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Abstract

Off-Policy Actor-Critic (OffP-AC) methods have proven successful in a variety of
continuous control tasks. Normally, the critic’s action-value function is updated
using temporal-difference, and the critic in turn provides a loss for the actor that
trains it to take actions with higher expected return. In this paper, we introduce a
flexible meta-critic framework based on observing the learning process and meta-
learning an additional loss for the actor that accelerates and improves actor-critic
learning. Compared to existing meta-learning algorithms, meta-critic is rapidly
learned online for a single task, rather than slowly over a family of tasks. Crucially,
our meta-critic is designed for off-policy based learners, which currently provide
state-of-the-art reinforcement learning sample efficiency. We demonstrate that
online meta-critic learning benefits to a variety of continuous control tasks when
combined with contemporary OffP-AC methods DDPG, TD3 and SAC.

1 Introduction

Off-policy Actor-Critic (OffP-AC) methods are currently central in deep reinforcement learning (RL)
research due to their greater sample efficiency compared to on-policy alternatives. On-policy learning
requires new trajectories to be collected for each update to the policy, and is expensive as the number
of gradient steps and samples per step increases with task-complexity even for contemporary TRPO
[33], PPO [34] and A3C [27] algorithms.

Off-policy methods, such as DDPG [20], TD3 [9] and SAC [13] achieve greater sample efficiency as
they can learn from randomly sampled historical transitions without a time sequence requirement,
making better use of past experience. The critic estimates action-value (Q-value) function using a
differentiable function approximator, and the actor updates its policy parameters in the direction of the
approximate action-value gradient. Briefly, the critic provides a loss to guide the actor, and is trained
in turn to estimate the environmental action-value under the current policy via temporal-difference
learning [38]. In all these cases the learning objective function is hand-crafted and fixed.

Recently, meta-learning [14] has become topical as a paradigm to accelerate RL by learning aspects of
the learning strategy, for example, learning fast adaptation strategies [7, 30, 31], losses [3, 15, 17, 36],
optimisation strategies [6], exploration strategies [11], hyperparameters [40, 42], and intrinsic rewards
[44]. However, most of these works perform meta-learning on a family of tasks or environments and
amortize this huge cost by deploying the trained strategy for fast learning on a new task.
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In this paper we introduce a meta-critic network to enhance OffP-AC learning methods. The meta-
critic augments the vanilla critic to provide an additional loss to guide the actor’s learning. However,
compared to the vanilla critic, the meta-critic is explicitly (meta)-trained to accelerate the learning
process rather than merely estimate the action-value function. Overall, the actor is trained by both
critic and meta-critic provided losses, the critic is trained by temporal-difference as usual, and
crucially the meta-critic is trained to generate maximum learning progress in the actor. Both the critic
and meta-critic use randomly sampled transitions for effective OffP-AC learning, providing superior
sample efficiency compared to existing on-policy meta-learners. We emphasize that meta-critic
can be successfully learned online within a single task. This is in contrast to the currently widely
used meta-learning paradigm – where entire task families are required to provide enough data for
meta-learning, and to provide new tasks to amortize the huge cost of meta-learning.

Our framework augments vanilla AC learning with an additional meta-learned critic, which can be
seen as providing intrinsic motivation towards optimum actor learning progress [28]. As analogously
observed in recent meta-learning studies [8], our loss-learning can be formalized as bi-level optimi-
sation with the upper level being meta-critic learning, and lower level being conventional learning.
We solve this joint optimisation by iteratively updating the meta-critic and base learner online in a
single task. Our strategy is related to the meta-loss learning in EPG [15], but learned online rather
than offline, and integrated with OffP-AC rather than their on-policy policy-gradient learning. The
most related prior work is LIRPG [44], which meta-learns an intrinsic reward online. However,
their intrinsic reward just provides a helpful scalar offset to the environmental reward for on-policy
trajectory optimisation via policy-gradient [37]. In contrast our meta-critic provides a loss for direct
actor optimisation using sampled transitions, and achieves dramatically better sample efficiency than
LIRPG reward learning. We evaluate several continuous control benchmarks and show that online
meta-critic learning can improve contemporary OffP-AC algorithms including DDPG, TD3 and SAC.

