperform
existing high-dimensional multivariate linear regression methods that are based on
either minimizing certain non-convex criteria or certain two-step procedures.

1 Introduction

Multivariate linear regression concerns the task of predicting the value of one or multiple responses
from a set of predictors. It is commonly used in applications where more than one responses are
recorded for each sample [Reinsel and Velu, 1998]. For example, in longitudinal data analysis, the
response variable is often measured on multiple different time points for the same subject in the
experiment, thus resulting in multiple responses for each subject. In many prediction problems, one
may be interested in predicting multiple quantities of interests. This also results in a regression
problem with multiple responses.

High dimensional multivariate regression has received significant attention recently in the literature.
Some earlier works mainly focus on estimating the regression coefficients while ignoring the error
covariance structure. Certain regularizations are often used to either get a regularized fit or/and
to reduce the model dimension. For example, some classical works [Anderson, 1951, Izenman,
1975, Reinsel and Velu, 1998] impose a low-rank constraint on the regression coefficients, whereas
more recent works Turlach et al. [2005], Yuan et al. [2007], Peng et al. [2010] adopt other forms
of continuous regularization to achieve low-rank or/and group-sparsity structure for the regression
coefficient estimates. Theoretical justifications for the use of group sparsity penalties are provided in
Obozinski et al. [2011].
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There have been a few recent methods for multivariate linear regression that accounts for general
error covariance structure. For instance, Rothman et al. [2010] propose to impose an `1 penalty on
both the regression coefficients and the error precision matrix to obtain sparse estimates. Lee and Liu
[2012], Sofer et al. [2012] consider somewhat different sparsity-inducing penalties and provide some
theoretical justifications of their procedures. More recently, She et al. [2015] study a similar model
under the context of dynamical network analysis. However, all those methods involve non-convex
criteria, and thus could be potentially unstable, and less amenable to theoretical analysis. Yin and
Li [2013] propose a two-stage penalized procedure that estimates the regression coefficients at the
first step and then estimate the precision matrix at the second step, which again can be viewed as an
approximate solution to the regularized maximum likelihood method. Liu et al. [2014] formulate the
problem into a convex optimization problem, but the error covariance they considered is constrained
to be a diagonal matrix. More recently, Wang [2015] proposed a method to incorporate response
dependence into the model via considering joint multivariate normal model, which is essentially
a pseudolikelihood approach. However, the empirical criterion he considered may not be convex.
Moreover, Molstad and Rothman [2016] make the same joint multivariate normal assumption, but
make no explicit assumption on the regression coefficient and the error covariance, which is somewhat
different from most existing works in the literature and thus is not directly comparable to our work.

In this article, we propose a convex optimization formulation to simultaneously estimate the regres-
sion coefficient matrix C and the error precision matrix Ω in a multivariate linear regression model.
The main issue with most of aforementioned existing approaches is that the negative log-likelihood
function is not convex in the default parameteriztion (C,Ω). To circumvent this issue, we propose
a new parameterization (B,Ω) under which the negative log-likelihood function is convex. More-
over, we show that the new parameterization B retains the same rank and row-sparsity as the old
parameterization C. Consequently, similar structured estimate for C can be obtained by imposing
appropriate regularization functions on B. Moreover, we show that the proposed parameterization
not only works with negative loglikelihood loss function, but also works for two other alternative loss
functions proposed recently by Zhang and Zou [2014], Lee and Hastie [2015]. These two alternative
loss functions are more amenable to computation compared to the negative log-likelihood loss. The
proposed convex formulation is in contrast with most existing high-dimensional multivariate linear
regression methodologies, most of which either focus only on estimating the regression coefficients
alone, or estimating the regression coefficients and the precision matrix alternately by solving a
nonconvex optimization problem.

