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Abstract

We study the statistical problem of estimating a rank-one sparse tensor corrupted
by additive gaussian noise, a Gaussian additive model also known as sparse tensor
PCA. We show that for Bernoulli and Bernoulli-Rademacher distributed signals
and for all sparsity levels which are sublinear in the dimension of the signal, the
sparse tensor PCA model exhibits a phase transition called the all-or-nothing phe-
nomenon. This is the property that for some signal-to-noise ratio (SNR) SNRc

and any fixed ✏ > 0, if the SNR of the model is below (1� ✏) SNRc, then it is
impossible to achieve any arbitrarily small constant correlation with the hidden
signal, while if the SNR is above (1 + ✏) SNRc, then it is possible to achieve al-
most perfect correlation with the hidden signal. The all-or-nothing phenomenon
was initially established in the context of sparse linear regression, and over the
last year also in the context of sparse 2-tensor (matrix) PCA, Bernoulli group test-
ing and generalized linear models. Our results follow from a more general result
showing that for any Gaussian additive model with a discrete uniform prior, the
all-or-nothing phenomenon follows as a direct outcome of an appropriately de-
fined “near-orthogonality” property of the support of the prior distribution.

1 Introduction

A central question in information theory and statistics is to establish the fundamental limits for
recovering a planted structure in high-dimensional models. A common theme in these works is
the presence of phase transitions, where the behavior of optimal estimators changes dramatically at
critical values. An infamous example is the PCA transition, where one observes a matrix Y 2 Rp⇥p,
where

Y =

p
�pxx>

+W ,

where x is drawn uniformly from the unit sphere in Rp and W is an independent Gaussian Wigner
matrix. When � < 1, then as p ! 1 the leading eigenvector of Y is asymptotically uncorrelated
with x; on the other hand, when � > 1, the correlation between the hidden signal x and the leading
eigenvector of Y remains positive as p ! 1 [BBP05, FP07, BGN11].

A number of recent works establish that several sparse estimation tasks in high dimensions
evince the following even more striking phase transition, called the “all-or-nothing” phenomenon
[GZ17, RXZ19b, Zad19]: below a critical signal-to-noise ratio (SNR), it is impossible to achieve
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any correlation with the hidden signal, but above this critical SNR, it is possible to achieve almost
perfect correlation with the hidden signal. In other words, at any fixed SNR, one can either recover
the signal perfectly, or nothing at all.

In prior work, the all-or-nothing phenomenon has been established in a smattering of different mod-
els and sparsity regimes. Understanding the extent to which this phenomenon holds more gener-
ally, beyond the models and sparsity conditions previously considered, is the main motivation of
the present work. The all-or-nothing phenomenon for sparse linear regression was initially conjec-
tured by [GZ17]. That work established that a version of this phenomenon holds for the maximum
likelihood estimator (MLE): below a given threshold, the MLE does not achieve any constant cor-
relation with the hidden signal, while above the same threshold the MLE achieves almost perfect
correlation. However, this result does not rule out the existence of other estimators with better per-
formance. Subsequently, [RXZ19b] proved that the all-or-nothing phenomenon indeed holds for
sparse linear regression, when the sparsity level k satisfies k  p

1
2�✏ for some ✏ > 0, where p is

the dimension of the model. Furthermore, [RXZ19a] provided generic conditions under which the
phenomenon holds for sparse linear regression when k/p = � > 0 where � > 0 is a constant which
shrinks to zero. Following these works, [BM19] showed that the sparse PCA model with binary and
Rademacher non-zero entries also exhibits the all-or-nothing phenomenon when the sparsity level k
satisfies p

12
13+✏  k ⌧ p. The “all-or-nothing” phenomenon has also recently been established in

the context of the Bernoulli group testing model [TAS20]. That work proves the existence of this
phenomenon in an extremely sparse setting, where k scales polylogarithmically with the dimension
of the model. Finally, it was recently shown in [LBM20] using analytical non-rigorous methods,
that the all-or-nothing phenomenon also holds for various generalized linear models with a k-sparse
signal, under the assumption p

8
9+✏  k ⌧ p.

1.1 Contribution

In this work, in an attempt to shed some light on the fundamental reason for the existence of the all-
or-nothing phenomenon, we focus on a simple Gaussian model, which we refer to as the Gaussian
additive model, in which one observes a hidden signal drawn from some known prior, corrupted
with additive Gaussian noise. For example, all PCA models, and in particular the sparse PCA model
considered by [BM19, BMR20], are special cases of Gaussian additive models. We focus on the
case where the prior is an arbitrary uniform distribution over some discrete subset of the Euclidean
sphere.