2 Background and Related Work

Policy-Gradient (PG) RL Methods. Reinforcement learning involves an agent interacting with
environment E. At each time t, the agent receives an observation st, takes a (possibly stochastic)
action at based on its policy π : S → A, and receives a reward rt and new state st+1. The tuple
(st, at, rt, st+1) describes a state transition. The objective of RL is to find the optimal policy πφ,
which maximizes the expected cumulative return J .

In on-policy RL, J is defined as the discounted episodic return based on a sequential trajectory over
horizon H: (s0, a0, r0, s1 · · · , sH , aH , rH , sH+1). J = Ert,st∼E,at∼π

[∑H
t=0 γ

trt

]
. In on-policy

AC, r is represented by a surrogate state-value V (st) from its critic. Since J is only a scalar value
that is not differentiable, the gradient of J with respect to policy πφ has to be optimised under the
policy gradient theorem [37]: ∇φJ(φ) = E [J ∇φ log πφ(at|st)]. However, with respect to sample
efficiency, even exploiting tricks like importance sampling and improved application of A2C [44], the
use of full trajectories is less effective than the use of individual transitions by off-policy methods.

Off-policy actor-critic architectures provide better sample efficiency by reusing past experience
(previously collected transitions). DDPG [20] borrows two main ideas from Deep Q Networks
[25, 26]: a replay buffer and a target Q network to give consistent targets during temporal-difference
backups. TD3 (Twin Delayed Deep Deterministic policy gradient) [9] develops a variant of Double
Q-learning by taking the minimum value between a pair of critics to limit over-estimation, and the
computational cost is reduced by using a single actor optimised with respect to Qθ1 . SAC (Soft
Actor-Critic) [12, 13] proposes a maximum entropy RL framework where its stochastic actor aims to
simultaneously maximize expected action-value and entropy. The latest version of SAC [13] also
includes the “the minimum value between both critics” idea in its implementation. Specifically, in
these off-policy AC methods, parameterized policies πφ can be directly updated by defining actor
loss in terms of the expected return J(φ) and taking its gradient ∇φJ(φ), where J(φ) depends on
the action-value Qθ(s, a). Based on a batch of transitions randomly sampled from the buffer, the loss
for actor provided by the critic is basically calculated as:

Lcritic = −J(φ) = −Es∼pπQθ(s, a)|a=πφ(s). (1)

Specifically, the loss Lcritic for actor in TD3 and SAC is calculated as Eq. (2) and Eq. (3) respectively:

Lcritic
TD3 = −Es∼pπQθ1(s, a)|a=πφ(s); (2)
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Lcritic
SAC = Es∼pπ [α log (πφ(a|s))−Qθ(s, a)|a=πφ(s)]. (3)

The actor is then updated as ∆φ = α∇φLcritic, following the critic’s gradient to increase the likelihood
of actions that achieve a higher Q-value. Meanwhile, the critic θ uses Q-learning updates to estimate
the action-value function:

θ ← arg min
θ

E(Qθ(st, at)− rt − γQθ(st+1, π(st+1))2. (4)

Meta Learning for RL. Meta-learning (a.k.a. learning to learn) [7, 14, 32] has received a resurgence
in interest recently due to its potential to improve learning performance and sample efficiency in
RL [11]. Several studies learn optimisers that provide policy updates with respect to known loss or
reward functions [1, 6, 23]. A few studies learn hyperparameters [40, 42], loss functions [3, 15, 36]
or rewards [44] that steer the learning of standard optimisers. Our meta-critic framework is in the
category of loss-function meta-learning, but unlike most of these we are able to meta-learn the loss
function online in parallel to learning a single extrinsic task rather. No costly offline learning on a
task family is required as in Houthooft et al. [15], Sung et al. [36]. Most current Meta-RL methods
are based on on-policy policy-gradient, limiting sample efficiency. For example, while LIRPG [44]
is one of the few prior works to attempt online meta-learning, it is ineffective in practice due to
only providing a scalar reward increment rather than a loss for direct optimisation. A few meta-RL
studies have begun to address off-policy RL, for conventional multi-task meta-learning [30] and for
optimising transfer vs forgetting in continual learning of multiple tasks [31]. The contribution of our
Meta-Critic is to enhance state-of-the-art single-task OffP-AC RL with online meta-learning.