Computationally, we propose to use a proximal Newton algorithm [see, e.g., Lee et al., 2014] to solve
the associated optimization problem for regularized negative log-likelihood loss formulation under
the proposed parameterization. The proximal Newton algorithm, however, may not be scalable to
large-scale problems. This is mainly caused by the log det(·) in the Gaussian log-likelihood function.
For large-scale problems, we propose to use the aforementioned alternative loss functions, which
can be much easier to deal with using accelerated proximal gradient methods [see, e.g., Beck and
Teboulle, 2009]. Theoretically, we show that under optimal scaling conditions, and a minimum
signal strength condition, the proposed method when coupled with sparsity-inducing nonconvex
penalties [see, e.g., Fan and Li, 2001, Zhang, 2010, Shen et al., 2012, among others] can recover the
oracle estimator with probability tending to 1. Moreover, rates of convergence of both the regression
coefficient matrix and precision matrix in vector `∞ norm are derived, and compares favorably against
existing non-asymptotic results under similar conditions.

In summary, the key contributions of this article are as follows. First, we develop a convex optimiza-
tion formulation for estimating both the regression coefficients and the error covariance matrix in
high-dimensional multivariate linear regression under three different loss functions. Unlike previous
works that alternately estimates the regression coefficients and the error covariance matrix, the
proposed method minimizes a joint convex loss function subject to regularization, and thus will not
suffer from the potential local minimum as most existing methods. Second, new theoretical results
are obtained for the joint estimation approach. In particular, sparse recovery results and optimal
parameter estimation bound are derived under minimum conditions.

The rest of the article is structured as follows. We introduce the proposed new parameterization and
the convex optimization formulation in Section 2. In section 3 we provide computational algorithms
to solve the associated optimization problems. Sparse recovery results and parameter estimation
error bound are derived in Section 4. Section 5 includes numerical results comparing our methods to
competing methods, and we close with some remarks in Section 6.
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2 Models

Multivariate regression concerns a regression of a q-dimensional response vector y on a p-dimensional
predictor vector x. Specifically, let yi = (yi1, · · · , yiq)> be the response vector of dimension q and
xi = (xi1, · · · , xip)> be a p-dimensional predictor for the i-th sample, i = 1, · · · , n. Multivariate
linear regression models assume that the response vector yi relates to the covariates xi linearly

yi = C>xi + εi, i = 1, · · · , n , (1)

where C ∈ Rp×q denotes the regression coefficient matrix and ε1, . . . , εn ∈ Rq denote the IID error
vectors, which are assumed to follow a multivariate normal distribution with a general covariance
matrix Σ: εi ∼ N(0,Σ), i = 1, · · · , n. If we stack yi’s, xi’s, and εi’s into three matrices Y ∈ Rn×q ,
X ∈ Rn×p, and E ∈ Rn×q with y>i , x>i , and ε>i being the i-th row of Y , X and E, then we can
express the above model (1) into a matrix form

Y = XC + E. (2)

Let Ω = Σ−1 denote the precision matrix, whose entries encode the covariate-adjusted conditional
dependence among components of the response [Yin and Li, 2013]. The negative log-likelihood
function of (C,Ω) can be expressed up to a constant as

Ln(C,Ω) =
1

2
Tr
{

Ω(Y −XC)>(Y −XC)
}
− n

2
log det(Ω) . (3)

When X and Y −XĈMLE have full column rank, the maximum likelihood estimator (MLE) for C
and Ω has the following closed form formulas

ĈMLE = (X>X)−1X>Y, Ω̂MLE =

{
1

n
(Y −XĈMLE)>(Y −XĈMLE)

}−1

. (4)

When the problem dimension exceeds the sample size, regularization are often employed. Due to
(possible) non-convexity of the negative log-likelihood function Ln(C,Ω) in (3), when regularization
functions are added for C and/or Ω in the high-dimensional case, the estimates based on solving the
resulting optimization problem may be unstable. To address this non-convexity issue, existing works
[e.g., Rothman et al., 2010, Lee and Liu, 2012, Sofer et al., 2012, among others] obtain estimates
of C and Ω in an alternating fashion. One downside of such an alternating strategy is that it may
not be stable. For example, when using the R package provided by [Rothman et al., 2008], if the
penalty parameter for the regression coefficient matrix is too small, p > n, and Ω is not penalized,
then minimizing over C sometimes leads to a perfect fit, that is Y = XC. Then minimizing over Ω
is not a well defined problem since the minimizer is at the infinity. This will actually cause the R
program to terminate in this case. In this article, we propose to tackle this issue by proposing a new
parameterizations under which the negative log-likelihood function is convex.

