Supplementary Material for “A convex optimization

formulation for multivariate regression”

This appendix includes the proofs of the technical results in the main article, Figure S1 and
Tables S1-S3, and details out the derivations of the proximal Newton and fast proximal gradient

algorithm in Section 3 of the main article.

Proof of Theorem 1

Note that —logdet(€2) is convex [Boyd and Vandenberghe, 2004]. Hence, it suffices to show that
Tr [Qfl(YQ — XB)T(YQ — XB)] is convex in (B,€?). Toward this end, we write this function as

the sum of three functions
Tr [Q‘I(YQ —XxB)T(YQ-— XB)} = Te(YYQ) - 2Te(YTXB) + To(Q ' B" X X B)

The first two parts are linear, and thus are convex. It remains to show the convexity for the last
part Tr(Q !BTX T X B). We prove this using the fact that f(x) is convex in z if and only if for any
dand t € R, g(t) = f(xz + td) is convex in t. In view of this result, we only need to show that the

following univariate function

g(t) =Tr [(Q + Vi) [B + tVa] ' X T X[B + tV5)

— Tr [([ QY207 T BOTY2 4 11,07 2T X T X[BOY? + 11,0717



is convex in t € R for any Vi € S? and V5 € RP*9. Since Q121,072 is symmetric, we can perform
singular value decomposition Q~2V;Q~Y2 = UDU", where D is a diagonal matrix. Substituting

this into g(t), it follows that

o(t) = Tr [(1 + 1) [BO2U + 11,07 2U]T XTX[BO 20 + 1v,07 20

—Z b +tCz TXTX(b ‘f‘tCz)
1 +1td; ’

where b;, ¢; are the i-th column of BQ~12U and VoQ~Y2U, respectively. Direct calculation of the
second derivative shows that the above function is convex over the domain 1 +td; > 0,i =1,--- ,q,

i.e., Q+tVy > 0. This completes the proof.

Proof of Theorem 2

Note that for the Dtrace loss (10) is a quadratic function with positive semidefinite Hessian, and
thence must be convex. For (9), first note that —logdet(€2p) is convex in 2. Moreover, the proof
of convexity of the first term Tr(Q,5' (Y — XB)T (Y — X B)) is similar to that of Theorem 1, and

is thus omitted. This completes the proof.

Assumptions for Theorem 3

Throughout, we impose the following technical assumptions for Theorem 3.

Assumption (A1l). Suppose that a compatibility condition is satisfied for the design matrix:

1 2
EHXBH% > ?HBH% for all 8 € R” such that ||Bscl1 < 3||Bs,ll1 (S1)
0
for some constant ¢y > 0. Moreover, suppose that
max | C7l> < /M (S2)
1€90



for some constant M > 0.

Assumption (A2) (Minimum signal condition)

log(pq)

min |w)| 2 (c+2)(92 + a(l +7772) Amax(Z)\ ) — (S3)
(27_7)6*40 n
minies, [CP]2 o VE(E%)po 0 log(pg)
2 M )\max E ? 4

Amax(Q0)+71 ' (14+29342)~1)?
2

where a > , ¢ > 0 is an absolute constant, and M, ¢y > 0 refers to constant

in (S2) and (S1).

Assumption (A3) (Scaling condition)

Yo(c + 1)/ Amin(29) max; X2 ($5)

n oz 5 “Pogo log(pq) ,
o
n 2 (c+3)°A2 (297 max (77 (1 + 7172)%  Amin(E%)) ¢ log ¢, (56)
1
n 2 max (1@) PRlog(pg). (s7)
0

Proof of Theorem 3

To prove Theorem 3, we first define some notations to be used throughout the proof. Denote by
¥% the covariance matrix of the error, which is a ¢ X ¢ symmetric positive-definite matrix. Let
Q0 = [ZO]_l = (wij)1<ij<q- Let Ay denote the support of QU and ¢y = max; 321 w?j # 0 is the
maximum number of nonzeros across rows/columns of Q°. Let 71 = [|2°]|cc,00 and 2 = || I, Hoo’oo,
where I = V2 (=3 log det Q°), I, 4, is the | Ag| x| A| submatrix of I that extracts the corresponding
entries whose indices belong to Ay, and | Ag| is the size of Ag. Let Sy = {i : ||C?||2 # 0} and py = |So|.
We first present some lemmas to be used later in the proof of the main theorem. The proofs of these

lemmas are included in later sections.

Lemma 1. Suppose that rows of E € R"*? are IID g-dimensional normal random wvectors from



N(0,X°). Let S = LETE. For any symmetric matriz T and v > 0

P <| Tr ((is - EO)T) | > l/) < 2exp <_TLW28VHTH> , (S8)

where ||T||* = & Var (Tr ((f]s - EO)T>>.

Lemma 2. Suppose that rows of E € R"*? are IID q-dimensional normal random wvectors from
N(0,X°). Let

o 1 o 1
$'=-E'"Eand¥°=—-FE"(I — Px, )E,
n n 0

where Px, —denotes the projection matriz onto the column space of Xg,. Then,

2
P <HZS — EOHOO > y)\max(EO)> < 2exp (_QZ—V8V + 210gq) ,

PUIS =5 = (0 +2) A < 203 (" 210z
o n - 9+ 8v ’

Moreover, if max(pg,logq) < n, then for any real anumber C' > 0, we have that

_ 1
P (Hz _ 20HOO > 18(c + 2) Amax(Z0)4/ %) < 2exp(—clogq), (S9)

~ 1
P (nz@ — 3| > (% +18(c + 2) Oj‘-’) Amax<zo>> < 2exp(—clogg).  (S10)

As a result,

n

S logg | po
¥ =20 = 0 =1 .
|| I = O (Amax< >( - +n)>

|&-=|. = o (Am@% lﬂ)