Loss Learning. Loss learning has been exploited in ‘learning to teach’ [41] and surrogate loss
learning [10, 16] where a teacher network predicts the parameters of a manually designed loss in
the supervised learning. In contrast our meta-critic is itself a differentiable loss, and is designed
for use in RL. Other applications learn losses that improve model robustness to out of distribution
samples [2, 19]. Some recent loss learning studies in RL focus mainly on the multi-task adaptation
scenarios [3, 15, 36] or the generalization to entirely different environments [17]. Our loss learning
architecture is related to Li et al. [19], but designed for accelerating single-task OffP-AC RL rather
than improving robustness in multi-domain supervised learning.

3 Methodology

We aim to learn a meta-critic which augments the vanilla critic by providing an additional loss Lmcritic
ω

for the actor. The vanilla loss for the policy (actor) is Lcritic given by the conventional critic. The
actor is trained by Lcritic and Lmcritic

ω via stochastic gradient descent. The meta-critic parameter ω is
optimized by meta-learning to accelerate actor learning progress. Here we follow the notation in TD3
and SAC that φ and θ denote actors and critics respectively.

Algorithm Overview. We train a meta-critic loss Lmcritic
ω that augments the vanilla critic Lcritic to

enhance actor learning. Specifically, it should lead to the actor φ having improved performance on
the normal task, as measured by Lcritic on the validation data, after learning on both meta-critic and
vanilla critic losses. This can be seen as a bi-level optimisation problem1 [8, 14, 29] of the form:

ω = arg min
ω

Lmeta(dval;φ
∗)

s.t. φ∗ = arg min
φ

(Lcritic(dtrn;φ) + Lmcritic
ω (dtrn;φ)),

(5)

where we can assume Lmeta(·) = Lcritic(·) for now. dtrn and dval are different transition batches
from replay buffer. Here the lower-level optimisation trains actor φ to minimize both the normal
loss and meta-critic-provided loss on training samples. The upper-level optimisation further requires
meta-critic ω to have produced a learned actor φ∗ that minimizes a meta-loss that measures actor’s
normal performance on a set of validation samples, after being trained by meta-critic. Note that in
principle the lower-level optimisation could purely rely on Lmcritic

ω analogously to the procedure in
EPG [15], but we find optimising their sum greatly increases learning stability and speed. Eq. (5)
is satisfied when meta-critic successfully trains the actor for good performance on the normal task

1See Franceschi et al. [8] for a discussion on convergence of bi-level algorithms.
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Algorithm 1 Online Meta-Critic Learning for OffP-AC RL

φ, θ, ω,D ← ∅ // Initialise actor, critic, meta-critic and buffer
for each iteration do

for each environment step do
at ∼ πφ(at|st) // Select action according to the current policy
st+1 ∼ p(st+1|st, at), rt // Observe reward rt and new state st+1

D ← D ∪ {(st, at, rt, st+1)} // Store the transition in the replay buffer
end for
for each gradient step do

Sample mini-batch dtrn from D
Update θ ← Eq. (4) // Update the critic parameters
meta-train:
Lcritic ← Eqs. (1), (2) or (3) // Vanilla-critic-provided loss for actor
Lmcritic
ω ← Eqs. (10) or (11) // Meta-critic-provided loss for actor

φold = φ− η∇φLcritic // Update actor according to Lcritic only
φnew = φold − η∇φLmcritic

ω // Update actor according to Lcritic and Lmcritic
ω

meta-test:
Sample mini-batch dval from D
Lmeta(dval;φnew) or Lmeta

clip(dval;φold, φnew)← Eqs. (8) or (9) // Meta-loss
meta-optimisation
φ← φ− η(∇φLcritic +∇φLmcritic

ω ) // Update the actor parameters
ω ← ω − η∇ωLmeta or ω − η∇ωLmeta

clip // Update the meta-critic parameters
end for

end for=0

as measured by validation meta loss. The update of vanilla-critic is also in the lower loop, but as it
updates as usual, we focus on the actor and meta-critic optimisation for simplicity of exposition.

In this setup the meta-critic is a neural network hω(dtrn;φ) that takes as input some featurisation of
the actor φ and the states and actions in dtrn. The meta-critic network must produce a scalar output,
which we can then treat as a loss Lmcritic

ω := hω , and must be differentiable with respect to φ. We next
discuss the overall optimisation flow and the specific meta-critic architecture.