Throughout, we shall use C0, Σ0, Ω0 to denote the true regression coefficient matrix, true error
covariance matrix, and true error precision matrix, respectively.

2.1 A new parameterization

We consider a new parameterization for the multivariate linear regression model, which results in
convex negative log-likelihood function under the new parameterization. We also demonstrate that
the proposed parameterization can be used for estimating both the regression coefficients and the
error covariance matrix.

To overcome the aforementioned non-convexity issue, we consider a new parameterization: B =
CΩ. Then it can be easily verified that the negative log-likelihood in this new parameterization is
proportional to

Ln(B,Ω) = −1

2
log det(Ω) +

1

2n
Tr
[
Ω−1(Y Ω−XB)>(Y Ω−XB)

]
. (5)

The next theorem establishes the convexity of the above loss as a function of (B,Ω).
Theorem 1. The negative log-likelihood function Ln(B,Ω) defined in (5) is convex in (B,Ω).
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In light of the above theorem, the new parameterization lead to a new convex optimization formulation
for multivariate regression. In the next subsection, we demonstrate that by adding appropriate penalty
functions, we can still obtain structured estimates for both C and Ω.

As a side note, we would like to point out that another reparameterization (B,Θ) = (CΩ1/2,Ω1/2)
is more commonly employed in Bayesian statistics for prior specification. It can also be shown that
the negative log-likelihood function is convex under this parameterization. However, it is difficult
to impose sparsity-inducing on Ω for this parameterization, which is often desirable when the error
covariance is of interest.

2.2 Conditional Gaussian Graphical Model

In a conditional Gaussian graphical model [see, e.g., Li et al., 2012, Wang, 2015], the main interest is
how to estimate the precision matrix Ω while adjusting the covariate effect, because the entries in the
precision matrix encode the conditional dependence structure among components of the response after
adjusting the covariates. A common assumption for the precision matrix is that it is approximately
sparse, which is equivalent to saying that conditioned on covariates, every component of the response
is only dependent on a small number of other components. Such sparsity assumption can be leveraged
by imposing sparsity-inducing penalty on the precision matrix.

More specifically, we use the proposed parameterization in (5) combined with sparsity-inducing
penalty on Ω and group sparsity-inducing penalty on B. This allows us to simultaneously obtain
a sparse estimate of the precision matrix and a row-sparse estimate of the regression coefficient.
In particular, we propose a penalized estimation approach by solving the following optimization
problem

minimize
B,Ω

Ln(B,Ω) + λΩ

∑
i<j

pτΩ(ωij) + λB

p∑
i=1

pτB (‖Bi‖2) , (6)

where ωij is the (i, j)-th entry of Ω, Bi is the i-th row of B, (λΩ, λB , τΩ, τB) are tuning parameters,
and the truncated lasso penalty function pτ (x) = min(|x|, τ) [Shen et al., 2013, 2012]. The penalty
function is nonconvex, and using a nonconvex penalty is beneficial in several ways. It leads to nearly
unbiased parameter estimation, is to facilitate cross-validation for parameter tuning, and can achieve a
better sparsity pursuit guarantee under less stringent assumptions [see, e.g., Fan and Li, 2001, Zhang,
2010, Shen et al., 2012, among others]. Also note that other nonconvex penalty such as SCAD and
MCP [Fan and Li, 2001, Zhang, 2010] could also be used, and similar theoretical results can be
obtained.

One important feature of the proposed parameterization is that the regularization function of B still
encourages row sparsity of the original regression coefficient matrix C. This is because B and C
share the same row-sparsity patterns. Other regularizations are also possible. For example, since B
and C share the same rank, we could consider regularization functions that encourage B to have low
rank [Yuan et al., 2007]. Due to the space limit, we leave this for future investigations.

The above optimization problem is computationally challenging, especially when the number of
responses q is large. The challenge is mainly caused by the log det(·) function and the non-smooth
penalty functions. A proximal Newton method Lee et al. [2014] can be used to solve this problem.
We defer the details into later sections. For a truly large-scale problem, however, we need to consider
other alternative loss functions, for which we discuss next.