Lemma 3. (Refinement of Theorem 1 of Zhu and Li [2018]) When

~ min; w 27512 — 29| o
(1 [ — S < g < e [ = 202l = ]
Amax (Q°) + 2720 ]|1Z — £ 00)2
om0 > Con(@) + 2000]E = £)?
2
problem (14) is a convex problem, and its minimizer Q satisfies
12 = %)l < 27201 = Sl amd || = 2% < (14 297 -

on the event that

Min;,j)e A, |wzg| V20 — Amax (20) 1

1Z = 20|s < min{

Lemma 4. (Convergence rate of the initializer (B,Q)) Let

J = NnL - {QHXTE ||Oo < \/220 (c+1) 10gq+10gp}

£ = {152 < dmin (Bl 1)1

yeta(l+7372) 7 y172(1+27§72)q0

272 + 2a(1 + viv2) 27290 " 2m172(1 + 29872) 0

(S11)

(S12)

(S13)

(S14)

(S15)

1 _
where @ > Q@91 (20790) 1) Then, under (S5) in Assumption (A1), and on the event that

2

K NJ, the initial estimators (é, Q) defined above with

Y

2(c+ 1) max; X2 log(pq)
Ap =2 "

21+ 727) (HES S+

48(c+ 1) max; 5 po 10g(m)> < g

o n
1 s 48(c+1) max; £9, lo
min jea, W — 272 (I|Z — ¥ + (e )q%a P s(pq)
B a
(Amax () 4+ 97 (1 + 29272) 1)?

a >
- 2

(S16)

(S17)

(S18)



satisfies the following bound

96(c + 1)72 max; 3 po log(pq)
9% no

12 - < 2715 = lloo +

15: = Bl 16/( C+1 (=) pIngq T alf - 12112

NG B o V4

fori=1,...p. Moreover, we have that

P(J) > 1—2exp(—clogq),

and under (S6) in Assumption (A2), we have that

P(K) > 1 —2exp(—clogq).

The next lemma derives the rate of convergence for the oracle estimator.

(S19)

(S20)

(S21)

(S22)

Lemma 5. (Ezistence, uniqueness and properties of the oracle estimator) On the event that GNW

with

S 1 /\max QO
g = 12¢ — 39| < min 5 , (&) ,
MY2(1 4 29572)q0 Y240

1 LT o T

00,2

QTSN

< CA\.i { (lxg)xs(J) } \/ max zgiqlL(p‘”
n 2 n



the oracle estimator (EO, (AZO) exists and is unique, and we have that

19° = e < 292 = 200, (523)

IN

IVaLa(Q°, B < 201+ 7)1 = X%, (S24)

|BE — BRll _ g [ (et Dr(E®) log(pog)
\/a B )\min (%XST'OXSO) n

A

~ Co
+qo]|Q° — QO||OO% foralli € Sy, (S25)
max; VBi'Ln(QO,B\O)H 1
2 < 2\/(0 +1) max ¥ o8(pa) (S26)
Vi BT

Moreover, under the scaling condition (S6) and (S7) in Assumption (AS3), we have that

pacy
=
%

1 — 6 exp (—clog(poq)) (527)

P(G) > 1—2exp(—clogq). (S28)

Now we are ready to prove Theorem 3. We prove the claim in two steps. In the first step, we
show that when initialized by (E : Q), the very first iterate of the DC algorithm coincides with the
oracle estimator (EO, QO) In the second step, we show that the DC algorithm stops at the second
iterate, and recovers the oracle estimator. Throughout, all the statement are stated under the event:

J NKNGNW, which by using Lemma 4 and 5, has probability at least
P(TNKNGNW)>1-—12exp(—clogq).
For the first step, it suffices to prove that there exist (75, 7q) and (Ag, A\q) such that

mines, || By |2 > 75 > maxigs, || Bills = maxigs, | Bi. — BY||s, (S29)

ming jea, [@i| > 7o > maxg jga, |0ij| = max jga, @i — Wil (S30)



and

HVB (BO QO)H < \pforig S and ’aL—

for (i,7) ¢ Ao, (S31)

O

V. Lo(B,99) = 0 for i € Sy and 2e(B229)

o = 0 for (1,7) € Ay (S32)

This is because under (S29) and (S30), the relaxed convex objective at (B,Q) (i.e., (11)) becomes

Ln(B, )+ A5 > 1Bl +da > ol (533)
i¢So (i,5)¢ Ao

and the optimality conditions (S31) and (S32) ensures that (B\O, QO) is a minimizer of (S33).

To prove the existence of (75, 7q) and (Ag, Aq) that satisfies conditions (529)—(S32), we first note

that
min | By o > min {|[ B2 — 1B — BYllo} > min | BYlx — max | B — Bl
i, Pl 2 i, (] = 18y — el 2 min, gl = max 16, =

Then, applying Lemma 2 and 4, we know that under Assumption (A1) and (A2), we have that

~ 1 1)Kr(X0 2
A (34)
0




and for i € g,

~ 16 C—l—l 20 10
1B — Bl < OV poq 80D 4 o)1 - Q]| macx [|CY);
< 16+/(c +21),<;(20) poqlog pq) N
n
. 96(c + 1)y max; X2 pg lo
(2,7 HZ EOHOO ( )’72 Do g(pq>>mlaXHCzOH2
< 16+/( c+1 (329) /poqlog Pq)
lo 48(c + 1) max; X% po lo
Yt (18<c+2>xmx<20> 8¢ | 28(e+ 1) maxs ¥ po g(m) max | G2l
n o n ’
16+/(c + 1) (30 2q1o lo
< V( ¢2) (X°) [pda ng(pQ) 3800 + 2 A () gipq) max |CY
O (3

provided that

4 1 EO 1 1
8(6 + )ma’Xl Po Og(pq) ( + 2))\max(20) Og<pQ) :

o5 n n

which is ensured by the scaling condition (S7) in Assumption (A3). Hence, a sufficient condition

for (529) is

. 164/ (c+1)x (X0 2010 210
minges, [|BYl; — AV [oRoloson) _ 380 (0 4 9\ (50) 1/ B a2,

b5 n

Sy > 164/ (c+1)K(30) \/p%qlog(pq) ‘ (S35)

b5 n

The existence of 75 satisfying the above condition is ensured by (S4).

Similarly, by applying Lemma 2 and 4, we know that under Assumption (A1) and (A2), we have



that

0

max |W;; — w;;
S J B
(i.d) !