Meta-Optimisation Flow. To optimise Eq. (5), we iteratively update the meta-critic parame-
ter ω (upper-level) and actor and vanilla-critic parameters φ and θ (lower-level). At each it-
eration, we perform: (i) Meta-train: Sample a mini-batch of transitions and putatively update
policy φ based on the vanilla-critic-provided Lcritic and the meta-critic-provided Lmcritic

ω losses.

Figure 1: Meta-critic for OffP-AC. Train and val-
idation data are sampled from the replay buffer
during meta-train and meta-test. Actor parame-
ters are updated based on vanilla-critic- and meta-
critic-provided losses. Meta-critic parameters are
updated by the meta-loss.

(ii) Meta-test: Sample another mini-batch of tran-
sitions to evaluate the performance of the updated
policy according to Lmeta. (iii) Meta-optimisation:
Update meta-critic ω to maximize the performance
on the validation batch, and perform the real actor
update according to both losses. Thus the meta-critic
co-evolves with the actor as they are trained online
and in parallel. Figure 1 and Alg. 1 summarize the
process and the details of each step are explained
next. Meta-critic can be flexibly integrated with any
OffP-AC algorithms, and the further implementation
details for DDPG, TD3 and SAC are in the supple-
mentary material.

Updating Actor Parameters (φ). During meta-
train, we sample a mini-batch of transitions dtrn =
{(si, ai, ri, si+1)} with batch size N from the replay
buffer D. We update the policy using both losses as:

φnew = φ− η ∂ L
critic(dtrn)

∂φ
− η ∂ L

mcritic
ω (dtrn)

∂φ
.

(6)
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We also compute a separate update:

φold = φ− η ∂L
critic(dtrn)

∂φ
(7)

that only leverages the vanilla-critic-provided loss. If meta-critic provided a beneficial source of loss,
φnew should be a better parameter than φ, and in particular a better parameter than φold. We will use
this comparison in the next meta-test step.

Updating Meta-Critic Parameters (ω). To train the meta-critic, we sample another mini-batch of
transitions: dval = {(sval

i , a
val
i , r

val
i , s

val
i+1)} with batch size M . The use of a validation batch for

bi-level meta-optimisation [8, 29] ensures the meta-learned component does not overfit. As our
framework is off-policy, this does not incur any sample efficiency cost. The meta-critic is then
updated by a meta-loss ω ← ω − ηLmeta(·) that measures actor performance after learning.

Meta-Loss Definition. The most intuitive meta-loss definition is the validation performance of
updated actor φnew as measured by the normal critic:

Lmeta = Lcritic(dval;φnew). (8)
However, we find it helpful for optimisation efficiency and stability to optimise the clipped difference
between updates with- and without meta-critic’s input as:

Lmeta
clip = tanh(Lcritic(dval;φnew)− Lcritic(dval;φold)). (9)

This is simply a monotonic re-centering and re-scaling of Lcritic. (The parameter ω that minimizes
Lmeta
clip as Eq. (9) also minimizes Lmeta of Eq. (8) and vice-versa.) Note that in Eq. (9) the updated actor

φnew depends on the feedback given by meta-critic ω and φold does not. Thus only the first term is
optimised for ω. In this setup the Lcritic(dval;φnew) term should obtain high reward/low loss on the
validation batch and the latter Lcritic(dval;φold) provides a baseline, analogous to the baseline widely
used to accelerate and stabilize the policy-gradient RL. tanh ensures meta-loss range is always nicely
distributed in (−1, 1), and caps the magnitude of the meta-gradient. In essence, meta-loss is for the
agent to ask itself: “Did meta-critic learning improve validation performance compared to vanilla
learning?”, and adjusts meta-critic ω accordingly. We will compare the options Lmeta and Lmeta

clip later.