2.3 Two alternative formulations

The log det(·) function in the Gaussian log-likelihood function (5) makes the problem computation-
ally prohibitive even for first-order methods. This is because the positive-definiteness needs to be
insured for Ω at every iteration. Here we review two alternative loss functions [Zhang and Zou, 2014,
Lee and Hastie, 2015] considered in the Gaussian graphical model literature, and point out that both
of them can be adopted into our framework to make the computation more amenable.

More specifically, we consider two loss functions. One is based on a pseudo-likelihood [Lee and
Hastie, 2015], and the other one called Dtrace loss is proposed by Zhang and Zou [2014]. In particular,
the pseudo-likelihood loss function defined in [Lee and Hastie, 2015] can be expressed as

LPseudo(Ω) =
1

2
Tr
[
ΩΩ−1

D ΩΣ0
]
− 1

2
log det ΩD , (7)
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and the Dtrace loss function is

LDtrace(Ω) =
1

2
Tr
[
ΩΣ0Ω

]
− Tr(Ω) , (8)

where ΩD = Diag(Ω) denotes a diagonal matrix with diagonal elements equal to that of Ω and
Σ0 =

[
Ω0
]−1

is the population covariance matrix. This is in contrast with the negative log-likelihood
loss function L(Ω) = 1

2 Tr(ΩΣ0) − 1
2 log det(Ω), which involves log det(·) function. Both loss

functions have the desirable properties that

1. they are convex functions of Ω;
2. their gradients vanishes at Ω0: ∇LDtrace(Ω0) = 0 and ∇LPseudo(Ω0) = 0.

This means that these two loss functions can be viewed as Bregman divergences [Brègman, 1966]
between Ω and Ω0 with certain convex functions. Other alternative loss functions in the Gaussian
graphical model literature [see, e.g., Peng et al., 2009, Khare et al., 2015] may also be considered.

In Gaussian graphical model, the empirical loss function can be obtained from substituting Σ0 in
(7) and (8) with a covariance matrix estimator such as the sample covariance matrix. Similarly, for
multivariate regression, we can substitute Σ0 with (Y − XC)>(Y − XC)/n, which leads to the
following two empirical losses for multivariate regression

LPseudo
n (C,Ω) =

1

2n
Tr
[
ΩΩ−1

D Ω(Y −XC)>(Y −XC)
]
− 1

2
log det ΩD ,

LDtrace
n (C,Ω) =

1

2n
Tr
[
Ω(Y −XC)>(Y −XC)Ω

]
− Tr(Ω) .

Like the negative log-likelihood loss, the above two losses are possibly not convex in (Ω, C).
Fortunately, the following theorem shows that both of them become convex in (B,Ω) under the
proposed new parameterization (B,Ω) = (CΩ,Ω).
Theorem 2. Under the new parameterization (B,Ω) = (CΩ,Ω), the above two loss functions are

LPseudo
n (B,Ω) =

1

2n
Tr
[
Ω−1
D (Y Ω−XB)>(Y Ω−XB)

]
− 1

2
log det ΩD , (9)

LDtrace
n (B,Ω) =

1

2n
Tr
[
(Y Ω−XB)>(Y Ω−XB)

]
− Tr(Ω) , (10)

both of which are convex functions of (B,Ω).

Consequently, we could replace Ln(B,Ω) in (6) by LPseudo
n (B,Ω) and LDtrace

n (B,Ω) defined above
for faster computation as they no long involve the log det(·) function (see the next Section for details).

3 Computation

This section discusses optimization methods for solving the proposed penalized multivariate regres-
sion problem with the negative log-likelihood loss and the two alternative loss functions. In particular,
to treat the nonconvex minimization, we propose to use a difference of convex programming algorithm
to solve a sequence of convex relaxed problems. For each relaxed problem, we consider the proximal
Newton method by Lee et al. [2014] to solve the one with the negative log-likelihood loss, and a fast
first-order method by Beck and Teboulle [2009] to solve the two formulations based on alternative
loss functions.