96(c + 1)y max; 53, po log(pg)

< 29|88 — 20|
< 2 oo + g =
1 96 1 .30 ]
< 36ys(c + 2 Ama(50) 1/ 1284 1 (e Do maxi By polog(pg)
n o5 n
1
< 38v5(c + 2)Amax (X°) log(pg)
n

provided that

1 30 pol 1
96(c + 1)yomax; By polog(pg) _ 20 (c £ 2) e () og(pq)

gz% n n

which is ensured by the scaling condition (S7) in Assumption (A3). Hence, a sufficient condition

for (S30) is

1 1
min [w%] — 3875(c + 2)Amax (27) 108(P0) + S 58m(c + 2 A (501 2BPD g
Moreover, by using Lemma 2 and 5, we have that
A~ 1
max [V, £,(B0,89) | < 2 e+ 1) e 820, (537)
1¢So 2 7 n

and

OL,(B°,0° “
OLulBZ )| 91 4429050 — 59

max
(i.0)¢ Ao Owij
lo
< 2149392 s (50) (% +18(c+2)y) —§q>
lo
< 38(c+2)(1 4 ¥y2) Amax (29) iq

10



Hence, if A\g and A\ satisfy

1 1
Ao > 38(c + 2)(1+ 7272) Amax (52| —2 and Ap > 2\/(0—1— 1) max 29 0g(Pg) ,
n i n

(938)

then (S31) holds. Note that the above conditions are ensured by (S16) and (S17), under the event

J N K. Lastly, by definition of the oracle estimator, (S32) holds since they are the score equation

of the oracle estimator. This completes the proof of the first step.

For the second step, it suffices to show that the oracle estimator satisfies
|BP|l2 > 75 for i € Sp and [&F] > 7q for (i) € Ap.

for any 75 and 7q satisfying (S35) and (S36) (which also ensures (S29) and (S30)).

(S39)

Again, this is because (S39) implies that the relaxed convex problem at (B\O, @O) (i.e., (11)) is

La(B,Q) + A Y [1Billa+ Ao D lwil,
i¢So (4,5)¢ Ao

and the oracle estimator (EO, QO) minimizes this function.

Now, applying Lemma 2 and 5, we have that

in || B°]|y > min || B°||, — B° — RBY
min || 57|z 2 min || B; |l — max || B;” — Billz

AV

. c+ k(X0 lo ~
min | B, — 3, [ C T DRED) gloslmd) g0 gop maxcfls
1€8So )\min (EXSOXSO) n [

Note that

~ ~ 1
HQO - QOHOO < 2’72“26 - E0”00 < 2’72/\maX(EO> (% + 18(0 + 2) OSQ)

log q
n

< 3899 A max (X% (¢ + 2)

11

(S40)

(S41)

(S42)



under the scaling condition (S7). Hence, a sufficient condition for the first inequality in (S39) would

be

1)k (30 1
5 < min|B}|s—3 (C+1 )K(X%)  glog(peg)
1€S50 )\min (EngXSO) n

21
~3892 A (2 (e 4+ 2)1/ L2 mac 9]l (343)

which is ensured by (S35), because, by (S50) and the fact that

1ot o 2
Amin <EX50XSO) < minn |X.||5 =1 and

1 - 1
i 2 3ok (10X ) 2 (S0

Hence, the existence of 75 can be ensured by (S4), because max; [|C |l < /gM by assumption.

Similarly,

min |w,;

(7'7])6140’ K
> min |wl] —[Q° -~ Q% > min [wW%] - 29,5 — 2O
> min, il = loo = poin o] = 27 loo

: log ¢
> 01— M (5 | 22 4+ 18(c + 2
> i, a<>%<n-* 42y~
. log q
> 0| — 38/\max EO +2 -
> i fwy (X)na(e+2)y/ —>

Hence, a sufficient condition for the second inequality in (S39) would be

. log q
< 91 — 38\ max (X2° +2)\/ —,
TQ > (Z,IJI)HEI}L\() ‘wm ( )72<C ) n

which is ensured by (S36). Hence, the existence of 7q is ensured by (S3). The oracle bounds (16)

and (15) follow immediately from (S42) and (S63). This compeletes the proof.

12



Proofs of Lemmas 1-5

Proof of Lemma 1: By Markov’s inequality, for any v > 0,

P (Tr ((is - ZO)T> > y> < exp (—“f”) Eexp (7‘/_ (( ZO)T)>
< exp <1ogEexp (# Tr ((f:s - 20)T>> _ ’VT‘/ﬁ”) ,

(. /
~~

I

: Mov/n S
where ~ is chosen such that v € [0, —H@T@”F} for some constant 0 < M, < 1, which is to be

determined later. Moreover, after some calculations, we have that

E exp (7\/_ <(§S - ZO)T) > = (E exp (%ﬁ Tr ((ee” — EO)T)) >n

Y v o
= exp (—— Tr(ZOT)) det (I — —ZOT) , (S44)
2 vn
where e ~ N(0,%°) and the last equality requires that /nQ2° = ~T', which is ensured by the fact

Mo/n Vn
that v < NoueP < NouReuE Consequently,

log E exp (@ Tr ((is - 20)T>) — log det (1 - %EOT) " 7‘/_ Te(3°T).  (S45)

An expansion of the log det function gives

v

log det(1 — —Z]OT)_”/2

— ey + 2y Zzl (=L (546)

l
For Iy, note that I, < 2 Y°, 1! (%) < || TIP 2 . Similarly, I < MHa?|| 7| — 242,

where M; = 3?1__]‘]\4400). Minimizing this upper bound of I; as a function of v over the interval

13



[O, %ﬁ} , we obtain that

2

I < —;”4%” (u — MHTH) otherwise.
. . . Mov? _ 1—-1
A combination of these two cases yields that [; < _4M0(M1f1)\(|)T||2+2u|\TH' Set My = 47", and then

M, = 11/9, we obtain the desired results

2

& v
P(Tr((ES—EO)T>ZI/>§eXp<—n ),
INT* + 8w

for any v > 0. The other direction follows exactly the same argument, and thus is omitted. This
completes the proof.