Designing Meta-Critic (hω). The meta-critic hω implements the additional loss for actor. The
design-space for hω has several requirements: (i) Its input must depend on the policy parame-
ters φ, because this meta-critic-provided loss is also used to update the policy. (ii) It should be
permutation invariant to transitions in dtrn, i.e., it should not make a difference if we feed the
randomly sampled transitions indexed [1,2,3] or [3,2,1]. A naivest way to achieve (i) is given in
MetaReg [2] which meta-learns a parameter regularizer: hω(φ) =

∑
i ωi|φi|. Although this form

of hω acts directly on φ, it does not exploit state information, and introduces a large number of
parameters in hω, as φ may be a high-dimensional neural network. Therefore, we design a more
efficient and effective form of hω that also meets both of these requirements. Similar to the feature
extractor in supervised learning, the actor needs to analyse and extract information from states
for decision-making. We assume the policy network can be represented as πφ(s) = π̂(π̄(s)) and
decomposed into the feature extraction π̄φ and decision-making π̂φ (i.e., the last layer of the full
policy network) modules. Thus the output of the penultimate layer of full policy network is just
the output of feature extraction π̄φ(s), and such output of feature jointly encodes φ and s. Given
this encoding, we implement hw(dtrn;φ) as a three-layer multi-layer perceptron fω whose input
is the extracted feature from π̄φ(s). Here we consider two designs for meta-critic (hω): using our
joint feature alone (Eq. (10)) or augmenting the joint feature with states and actions (Eq. (11)):

hw(dtrn;φ) =
1

N

N∑
i=1

fω(π̄φ(si)), (10) hw(dtrn;φ) =
1

N

N∑
i=1

fω(π̄φ(si), si, ai). (11)

hω provides as an auxiliary critic whose input is based on the batch-wise set-embedding [43] of
our joint actor-state feature. That is to say, dtrn is a randomly sampled mini-batch transitions from
the replay buffer, and then s (and a) of transitions are inputted to hω, and finally we obtain the
meta-critic-provided loss for dtrn. Here, our design of Eq. (11) also includes the cues in LIRPG
and EPG where si and ai are used as the input of their learned reward and loss respectively. We
set a softplus activation to the final layer of hω, following the idea in TD3 that vanilla critic may
over-estimate and so the a non-negative additional actor loss can mitigate such over-estimation.
Moreover, note that only si (and ai) from dtrn are used to calculate Lcritic and Lmcritic

ω , while si, ai,
ri and si+1 are all used for optimising the vanilla critic.
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4 Experiments and Evaluation

We take the algorithms DDPG, TD3 and SAC as our vanilla baselines, and denote their enhancements
by meta-critic as DDPG-MC, TD3-MC, SAC-MC. All -MCs augment their built-in vanilla critic with
the proposed meta-critic. We take Eq. (10) and Lmeta

clip as the default meta-critic setup, and compare
alternatives in the ablation study. For our implementation of meta-critic, we use a three-layer neural
network with an input dimension of π̄ (300 in DDPG and TD3, 256 in SAC), two hidden feed-forward
layers of 100 hidden nodes each, and ReLU non-linearity between layers.

Implementation Details. We evaluate the methods on a suite of seven MuJoCo tasks [39] in OpenAI
Gym [4], two MuJoCo tasks in rllab [5], and a simulated racing car TORCS [22]. For MuJoCo-Gym,
we use the latest V2 tasks instead of V1 used in TD3 and the old-SAC [12] without modification to
their original environment or reward. We use the open-source implementations “OurDDPG”2, TD33

and SAC4. Here, “OurDDPG” is the re-tuned version of DDPG implemented in Fujimoto et al. [9]
with the same hyper-parameters. In MuJoCo cases we integrate our meta-critic with learning rate
0.001. The details of TORCS hyper-parameters are in the supplementary material. Our demo code
can be viewed on https://github.com/zwfightzw/Meta-Critic.

4.1 Evaluation of Meta-Critic OffP-AC Learning

DDPG. Figure 2 shows the learning curves of DDPG and DDPG-MC. The results in each task are
averaged over 5 random seeds (trials) and network initialisations. The standard deviation intervals
are shown as shaded regions over time steps. Following Fujimoto et al. [9], curves are uniformly
smoothed for clarity (window_size=10 for TORCS, 30 for others). We run MuJoCo-Gym tasks for
1-10 million depending on the environment, rllab tasks for 3 million and TORCS experiment for 100
thousand steps. Every 1000 steps we evaluate our policy over 10 episodes with no exploration noise.
From Figure 2, DDPG-MC generally outperforms DDPG baseline in terms of the learning speed and
asymptotic performance. Furthermore, -MC usually has smaller variance. The summary results for
all tasks using the vanilla baseline and -MCs in terms of max average return are shown in Table 1.
-MC usually provides consistently higher max return. We select seven tasks for plotting. The other
MuJoCo tasks “Reacher”, “InvPend” and “InvDouPend” have reward upper bounds that all methods
can reach quickly without obvious differences.
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Figure 2: Learning curve Mean-STD of vanilla DDPG and DDPG-MC for continuous control tasks.