We make the following contributions.

• We show that for this additive Gaussian model, the all-or-nothing phenomenon is equiva-
lent to a simple criterion on the Kullback-Lieber divergence between the model and a null
distribution with i.i.d. Gaussian entries.

• We show that, under an appropriate “near-orthogonality” condition on the prior, the all-or-
nothing phenomenon always holds.

• As an application, we study sparse tensor PCA, in which the hidden signal is a rank-
one tensor x⌦d 2 (Rp

)
⌦d, where the entries of x are k-sparse. We show that for

both the Bernoulli and Bernoulli-Rademacher prior, all sparsity levels k = o(p), and all
d � 2, this model satisfies the aforementioned near-orthogonality condition, and therefore
evinces the all-or-nothing phenomenon. This confirms a conjecture implicit in several prior
works [BM19, BMV+18, LKZ17, PWB20, BMR20]. To the best of our knowledge this is
the first result that proves the all-or-nothing phenomenon for all sparsity levels which are
sublinear in the dimension of the model.

Omitted proofs and lemmas appear in the appendix.

1.2 Comparison with previous work

Our results for sparse tensor PCA are closely connected to several prior works.

[BMV
+

18] and [PWB20] These papers study the sparse tensor PCA problem with a Bernoulli-
Rademacher prior. Their focus is on optimal recovery of the hidden signal in the regime where the
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sparsity satisfies k = �p for some constant � > 0. [BMV+18] and [PWB20] identify two thresholds,
SNRlower and SNRupper, such that below the first threshold, no constant correlation with the hidden
signal is possible, while above the second threshold it is possible to obtain constant correlation with
the signal. Interestingly, as � ! 0, the two thresholds become identical. Both papers use a trick
known as the conditional second moment method, and our argument in Section 4 is closely inspired
by their techniques.

Our results differ from theirs in two important respects. First, though taking the sparse limit � ! 0

is suggestive, these works do not offer a rigorous way to establish the presence of a threshold when
k = o(p). More importantly, the results of [BMV+18] and [PWB20] elucidate the threshold between
“no recovery” (zero correlation with hidden signal) and “partial recovery” (constant correlation with
hidden signal) for sparse tensor PCA. By contrast, we focus on the much sharper transition between
no recovery and almost perfect recovery.

[BM19] and [BMR20] Unlike [BMV+18] and [PWB20], [BM19] and [BMR20] study the gen-
uinely sublinear setting when k = o(p) in the special case where d = 2. While they prove very
precise results characterizing the limiting free energy of the sparse (matrix) PCA problem, their
techniques require that k � p

12
13+" for some " > 0. Our results are less fine, insofar as we do not

precisely characterize the free energy for arbitrary sparsity and SNR, but we show that the all-or-
nothing phenomenon holds for a much broader range of parameters via a much simpler argument.
Moreover, our results apply to the general tensor PCA problem, for all d � 2.

2 Main Results

2.1 General framework: the Gaussian Additive Model

We consider throughout the following observation model which we refer to as a Gaussian additive
model:

Y =

p
�X+ Z , (1)

where X 2 RN is drawn from a uniform discrete prior distribution PN on the unit sphere in RN

and Z 2 RN has i.i.d. standard Gaussian entries. We denote by Q�,N the law of Y, where we use
the subscripts � and N to emphasize that this law depends on the signal-to-noise ratio � and the
dimension N .

Given � � 0, we let

MMSEN (�) := EkX� E[X|Y]k2 Y ⇠ Q�,N ,

where X and Y are as in (1). This quantity is the smallest mean squared error achievable by any
estimator of X based on the observation Y. The optimal estimator E[X|Y] is commonly referred to
as the Bayes-optimal estimator. The fact that kXk = 1 almost surely implies that MMSEN (�)  1,
since this mean-squared error is always achievable by a trivial estimator which is identically zero.

We say that a sequence of distributions {PN} satisfies the the all-or-nothing phenomenon with
critical SNR {�N} if

lim
N!1

MMSEN (��N ) =

⇢
1 if � < 1

0 if � > 1 .

In other words, above some critical value, it is possible to estimate X nearly perfectly, but below this
critical value it is not possible to estimate X at all, in the sense that the best estimator is no better
than the trivial zero estimator.