Proof of Lemma 2.  Applying Lemma 1 with 7" = T3k = 1,..., T2 with {T3,--- T2} =
{(e]e; + ejTei)/Z}lgi’qu then applying an inequality |[|[vX0(e] ¢; + ejTei)\/@/QHQF < Aax(2°) and

a union bound, we obtain that

~ 1/2
IP’(HES—ZOH > U 20)<2 - 21 4
2V (3°)) <2exp n9—|—81/+ 0g q (547)
Now by (S47), for any R > 1 and 6% < 1, we have that
N 2
P HZS—EOH > R4/ 89 < 2exp [ TIBL 4904
> K 9+ 8R, /14
2
< 2exp q —log(q) B ——
9+ 8RRy /8l
< 2exp(—((R/18) —2)logq) . (548)

14



Hence, (S9) follows from setting R = 18(c + 2). Hence, when %62 = O(1), we have that

n

5=, -0 (et 222)

Next, we bound ||£¢ — ¥°||.. Note that

> —x" = (I/n)-Y'(I - Px,)Y
= (1/n) - (X5,Cs, + E)"(I = Pxg )(Xs5,Cg, + E) = ¥°

= (1/n)-E'(I = Px, )E—-%"=(1/n)- E'U'DUE - %,

where we have performed singular value decomposition I — Py, = U TDU. It is easy to verify that
the rows of U E are still independent and identically distributed normal random variables with mean

0 and covariance matrix X°, because

n

cov(u; e, ujTel) = Z Uirn W COV (€ €m1) = o] uj = oyl(i = 7)),

m=1

where u; and e are the i-th row and k-th column of U and FE, respectively. Since [ — PXso is
idempotent with rank min(n, py), we have that E'UT DUE = ETE, where E is a (n—min(po, n)) X g
random matrix where its rows are IID from N (0, X°).

Now, note that

IS¢~ 0l = [—BE-x0|| <D—Po EE -0+,
n o n n — Po w N
< TP BE -5 + 225 um(3)
n n — Do o N

where we have used the fact that ||X%)]. < Amax(X°), and py < n.

15



Again, by applying (S47), we have that

5 n¥> _ )\max 30
P15~ 2l > vAna(E?)) < P ( B o s =) ()
n —Po o n — Po
(Zw—po));
n—po
< 2exp [ —(n —po)m + 2loggq
n—po
(v —po/n)? )
< 2exp | —n + 21lo
= p( 0+ 8w —po/n) o081

Now, similar to (S48), by letting v = 2 + 18(c + 2)4/ 2%, we obtain that,

R 1
P (Hze — 30| > (’2 +18(c +2) %> Amax(20)> < 2exp(—clogq)
n n

when C' > 0 and 10% < 1. This completes the proof of Lemma 2.

)

Proof of Lemma 3. The proof combines the proof of Theorem 1 and Lemma B.4 of Zhu and Li

[2018]. Following exactly the same arguments used in Theorem 1 of Zhu and Li [2018] when K = 1,

we know that if

A

v

21+ 7) 12 — X o

ai

IN

ming jea, [wij] = 272)1X = X0l

V2a > AmaX(QO) + 2'725.10”i - ZOHOO

(S49)

then (14) is a convex problem, and its minimizer Q coincides with the oracle estimator QC. Easily,

(S49) holds when (a, \) satisfies (S11) and (S12), and ¥ satisfies (S14). Moreover, by using Lemma

B.4 of Zhu and Li [2018], we have that on the event that

- 1
2 — ZO 00 S }
{H H 27172(1 4+ 27¢72) 0

we have

199 = Qloc < 272]|2 = 2|co -

16



Moreover, let A =00 -0 Using a Taylor’s expansion, we have that

271 =%, = 1A +997" =197

= 22 AZY ], < 7lA e + [[RA)],
j=1

IN

277212 = 2o + 15 = X0loo = (1 4 2917212 = 2°lc0,

where we have used the fact that HR(K)HOO < ||E = £9|o by an argument used in Lemma B.4 of
Zhu and Li [2018]. Since Q = Q€ thit completes the proof of (S13).
Proof of Lemma 4. By applying Theorem 6.1 of [Bithlmann and Van De Geer, 2011], we have

that, on the event that
2
7= { 21X Bl <}

n
with v; = 24/ E?im%, the lasso estimator satisfies that

([ ~ |
EHX(C%’ - Cg)”% + Ag||Ci — Cng < 4/\23290/(153 i=1,...,q

for Ag > 2v;, provided that a compatibility condition is satisfied for the design matrix:

1 2
CIX13 > LYBIR for all 5 € R such that 13551 < 3,1
0
for some constant ¢y. Easily, by choosing Bg, = 0, we know that
2 LT
¢0 S p0>\min EXSOXSO . (850)
Let Ap = 2max; v;. Hence, on the event J := N7,
1 ~ 0N 112 2 Do ~ 0 Do
max — || X(C; — C5)[l; £ 16 max v; —5 and max ||C; — C5||; < 8 max v;—5 (Sh1)
1<i<qn 1<i<q " ¢ 1<i<q 1<i<q ¢

17



Note that

P(J) =P(N_,J:) > 1= P(TF) > 1 —2qexp(—t3/2).

where we have used the fact that P(J°) < 2exp(—t?/2) by Lemma 6.2 of Bithlmann and Van

De Geer [2011]. By letting ¢t = y/2(c+ 1)logq and v; = /X 0t2+21°gp = \/220 CH)lquHng, we

obtain that the two inequalities in (S51) hold with probability at least P(J) > 1 — 2 exp(—clogq).