3.1 Sequential convex relaxation through DC algorithm

The difference of convex (DC) algorithm is commonly employed for solving nonconvex optimiza-
tion approximately Shen et al. [2013]. Its key idea is to decompose the objective function into
difference of two convex functions, and linearize the trailing function to obtain an upper con-
vex approximation of the nonconvex objective. In our setting, using the DC decomposition that
pτ (x) = |x| −max(|x| − τ, 0), we obtain upper convex approximation of the nonconvex penalty at
the previous iterate

(
B(t),Ω(t)

)
:

pτB (‖Bi·‖2) ≤ ‖Bi·‖2I(‖B(t)
i· ‖2 ≤ τB) + τBI(‖B(t)

i· ‖2 > τB) ,

pτΩ (|ωij |) ≤ |ωij |I(|ω(t)
ij | ≤ τΩ) + τΩI(|ω(t)

ij | > τΩ) .
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Accordingly, we solve the nonconvex optimization (6) by considering a sequence of convex relaxations
until we get a stationary point. Specifically, we start with some initial estimator

(
B(0),Ω(0)

)
at t = 0,

to be defined later in Section 4. Then, based on
(
B(t),Ω(t)

)
at step t, we consider the following

convex relaxation,

Ln(B,Ω) + λB

p∑
i=1

‖Bi·‖2I(‖B(t)
i· ‖2 ≤ τB) + λΩ

∑
i<j

|ωij |I(|ω(t)
ij | ≤ τΩ) . (11)

We then obtain the solution
(
B(t+1),Ω(t+1)

)
at the (t+1)th step, and iterate over t until convergence.

Typically, only local stationary guarantees is possible. However, we will show later that if the model
is well specified and the optimization problem is properly initialized, the stationary solution generated
by the DC algorithm coincides with the oracle estimator with probability tending to 1.

3.2 Proximal Methods

Standard convex optimization methods can be employed to solve (11). However, they need to be
modified to accommodate the non-smoothness. We propose to use the proximal Newton method
[Lee et al., 2014] for (11) when Ln(B,Ω) is the negative log-likelihood loss defined in (5). The
penalized problem of the two alternative loss functions in (9) and (10) can be solved by first-order
proximal method [e.g., Nesterov, 2007, Tseng, 2008, Beck and Teboulle, 2009], where we use the
FISTA algorithm by Beck and Teboulle [2009] to solve (11). Details of these algorithm derivations
are included in the Appendix.

4 Theory

In this section, we derive conditions under which the penalized estimator B̂ and Ω̂ recovers the oracle
estimator (B̂O, Ω̂O), defined as,

(B̂O, Ω̂O) = arg min
(B,Ω):Bi=0,i/∈S0,ωij=0,(i,j)/∈A0

Ln(B,Ω) , (12)

where A0 = {(i, j) : ω0
ij 6= 0} and S0 = {i : C0

i· 6= 0}. Note that the oracle estimator is essentially
the maximum likelihood estimator given that the sparsity pattern is known. Moreover, rate of
convergence for the proposed estimator is also derived.

Since we are dealing with nonconvex penalty, we choose to analyze the stationary point obtained by
the DC algorithm with a special initialization scheme. In fact, we plan to show that the DC algorithm
stops in one step with the chosen initialization, and recovers the oracle estimator in the second step.
More specifically, we obtain an initialized estimator (B̃, Ω̃) in three steps: (i) first perform q separate
Lasso regressions assuming Ω = I to get an estimator for C; (ii) then use the residual error matrix
after regressing out covariate effects given estimated regression coefficients C̃ to get Ω̃; (iii) and
finally, set B̃ = C̃Ω̃.

More specifically, define

C̃·i = arg min
β

1

2n
· ‖Yi −Xβ‖22 + λB‖β‖1 , (13)

which is the separate lasso solution. Then, we define a covariance matrix estimate based on the
residuals: Σ̃ = 1

n (Y −XC̃)>(Y −XC̃), and let

Ω̃ = arg min√
2aI�Ω�0

trace(Σ̃Ω)− log det Ω +
∑
i 6=j

p(λΩ,a)(|ωij |) and B̃ = C̃Ω̃ , (14)

where p(λ,a)(·) is a class of nonconvex penalties defined in Zhu and Li [2018], and (λ, a) are tuning
parameters. Note that Zhu and Li [2018] shows that (14) is convex for certain range of λΩ and a, and
can be solved efficiently using an alternating direction methods of multipliers (ADMM) algorithm
[see, e.g., Boyd et al., 2011].