TD3 and SAC. Figure 3 reports the learning curves for TD3. For some tasks the vanilla TD3’s
performance declines in the long run, while TD3-MC shows improved stability with much higher
asymptotic performance. Thus TD3-MC provides comparable or better learning performance in each
case, while Table 1 shows the clear improvement in the max average return. For SAC in Figure 4,
note that we use the most recent update of SAC [13], which is actually the combination of SAC+TD3.
Although SAC+TD3 is arguably the strongest existing method, SAC-MC still gives a clear boost on
the asymptotic performance for many tasks, especially the most challenging TORCS.

2https://github.com/sfujim/TD3/blob/master/OurDDPG.py
3https://github.com/sfujim/TD3/blob/master/TD3.py
4https://github.com/pranz24/pytorch-soft-actor-critic
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Table 1: Comparison of RL algorithms and their online meta-learning enhancements, including
meta-learner PPO-LIRPG [44]. Max Average Return over 5 trials over all time steps. Max value for
each comparison is in bold, and max value overall is underlined.

Environment DDPG DDPG-MC TD3 TD3-MC SAC SAC-MC PPO PPO-LIRPG
HalfCheetah 8440.2 15808.9 12735.7 15064.0 16651.8 16815.9 2061.5 1882.6
Hopper 1871.1 2776.7 3580.3 3670.4 3610.6 3738.4 3762.0 2750.0
Walker2d 2920.2 4543.5 5942.7 6298.0 6398.8 7164.9 4432.6 3652.9
Ant 2375.4 3661.1 5914.8 6280.0 6954.4 7204.3 684.2 23.6
Reacher -3.6 -3.7 -3.0 -2.9 -2.8 -2.7 -6.08 -7.53
InvPend 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 988.2 971.6
InvDouPend 9307.5 9326.5 9357.4 9358.8 9359.6 9359.6 7266.0 6974.9
HalfCheetah(rllab) 6245.6 7239.1 7648.2 8552.1 10011.0 10597.0 - -
Ant(rllab) 2300.8 2929.4 3672.6 4776.8 8014.8 8353.8 - -
TORCS 6188.1 9353.3 14841.7 33684.2 24674.7 32869.0 - -
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Figure 3: Learning curve Mean-STD of vanilla TD3 and TD3-MC for continuous control tasks.

Comparison vs PPO-LIRPG. Intrinsic Reward Learning for PPO [44] is the most related method
to our work in performing online single-task meta-learning of an additional reward/loss. Their
original PPO-LIRPG evaluated on a modified environment with hidden rewards. Here we apply
it to the standard unmodified learning tasks that we aim to improve. Table 1 tells that: (i) In this
conventional setting, PPO-LIRPG worsens rather than improves basic PPO performance. (ii) Overall
OffP-AC methods generally perform better than on-policy PPO for most environments. This shows
the importance of our meta-learning contribution to the off-policy setting. In general Meta-Critic is
preferred compared to PPO-LIRPG because the latter only provides a scalar reward bonus that helps
the policy indirectly via high-variance policy-gradient updates, while ours provides a direct loss.

Summary. Table 1 and Figure 5 summarize all the results by max average return. SAC-MC
generally performs best and -MCs are generally comparable or better than their corresponding vanilla
alternatives. -MCs usually provide improved variance in return compared to their baselines.
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Figure 4: Learning curve Mean-STD of vanilla SAC and SAC-MC for continuous control tasks.
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Figure 5: Comparison of RL algorithms and their online meta-learning enhancement. Box plots of the Max
Average Return over 5 trials of all time steps.