This proves (S21). Consequently, on the event 7,

~ 32(c+1) max; E?l- lo
maxicizg X~ OO < et miostrn) (552)

~ .30
maxi<i<q ||C.i — C.OiH1 < 8\/2(C+1)2ma.xz 55 \/p?) log(pg)
- ol n

IN

Using this, we first bound || — %°/|o. Note that

IZ - = %H(X(CO ~C)+E) (X(C° = C) + E)|w

1

~ETE-X0| 4 %H(é ~C)TXTX(C =l + %HETX(G — C|ls

[e.o]

Next, we bound the last two terms above, respectively. On the event 7, we have that

1 ~ ~
SC-CXTX(C - < max - HX (C, — % — ")
n o 1<j5,5’'<g n 2
Po
< P
< 16 lrgzagzl/ ¢(2)

where we have used (S51) and the Cauchy-Schwarz inequality. For the last term, again applying
(S51), we have

= zmaxe 'x(C, - %)

n 5j'

zETX(G — )
n

e}

2 - -
~ max HXTejHOO -max ||C; — C% |y < maxy; - max [|C; — C% |1

n y j/ 1 j/ J
< 8 max y

¢o

IN

18



on the event J. Hence, on the event J, we have that

S Ss Do
5 - e < 18" - e + 20maxs? 2
- 48(c+ 1) max; X0 pol
_ ||ES . ZOHOO + (C + )max i Do Og<pQ) (853)

% n

Then, by applying Lemma 3, we have that || — Q0|5 < 272]|S — 29| on the event that

- ming ; w?: V24 — Apax (2° 1
{HE . ZOHOO S min ( (7])€AO | zg| a max( ) 7

272 + 2a(1 + viye) 27240 " 27172(1 + 29§72) 00

Amax (20) 477 ' (14+27372)1)? so that V20 Amax(Q0) 1

h ve even
2 27290 = 2v172(1+2v§12)q0”’ the above event

By choosing a >

simplifies to

~ ming ; W 1
{1 = 20l < i ozt )}

299 + 2a(1 + v3y2) " 27172(1 + 29392) qo

Combining this with (S53), we know that if

48(c + 1) max; X5 polog(pg) _ 1 . ( min j)ea @] 1 )

< —min )
o no T2 292 + 2a(1 + 7iy2) " 27172(1 + 29872)q0

then we have

19 = 2l < 29215 = £°l (S54)

on the event that

1 0
K C {His o EOH < lmln ( mln(@j)eAO |wij| 1 )} |
- T4 Yo + a(l + ’712'72) ’ ’71’72(1 + 27%72)(]0

Combining this with the bound in (S53), we obtain that

96(c + 1)y max; 33 po log(pg)

% n

19 — Q%) < 290[|5° — 20| +
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on the event J N K. This completes the proof of (S19).

Now define B = CQ. Then,

1B = Bl = [[Cu§2 = CQ°)|

< (Ci = CDRll2 + 1(Cs. = CQ = Q)| + | CR2 = Q°) |2
< VA (0| = Cllz + 1(Cic = G = Q)| + | CQ = Q)
< VA O)1Ci = Cllz + a1 = Ll (G = CPlz + [|C22) (555)

where qq is the row-wise sparsity of Q°, and the last inequality uses the fact that for any go-sparse

symmetric matrix A, we have that

[Aully =

IA

S Y w2 < alaloluls

=1 j:(i,j)€A

Vol Allso

where A = {(7,7) : A;; # 0}. Moreover, by using (S52), we obtain that, on the event J

8v/2(c+ 1)max; 3% [pdqlog(pq)

max |Gy, — CPll2 < v/gmax [|C — O < (S56)
‘ J o n
Combining this with (S53) and (S55), we obtain that, on the event 7,
1B — Bl
< (V20ax(2°) + 0|2 = %] o) max |G — G|z + qoll 2 — 2l [|C2
< (V20ax(2°) + 200721 E = 2loc) max | Ci. = C2la + |2 = 2o | Oz
< 2y A () max |G = C2llz + a0 12 = Q|| P2
164/ (c+ 1)r(X° 2qlo ~
< 1OVt DRED, JIRaO8ea) g6 - o0t (557)
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where we have used the fact that

96(c + 1)2 max; X, pogo log(pq)

20072)1% — 2% 00 < 24072]|2° — X°|0 +

% n
%\/)\maX(QO) + %\/Amax<90) = \/)\max(QO)

IN

holds on the event K and when

96(c + 1)y2 max; X2 pogo log(pq)
o n

1
< Z
-2

Amax (§2°)

which is ensured by (S5).

Finally, we bound P(K). By using (S9) of Lemma 2, we have that if

. ( min je , || 1

log q
) Z 18 c+ 2 _—
Yo +a(l4+772) Nl + 271272)%) (c+2) n

1
4

(958)

then P(K) > 1 —exp(—clogq). Note that, the above condition (S58) is ensured by (S3) in Assump-

tion (A2), and (S6) in Assumption (A3). This proves (5S22). This completes the proof of Lemma

4.

Proof of Lemma 5: Let ixy = %XTY, iXX = %XTX, and iyy = %YTY. The gradient of the

negative log-likelihood can be expressed as

Vsla(Q,B) = —28xy + 25 xxBQ!
Van(Q, B) = iyy — Q_lBTixxBQ_l

The oracle estimator (EO, @O) must satisfy the following score equations

—2X4 Y +2XJ X, B[ =0

vees, (Syy = [09)! = [Q9 BT Sxx BIOO) ) = 0.

21
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Hence, ESO = (XgOXSO)_ngo YQO. In terms of the old parameterization, we have that ESO = 650 0O
with Cis, = (Xg Xs,) "' XY, which is the MLE of C' over Sy. This further implies that the oracle

estimator Q€ must be the solution of a profile likelihood minimization problem after profiling out

C, which is

Q° = arg min 1,(9,C°) = arg min tr(2402) — log det 2 (S60)

Q: w;;=0 for all (i,j)€A] Q: w;j=0 for all (i,j)€A]

where $¢ = (1/n)-YT(I - Pxg )Y = L1 - Pxg,)E||%, which is essentially the sample covariance

matrix for 3° based on the residual. Here we have used the fact that

(2,09 = QY — XCO)T (Y — XC%) — log det Q2

= (Y (I = Px, ) (I - Px,,)Y) — log det Q = tr(3°Q) — log det 2.