Now we are ready to present our main results summarized below.
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Theorem 3. Under the Assumptions (A1)–(A3) in the Appendix, there exists tuning paramter
(a, λB , λΩ, τB , τΩ), such that the estimator obtained from applying the DC algorithm to (6) re-
covers the oracle estimator with probability at least 1 − 12 exp(−c log q), when it is initialized
with (Ω̃, B̃) as defined in (14). Here c > 0 is some absolute constant (see Assumption (A2) in the
appendix). Moreover, we have that

max
i∈S0

‖ĈOi· − C0
i·‖2√

q
= Op

(√
maxi Σ0

ii

λmin

(
1
nX
>
S0
XS0

) log(p0q)

n

)
, (15)

‖Ω̂O − Ω0‖∞ = Op

(
λmax(Σ0)γ2

√
log q

n

)
. (16)

The above result says that when the optimization program is properly initialized, the DC algorithm
will produce a stationary estimate that recovers the oracle estimator. Moreover, the rate of convergence
of the proposed estimator for Ω0 and C0 in vector `∞ norm scales logarithmically in the ambient
dimension (p and q). Both rates are optimal up to logarithmic factors.

If we assume that M,γ1, γ2, λmin(Σ0), λmax(Σ0), λmin

(
1
nX
>
S0
XS0

)
, φ0 are independent of prob-

lem dimensions (n, p, q), then the Assumptions (A2)–(A3) can be simplified to

n & max(p2
0, q

2
0) log(pq) , min

(i,j)∈A0

|ω0
ij | &

√
log(pq)

n
,

mini∈S0 ‖C0
i·‖2√

q
& max(p0, q0)

√
log(pq)

n
.

These conditions are commonly imposed assumptions in the literature when analyzing multivariate
regression or sparse Gaussian graphical model [see, e.g., Rothman et al., 2010, Liu et al., 2014, Zhu
and Li, 2018, and references therein]. Moreover, the rate of convergence results simplify to

‖Ω̂O − Ω0‖∞ = Op

(√
log q

n

)
and max

i∈S0

‖ĈOi· − C0
i·‖2√

q
= Op

(√
log(p0q)

n

)
,

which are comparable to existing results for Gaussian graphical model [Fan et al., 2009, Shen et al.,
2012, Zhu and Li, 2018] when covariates are not present. In this sense, the estimation error of the
covariance/precision matrix would not be impacted by the regression coefficient estimation.

5 Numerical Studies

This section investigates operating characteristics of the proposed methods with regard to the accuracy
of parameter estimation and sparsity recovery of the conditional precision matrix.

In what follows, we consider simulated data from the multivariate regression model y = C>x+ ε
with ε ∼ N(0,Ω−1), where Ω is the conditional precision matrix. Here the nonzero entries in Ω
encodes an undirected graph, where an edge between two nodes means that the corresponding two
variables yi and yj are conditionally independent conditioned on covariate x. In our numerical
experiment, we examine three different types of graphs–a chain graph, a hub graph, and a random
graph, as displayed in Figure S1. For a given graph G = (V, E), Ω is generated based on connectivity
of the graph, that is, ωij 6= 0 if and only if there exists a connection between nodes i and j for i 6= j.
Moreover, we set ωij = .3 if i and j are connected and diagonals equal to .3 + c with c chosen so
that the smallest eigenvalue of the resulting matrix equals to .2. Finally, a random sample is drawn
from N(0,Ω−1) as the residual in the multivariate regression model. Moreover, we generate the
covariate from standard normal distribution, and let coefficient C be a row-sparse matrix, in which
the first 3 rows are nonzero and the rest are set to be zero.

With regard to selection of tuning parameters, we fix τΩ = .01 and τB = .01×√q, and propose to
use a vanilla cross-validation to choose the optimal tuning parameter (λB , λΩ) for our methods by
minimizing a Kullback-Liebler criterion using a five-fold CV.