4.2 Further Analysis

Loss and Optimisation Analysis. We take tabular MDP [6] (|S| = 2, |A| = 2) as an example using
DDPG. Figure 6 first reports the normal Lcritic of actor, and the introduced hω (i.e., Lmcritic

ω ) and
Lmeta
clip over 5 trials. We also plot model optimisation trajectories (pink dots) via a 2D weight-space

slice in right part of Figure 6. They are plotted over the average reward surface. Following the
network visualization in Li et al. [18], we calculate the subspace to plot as: Let φi denote model
parameters at episode i and the final estimate as φn (here n = 100). We apply PCA to matrix
M = [φ0 − φn, . . . , φn−1 − φn], and take the two most explanatory directions of this optimisation
path. Parameters are then projected onto the plane defined by these directions for plotting; and
models at each point are densely evaluated to get average reward. Figure 6 shows: (i) DDPG-MC
convergences faster to a lower value of Lcritic, demonstrating the meta-critic’s ability to accelerate
learning. (ii) Meta-loss is randomly initialised at the start, but as ω begins to be trained via meta-test
on validation data, meta-loss drops swiftly below zero and then φnew is better than φold. In the late
stage, meta-loss goes towards zero, indicating all of hω’s knowledge has been distilled to help the
actor. Thus meta-critic is helpful in defining better update directions in the early stages of learning
(but note that it can still impact later stage learning via changing choices made early). (iii) Lmcritic

ω
converges smoothly under the supervision of meta-loss. (iv) DDPG-MC has a very direct and fast
optimisation movement to the high reward zone of parameter space, while the vanilla DDPG moves
slowly through the low reward space before finally finding the direction to the high-reward zone.

Figure 6: Left: Loss analysis of our algorithm. Right: Visualization of optimisation dynamics of
vanilla DDPG (left) and DDPG-MC (right). The red star denotes the final optimisation point.

Ablation on hω design. We run Walker2d under SAC-MC with the alternative hω from Eq. (11)
or in MetaReg [2] format (input actor parameters directly). In Table 2, we record the max average
return and sum average return (area under the average reward curve) of evaluations over all time steps.
Eq. (11) achieves the highest max average return and our default hω (Eq. (10)) attains the highest
mean average return. We can also see some improvement for hω(φ) in MetaReg format, but the huge
number (73484) of parameters is expensive. Overall, all meta-critic designs provide at least a small
improvement on vanilla SAC.

Ablation on meta-loss design. We considered two meta-loss designs in Eqs. (8&9). For Lmeta
clip in

Eq. (9), we use Lcritic(dval;φold) as a baseline to improve numerical stability of the gradient update.
To evaluate this design, we also compare using vanilla Lmeta in Eq. (8). The last column in Table 2
shows vanilla Lmeta barely improves on vanilla SAC, validating our meta-loss design.
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Table 2: Ablation study on different designs of Lmcritic
ω (i.e., hω) and Lmeta applied to SAC-Walker2d.

Max and Sum Average Return over 5 trials of all time steps. Max value in each row is in bold.

SAC
Lmeta
clip : tanh(φnew − φold) Lmeta : φnew

hω(π̄φ) hω(π̄φ, s, a) hω(φ) hω(π̄φ)

Max Average Return 6398.8 ± 289.2 7164.9 ± 151.3 7423.8 ± 780.2 6644.3 ± 1815.6 6456.1 ± 424.8
Sum Average Return 53,695,678 61,672,039 57,364,405 58,875,184 52,446,717

Controlling for compute cost and parameter count. We find that meta-critic increases 15-30%
compute cost and 10% parameter count above the baselines (the latter is neglectable as it is small
compared to the replay buffer’s memory footprint) during training, and this is primarily attributable
to the cost of evaluating the meta-loss Lmeta

clip and hence Lmcritic
ω . To investigate whether the benefit of

meta-critic can be replicated simply by increasing compute expenditure or model size, we perform
control experiments by increasing the vanilla baselines’ compute budget or parameter count to match
the -MCs. Specifically, if meta-critic takes K% more compute than the baseline, then we re-run the
baseline with K% more update steps per iteration. This ‘+updates’ condition provides the baseline
with more mini-batch samples while controlling the number of environment interactions. Note that
due to implementation constraints of SAC, increasing updates in ‘SAC+updates’ requires taking at
least 2x gradient updates per environment step compared to SAC and SAC-MC. Thus it takes 100%
more updates than SAC and significantly more compute time than SAC-MC. To control for parameter
count, if meta-critic takesN% more parameters than baseline, then we increase the baselines’ network
size with N% more parameters by linearly scaling up the size of all hidden layers (‘+params’).