To bound ||VBln(§AZO,§O)||OO and ||Van(§O,§0)HOO, we first simplify the gradient expression

(S59). To this end, note that
S Lo 0 Lo 050
Sxy = X (XC° + E) = ~ X" (XB°S + E)
n n

Using these, we have that Vg, ln(ﬁo, EO) = 0 since 3(990 is the MLE over Sy. Moreover,

@] @ _ _oNT “ T o
Vigln(Q7,BY) = ——Xg¥V + ~XgXC
2 2 _
— _ﬁxgg(xsoogo +E)+ EXSTS,XSO (X4, Xs) ' Xg,Y
2 2 2
= EX;E;PXSOE — EX;SE = —Exgg(l — Pxg)E (S61)
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For Vql,,(Q°, B®), note that

Vala(Q°, B%) = Syy — [Q0) 7 = [C°) S xC°

1 ~ 1
EYTY — Q97! - EHPXSDYH%
1 ~ 01—
EH([ — Pxg,)(Xs,C° + B)||7 — [

1 S0l Se Ao
I = Py JEIE — (09 = £ — 09,

where Py, is a projection matrix in R" onto the column space of Xg,, and we have used the fact

that

XC° = X5,C9 = X (X g, X)) XL Y = Py, Y .

In summary, we have that

Viln(@.B) = =2 (0.X](I - Py, )E)
Vala(Q,B) = 3¢ — Q0!

By Lemma 3,
100 = 0l < 298¢ = o and |[99)7 =20 < (14 29P) 8 - (S62)
on the event that G, because G C {Hie Y < WM} This proves (S23). Moreover, by

the second bound in (S62), we have

[Valn(@©,B9)| < || &= 10017 <18 = £ + 12— [0°)

< 21+ 97) |12 — 2%

on event G, which proves (S24).
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Next, note that

CQ —C% = (X&Xg)IXgY —CY = (X§ Xgp) ' X (XC* + E) — CY

1/1 -1
= (X;)XSO)‘lXSTOE:ﬁ (EX;JXSO) X4, E

By assumption,

~ 1/1 -1
o_ o _ (LT T
rlré%())cHC'Z C}ll2 - (nXSOXSo> X E 2
;20 1
< Jlern)—ri 4 08(Pod) (S63)
)\min (EXSOXSD) n

on event W;. For ||§ZO — BY||2, using (S63) and the same arguments used in (S57), we obtain that

1B = B2l < Ve @)ICE = C2lls + aol|D° = 2lle (ICE = C2ll> + 1C2)
(V A @) + 2920]|2° = Yo )IICE = CPlz + 0012 = Qo |21l

< 3V haax( @) max | CF — Clla + o127 — 2l ICP

c+ 1)k(X%)  qlog(pog ~
3, [ _dloelnd) 6o oo o),
)\min (EXSOXSO) n

IN

on the event that G N W),;. This completes the proof of (525).

Lastly, on the event that W, it follows that

JU 2 2
vBi,zn(Qoﬂgo)H =~ max [|XT(I — Py ) B, < - [|XT(I = Pxg )|,

2 n 1<i<q

max
1<i<q

< 2\/(0—{— 1) maXZ?iqlL(pq)
i n

from which (S26) follows.
Next, we bound P(W). Note that P(W) > 1 — P(W§) — P(WS). We bound P(WY) and P(WS),
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respectively. First note that for any vector v € R™ and ¢ > 0, we have that

q

S(TE)? > it

J=1

B(n o Ells > at) < B 0!

< P (n_l max |v' E | > t) <2¢maxP(n'v'E; >1t)

1<j<q 1<j<q

< 2 tn” 2 il
max eXp§ ——5o0 ( — 24XP T2 - o
= USSP S T P ol max, 0,

Let v; be the i-th column of Xg, (%X;)XSO)_l ci=1,...,po. Let

. 1
t= \/(c+ DAk, (—XSTOXSO) max 3:0108(P0d)
n (3

n

We have that

IN

1 1
POV) < B (3 maxlol Bl > vat) < poma (S0 Bl > vat

t*n?
< QPOQeXp - ] 12 50
max; [|v;[|5 max; 3%,

)\min (%X;‘BXSQ> t2n

max; %Y

< 2poqexp {— } = 2exp (—Wlog(poq))

where we have used the fact that n™! maxj<;<p, ||v;||3 = max Diag { (%X;OXSO)A} < Aoh (X4, Xs,)

in the last inequality.

Similarly, by letting t = \/(c—i— 1) max; E?i@ and v; = (I — Pxg )Xi;i=1,...,p, we have
that

P(Ws) < 2exp(—clog(pq))
where we have used the fact that max; ||v;||3 < max; || X;||3 = n Combining, we obtain that

P(Wj;) < 2exp (—clog(pog)) + 2 exp (—clog(pq)) (564)

25



from which (S27) follows.

Now, we bound P(G). Using Lemma 2, we know that P(G) < 2exp(—clogq) if

1 Amax (€20 1
min ( ( )> Z (I2 + 18<C + 2) qu) >\max<20)
Y172 ( n

1+ 293y2)q0 Y240 n

which is ensured by (S6) and (S7) in Assumption (A3). This completes the proof.

Detailed derivations of computational algorithms

Proximal Newton Algorithm

Bm Agm)
We denote by Z(™) = € RP+9xa the solution at m-th Newton iteration. A =

Qm) Agm)
the search direction at m-th Newton step with Aﬁm) € RP*? and Agm) € R?*9. Again we obtain the
the Newton step by solving an approximation of the original problem by replacing the smooth part
of the objective function with a quadratic approximation at the current solution Z™. In particular,

the Newton step at m-th Newton iteration can be obtained by solving the following optimization

problem

minimize (1/2) - Te(AS™ATH™) — Tr(ATCO) 4+ p(Z2M™ + A), (S65)

AcR(p+a)xq

where

25 xx — 28 x B Rm
—onM[BM]TS ¢y 25 [BM]TS BmRm) 4 53(m)