We apply the three proposed estimators (denoted as Our-ML, Our-Pseudo, and Our-Dtrace) based on
the new parameterizations in Section 2, and compare them to the methods of Rothman et al. [2010]
(denoted as MRCE) and Wang [2015] (denoted as Wang) in terms of parameter estimation accuracy
and sparse recovery.
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We evaluate the accuracy of these method with regard to both parameter estimation and sparse
recovery. Specifically, we consider

Error(Ĉ) = Tr
(

(Ĉ − C0)Ω0(Ĉ − C0)>
)
, Error(Ω̂) = Tr(Ω̂Σ0)− log det(Ω̂Σ0)− q,

and Error(Ĉ, Ω̂) = Tr
(

(Ĉ − C0)Ω̂(Ĉ − C0)>
)

+ Tr(Ω̂Σ0)− log det(Ω̂Σ0)− q

to measure the estimation error of Ĉ alone, Ω̂ alone, and (Ĉ, Ω̂) jointly. Note that these losses are
proportional to the negative log-likelihood loss (up to some constants). For the accuracy of sparse
identification, average false positive rate (FPR) and false negative rate (FNR) rates are used:

FPR(Ω̂) =

∑
1≤j<j′≤p I(ω0

jj′ = 0, ω̂jj′ 6= 0)∑
1≤j<j′≤p I(ω0

jj′ = 0)

(
1− I

(
Ωoff 6= 0

))
,

FNR(Ω̂) =

∑
1≤j<j′≤p I(ω0

jj′ 6= 0, ω̂jj′ = 0)∑
1≤j<j′≤p I(ω0

jj′ 6= 0)
I
(
Ωoff 6= 0

)
,

FPR(Ĉ) =

∑p
i=1 I(C0

i· = 0, Ĉi· 6= 0)∑p
i=1 I(C0

i· = 0)
and FNR(Ĉ) =

∑p
i=1 I(C0

i· 6= 0, Ĉi· = 0)∑p
i=1 I(C0

i· 6= 0)
.

As shown in Tables S1–S3, the proposed methods outperform both competitors by a large margin in
terms of both parameter estimation and sparse recovery across all the situations. In terms of estimation
accuracy for the regression coefficients, the amounts of improvement over Wang and MRCE range
from 402% to 1159% when the feature dimension is high. Interestingly, the three proposed methods,
although based on different loss functions, perform similarly in terms of both estimation and sparse
recovery accuracy. This might be due to the high-dimensionality of the problem, as also observed by
Zhang and Zou [2014] for the Dtrace loss. With regard to accuracy of sparse recovery, the proposed
methods have better balance in terms of minimizing the false positive rate and false negative rate.

Among the three proposed methods, the one based on the negative log-likelihood loss has the highest
computational cost. Given that they all perform similarly, the alternative loss functions have an
advantage and will be advocated to be used for large-scale problems. That said, the likelihood based
method has the advantage that it always produces positive definite estimate for the error covariance
matrix, whereas the other two methods sometimes produce infeasible covariance matrix estimate, as
indicated by the NAs in Tables S1–S3.

In summary, our simulation results suggest that the proposed methods achieve higher accuracy of
sparse identification and parameter estimation, compared to other competitors. We advocate to use
the proposed method based on negative log-likelihood loss for small to medium size problems, and to
use the methods based on Dtrace and Pseudo loss functions for large-scale problems.

6 Discussions

In this article, we proposed a convex optimization formulation for high-dimensional multivariate
regression model under three commonly used loss functions. Various optimization algorithms were
suggested to solve the associated optimization problems. Our numerical experiments suggest that the
estimation of regression coefficients can be improved by incorporating error covariance structure.
Moreover, the joint estimation approach leads to more precise sparse identification of the conditional
precision matrix compared to existing state-of-art methods. Theoretically, we establish rate of
convergence in terms of vector `∞ norm and sparsistency under minimal conditions.

Possible extension to multivariate regression with low rank regularization or constraints could also be
considered. It can be shown that the proposed new parameterization preserves the rank of the original
parameterization, which makes the extension meaningful. Time series or longitudinal data could be
another potential target application of the proposed methodology, where it is of interest to model
temporal dependence of the residual after adjusting some covariate effects.
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