The max average return results for the seven tasks in these control experiments are shown in Table 3,
and the detailed learning curves of the control experiments are in the supplementary material. Overall,
there is no consistent benefit in providing the baseline with more compute iterations or parameters,
and in many environments they perform worse than the baseline or even fail entirely, especially in
‘+updates’ condition. Thus -MCs’ good performance can not be simply replicated by a corresponding
increase in gradient steps or parameter size taken by the baseline.

Table 3: Controlling for compute cost and parameter count. Max Average Return over 5 trials over
all time steps. Max value for each comparison is in bold.

Environment DDPG DDPG
+updates

DDPG
+params

DDPG
-MC TD3 TD3

+updates
TD3

+params
TD3
-MC SAC SAC

+updates
SAC

+params
SAC
-MC

HalfCheetah 8440.2 15004.5 15153.9 15808.9 12735.7 11585.2 11980.7 15064.0 16651.8 16309.9 16339.3 16815.9
Hopper 1871.1 1753.0 2438.0 2776.7 3580.3 2903.1 1460.0 3670.4 3610.6 3510.8 3441.6 3738.4
Walker2d 2920.2 3826.5 2964.3 4543.5 5942.7 3414.0 3185.4 6298.0 6398.8 6363.7 6423.7 7164.9
Ant 2375.4 1504.2 3615.1 3661.1 5914.8 1262.3 984.7 6280.0 6954.4 6253.6 5999.1 7204.3
HalfCheetah(rllab) 6245.6 6526.0 6589.0 7239.1 7648.2 8021.8 9003.0 8552.1 10011.0 9008.3 9122.0 10597.0
Ant(rllab) 2300.8 2875.4 2763.7 2929.4 3672.6 2838.1 3714.3 4776.8 8014.8 6464.4 6868.8 8353.8
TORCS 6188.1 4932.5 8104.7 9353.3 14841.7 20473.2 27850.4 33684.2 24674.7 11946.7 24932.4 32869.0

Discussion. We introduce an auxiliary meta-critic that goes beyond the information available to
vanilla critic to leverage measured actor learning progress (Eq. (9)). This is a generic module that can
potentially improve any off-policy actor-critic derivative-based RL method for a minor overhead at
train time, and no overhead at test time; and can be applied directly to single tasks without requiring
task-families as per most other meta-RL methods [3, 7, 15, 30]. Our method is myopic, in that it
uses a single inner (base) step per outer (meta) step. A longer horizon look-ahead may ultimately
lead to superior performance. However, this incurs the cost of additional higher-order gradients and
associated memory use, and risk of unstable high-variance gradients [21, 29]. New meta-optimizers
[24] may ultimately enable these issues to be solved, but we leave this to future work.

5 Conclusion

We present Meta-Critic, a derivative-based auxiliary critic module for off-policy actor-critic reinforce-
ment learning methods that can be meta-learned online during single task learning. The meta-critic is
trained to provide an additional loss for the actor to assist the actor learning progress, and leads to long
run performance gains in continuous control. This meta-critic module can be flexibly incorporated
into various contemporary OffP-AC methods to boost performance. In future work, we plan to apply
the meta-critic to conventional meta-learning with multi-task and multi-domain RL.
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Broader Impact

We introduced a framework for meta RL where learning is improved through the addition of an
auxiliary meta-critic which is trained online to maximise learning progress. This technology could
benefit all current and potential future downstream applications of reinforcement learning, where
learning speed and/or asymptotic performance can still be improved – such as in game playing agents
and robot control.

Faster reinforcement learning algorithms such as meta-critic could help to reduce the energy re-
quirements training agents, which can add up to a significant environmental cost [35]; and bring us
one step closer to enabling learning-based control of physical robots, which is currently rare due to
the sample inefficiency of RL algorithms in comparison to the limited robustness of real robots to
physical wear and tear of prolonged operation. Returning to our specific algorithmic contribution,
introducing learnable reward functions rather than relying solely on manually specified rewards
introduces a certain additional level of complexity and associated risk above that of conventional
reinforcement learning. If the agent participates in defining its own reward, one might like to be
able to interpret the learned reward function and validate that it is reasonable and will not lead to the
robot learning to perform undesirable behaviours. This suggests that development of explainable AI
techniques suited for reward function analysis could be a good topic for future research.
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