S — 2% (m)3(m)
com 2Y xy — 2XxxB™Y and E(W):[Q(m)}_l

Sm[BMTE ¢ ¢ BmInm 4 xm) _ §,

PRI XTX © X7y S YTy
with EXX: oy ,EXYZT, and Zyy: e

Next, we do another change of variable: Z = Z(™ + A. Then, the above problem is equivalent
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to the following problem

minimize (1/2) - Te(Z2™2ZTH™) — Te(ZTG™) + p(2),

ZeR(p+a)Xq

where

) 25y — 28y x B
3 (m) [B(m)]Tixxg(m)z(m) 1onm S

We propose to solve the subproblem using alternating direction methods of multipliers (ADMM).
Specifically, the ADMM updates are

1
Z*) ¢ argmin { = Tr(Z2™ZTHM) - Tr(ZTGM™)
ZeR(p+a)xq
+Tr (27 (20™ —1*=1)) 4 §||Z — Z<k>||§}

rk+) = proxpp*(,)(F(k) + pZ(kH)) ,
where the second update amounts to performing the projection of the first p rows of Z*+1 onto
the Ly ball and the last ¢ x ¢ entries onto some interval, both of which are easy to carry out. The
first update, however, could be challenging to carry out, because it is equivalent a linear system
involving (p + ¢) x ¢ variables. Naively solving such a linear system would require O((p + q)3 x ¢3)

computation. Here we show that this linear system can be solved much faster due to its special

structure. Toward this end, note that the linear system involving Z®*+b is
H ZED5m) 7+ — Gm) 4 pl=1) _op®) 4 7 (k)

We write the eigenvalue decomposition of H (M) and XM a8 H(™) = Ulf\lUlT and XM = U2A2U2T ,

and plug them in the above equation, we obtain
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Denote by Z'*+1) = U Z(*+1(J, we have the following explicit formula for Z/(*+1)

ZW*D__[Uf(G“”+4ﬂ”*>—2rw%+pzwnl@}
’ P+ Ai(i, )2, )

ij

Then, we can update Z*+1) easily through Z*+) = U, 2D, Note that the first ADMM

update has a O (p* V ¢3) computational complexity.

We terminate the algorithm based on duality gap:

Tr((z(k+1))TH(m)Z(kJrl)E(m)) . Tr((z(k+1))TG(m)) + p(Z(k+1))

1

+§ Tr ((G(m) _ F(k—l—l))T[H(m)]—l(G(m) . F(k+1))[2(m)]_1)
1

= 3 TI'([Z/(k+1)]TA12/(k+1)A2) _ Tr((z(kJrl))TG(m)) —|—p(Z(k+1))

1 _ _
+§ Tr([rl(k+1)]TA1 1[F/(k+1)]A2 1) ’

DO | —

where I"0+1) = T (G — D)7, At termination, we return Z*+0) = Z(k+1D) _ ;=1(D(+1) _ (k)
to get exactly sparse solution.
Line search for proximal Newton method

Find the largest 0 < ¢t <1 that satisifies the following

WZ™ 1AM 4 p(Z0) 4 tA™)) — (2™ — p(Z2™)

< a(p(Z™ +tAM) — p(2tM) — (™ A (566)
where 0 < o < 1 is some absoluate constant.

Next we show that the line search will be terminated after a finite number of steps, that is, the

line search condition (S66) will be satisfied for small enough ¢. To this end, first note that for any
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0 < a < 1, we have that

(1/2) - Te(AMS(A)T gy 4 (vi(Z0m) A 4 p(Z0m) + A

IN

(1/2) - Tr((@A™)S™ (@A) T HY 4 (VI Z20M) , aA™)) 4 p(Z20) 4 aA™)

< (a?/2) - Te(AMS(AMYT HMY 4 o(VI(Z0)) A 4 ap(ZT + AM™) 4+ (1 — a)p(Z2™),
because A™) minimizes (S65). Hence,

6 = p(Z™ + A —p(Z™) + (VI(Z™), A
< _1_—062
- 2(1l-a)
- Tr(A(m)Z(m)(A(m))TH(m))

CTre(A T (A) T Fom)y

as a — 1. Moreover, we have that

WZT 4 tAM) 4 p(ZM) 4t A — 1(Z2M) — p(Z2™)

< HAM VIUZMY)) + O?) + p(Z2™ + A — p(Z2™)

IN

a (p(Z(m) + tA(m)) _ p(Z(m)) _ t(A(m) ’ C(m)>)
for some 0 < a < 1, where the last inequality uses the fact that

p(Z 4 tA) — p(Z0) + (AT VI1(Z™))

IA

Hp(Z™ + AM) = p(Z)) + 1AM VI(Z0)

< —t TI‘(A(m)Z(m)(A(m)>TH(m)) <0

Moreover, we can show that the line search condition (S66) will be satisfied for t = 1 when Z(™

is close to the solution, provided that V?2I(-) is Lipschitz continuous with constant L > 0 and 5 XX

is strictly positive definite.

29



In fact, by Lipschitz continuity of I(-), it is easy to show that

l(Z( ) + A( L))
LA™ |3

< UZM) 4+ (VI(ZM) A 4 (1/2) - Te(AM S (AT fgim) -

Therefore,

VAREE A(m)) —I—p(Z(m) + Al — l(Z(m)) — p(Z(m))

LI A3
o LA™
< 2 H2TE o
S 5 + 5 < ad

for some 0 < o < 1/2.

Proximal gradient method details

To apply the fast proximal gradient algorithm of Beck and Teboulle [2009], we only need expressions
for gradient of the smooth part of the objective function with respect to €2 and B, and the proximal
operation for the nonsmooth part. For the gradients, it is easy to see that for the pseudo-likelihood
loss,
Ve B) = —1XT(YQ - XB)Qy',
VolPeudo(Q,B) = LYT(YQ - XB)Q,' + £05' (YQ - XB)'Y,
— +Qp'Diag|(YQ— XB)T(YQ - XB)| — 10,

and for the D-trace loss, we have that

vBlD—trace(Q’ B) — _nleT(YQ — XB) 5
VolPree(QB) = L(YT(YQ-XB)+(YQ-XB)'Y)—1.
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Figures and tables

Chain graph Hub graph

Random graph

Figure S1: Three types of graphs used in our simulations.

Table S1:  Estimation error of C' and (C, ) (denoted as Error(C) and Error(C,(2)), false positive
rate of C, and false negative rate of C, as well as their standard errors (in parentheses) of various
methods over 100 simulations, where NA means not applicable. Here Wang, MRCE, our-Dtrace,
our-Pseudo, and Our-ML denote the method of Wang [2015], the method of Rothman et al. [2010],
the proposed method with Dtrace loss, the Pseudo likelihood loss, and the negative log-likelihood
loss, respectively.

(p,q) Method Error(C)  Error(Q) Error(C, Q) FPR(C)  FNR(C)

(100,3) Our-ML  .049(.025) .031(.019) .082(.034) 0(.002) _ 0(0)
Our-Dtrace .05(.024)  .033(.021)  .086(.036) 014(.021)  0(0)
Our-Pseudo .05(.024)  .028(.017)  .079(.031) .012(.022) 0(0)
MRCE 568(2.91) .150(.254)  .523(.354) :396(.085)  0(0)
Wang 332(12)  NA NA 041(.023)  0(0)

(200,3) Ow-ML  .05(.027) .031(.010) .084(.037) 0(.002) _ 0(0)
Our-Dtrace .049(.023) .033(.02) .085(.034) .007(.011) 0(0)
Our-Pseudo .05(.024)  .028(.017)  .08(.032) .007(.013)  0(0)
MRCE 0.52(12)  1773(5496) 30004(110439) .786(.234) 0(0)
Wang 417(.125) NA NA 025(.017)  0(0)
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Table S2:  Estimation error of C, 2, and (C, ), FP of C, and FN of C, as well as their standard
errors (in parentheses) of various methods over 100 simulations of example with (p,¢q) = (3,100),
where NA means not applicable. Here Wang, MRCE, our-Dtrace, our-Pseudo, and Our-ML denote
the method of Wang [2015], the method of Rothman et al. [2010], the proposed method with Dtrace
loss, the Pseudo likelihood loss, and the negative log-likelihood loss, respectively.

Graph  Method Error(C')  Error(Q)  Error(C,Q) FPR(Q)  FNR(Q)
band  Ow-ML  1.54(.144) 1.53(.227) 3.15(.303) .006(.002) .002(.004)
Our-Dtrace  1.55(.142) 2.16(.31)  3.74(.428)  .03(.009)  .05(.007)
Our-Pseudo 1.56(.158) NA NA .007(.004) .074(.006)
MRCE 1.55(.143)  27.3(14.5) 20.1(15)  .177(.342) .74(.436)
Wang 1.61(.156) NA NA 117(.006)  0(0)
hub  OurML  1.54(.143) 2.51(.398) 4.17(.433)  .018(.006) .022(.018)
Our-Dtrace 1.54(.142) 3.26(.385) 4.81(.438) .011(.01) .034(.018)
Owr-Pseudo 1.55(.144) 3.12(.381) 4.79(.447)  .018(.016) .024(.023)
MRCE 1.55(.143) 16.1(11.3) 17.8(11.7)  .117(.276) .598(.403)
Wang 1.61(.168) NA NA 146(.005) .001(.003)
random Ow-ML  1.54(.142) 2.53(.352) 4.18(.3%6)  .012(.004) .043(.027)
Our-Dtrace  1.54(.143) 2.62(.372) 4.26(.383)  .011(.005) .050(.024)
Ow-Pseudo 1.53(.142) 2.54(.385) 4.16(.398)  .013(.006) .041(.026)
MRCE 1.55(.143) 16.4(11.4) 18.1(11.7)  .124(.293) .8(.394)
Wang 1.6(.151) NA NA 132(.006) .001(.003)
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Table S3:  Estimation error of C, 2, and (C, ), FP of C, and FN of C, as well as their standard
errors (in parentheses) of various methods over 100 simulations of example with (p,q) = (50, 50),
where NA means not applicable. Here Wang, MRCE, our-Dtrace, our-Pseudo, and Our-ML denote
the method of Wang [2015], the method of Rothman et al. [2010], the proposed method with Dtrace
loss, the Pseudo likelihood loss, and the negative log-likelihood loss, respectively.

Graph  Method Error(C)  Error(2) FError(C,Q) FPR(C) FNR(C) FPR(Q2) FNR(Q)

band  Our-ML 775(.108) .812(.202) 1.63(.245)  0(0) 0(0) 009(.01) .005(.01)
Our-Dtrace .779(.108) .850(.254) 1.70(.278)  .001(.007) 0(0) .009(.009) .006(.006)
Our-Pseudo .792(.11)  .801(.224) 1.62(.226)  .004(.014) 0(0) .009(.009) .005(.003)
MRCE 452(.597) 11.5(.112) 15(.423) 1986(.018)  0(0) 0(0) 1(0)
Wang 3.3(433) NA NA 729(.082)  0(0) 158(.013)  0(.002)

hub Our-ML 776(.108) 1.25(.225) 2.09(.288)  0(0) 0(0) 048(.028) .016(.027)
Our-Dtrace .78(.109)  1.32(.213) 2.15(.274)  .001(.004) 0(0) 045(.021) .02(.024)
Our-Pseudo .787(.111) 1.21(.283) 2.03(.219)  .001(.004) 0(0) 041(.026) .021(.028)
MRCE 4.22(.618) 7.59(.109) 11.1(.478)  .986(.018) 0(0) 0(0) 1(0)
Wang 3.12(.416) NA NA 76(.074)  0(0) 199(.013) .008(.013)

random  Our-ML 777(109) 1.51(.24) 2.36(.285)  0(0) 0(0) 041(.008) .077(.043)
Our-Dtrace .777(.109) 1.574(.24) 2.42(.275)  .001(.005) 0(0) 035(.007) .080(.041)
Our-Pseudo .781(.109) 1.58(.24)  2.45(.255)  .002(.007) 0(0) 044(.007) .071(.039)
MRCE 3.77(4)  5.8(.094)  9.23(.388)  .989(.015) 0(0) 0(0) 1(0)
Wang 3.29(.395) NA NA 769(.08)  0(0) 18(.014)  .026(.021)
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