Recall that we have assumed that PN is the uniform distribution on some finite subset. Denote the
cardinality of this subset by MN . We assume throughout that MN ! 1 as N ! 1. We also make
the following assumption, which requires that the distribution PN is sufficiently spread out.
Assumption 1. For independent draws X,X0 from PN , we have

lim
t!1

lim sup
N!1

1

logMN

log P
⌦2
N

[hX,X0i � t]  �1 .

In other words, Assumption 1 holds as long as the asymptotic probability that X and X0 are very
near each other is not much larger than the probability that X = X0.
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2.2 Main Results: the all-or-nothing behavior for the Gaussian Additive Model

Our first main result shows that, under this assumption, there is an easy characterization of the priors
which satisfy the all-or-nothing phenomenon. We denote by D the Kullback-Leibler divergence (see,
e.g., [PW15, Section 6]); given two probability distributions P1,P2 with P1 absolutely continuous
to P2,

D(P1 kP2) := EP2


dP1

dP2
log

✓
dP1

dP2

◆�
.

Theorem 1. Under Assumption 1, a sequence {PN} satisfies the all-or-nothing phenomenon if
and only if D(Q2 logMN ,N kQ0,N ) = o(logMN ). Moreover, in this situation, we can take �N =

2 logMN .

To prove Theorem 1, we employ a well known connection between the Kullback-Liebler divergence
and the MMSE, known as the I-MMSE relation (see, e.g., [GSV05]),

d

d�

1

�N

D(Q��N ,N kQ0,N ) =
1

2
� 1

2
MMSEN (��N ) .

This relation implies the following characterization.
Proposition 1. The all-or-nothing phenomenon holds with critical SNR �N if and only if

lim
N!1

1

�N

D(Q��N ,N kQ0,N ) =
1

2
(� � 1)+ 8� � 0 ,

where (x)+ := max{x, 0}.

Then, the proof of Theorem 1 exploits the fact that � 7! 1
�N

D(Q��N ,N kQ0,N ) is nonnegative,
increasing, and convex. Therefore, specifying the limit for a few well-chosen values of � is enough
to establish the entire limit. We present a complete proof in Section 3.

One can naturally ask whether the above characterization yields any simple criteria for a prior to
evince the all-or-nothing phenomenon. Our next result shows that the all-or-nothing phenomenon is
implied by a simple condition on the overlap of two independent draws from PN .

The condition is outlined in the following definition.
Definition 1. Given a non-decreasing function r : [�1, 1] ! R�0, we say {PN} has overlap rate
function r if

lim sup
N!1

1

logMN

log P
⌦2
N

[hX,X0i � t]  �r(t) ,

where X and X0 are independent draws from PN .

Our following result shows that a lower bound on the growth of the overlap rate function suffices to
establish the all-or-nothing phenomenon.
Theorem 2. Suppose that {PN} has overlap rate function r satisfying for all t 2 [0, 1],

r(t) � 2t

1 + t
. (2)

Then {PN} satisfies the all-or-nothing phenomenon at �N = 2 logMN .

In words, the condition requests a particular decay condition on the upper tail of the overlap. For ex-
ample, notice that the condition is trivially satisfied when the support consists of pairwise orthogonal
vectors, since in that case r(t) = 1 for all t 2 (0, 1]. Hence, the all-or-nothing phenomenon holds
for any uniform prior distribution supported on a family of orthogonal vectors on the sphere. In the
next section we present more complicated examples of prior distributions satisfying this condition.
The proof of Theorem 2 is presented in Section 4.

We note that, unlike the characterization given in Theorem 1, the condition in Theorem 2 is sufficient
but not necessary. To illustrate this, we consider the problem of estimating a sparse vector. Specif-
ically, we define the sparse vector model to be the model given in (1), where we write N = p and
where Pp is the uniform distribution over the subset {0, 1/

p
k}p with exactly k nonzero entries.1

1We denote the dimension by p rather than N in anticipation of the generalization which will appear in the
following section.
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This problem can be viewed as a limiting (d = 1) case of the model presented in Section 2.3. As the
following result shows, one can prove directly on the basis of Theorem 1 that this model exhibits the
all-or-nothing phenomenon; however, it does not satisfy the overlap condition of Theorem 2.
Proposition 2. For any k = o(p),

lim sup
p!1

1

logMp

log P
⌦2
p

[hX,X0i � t] > � 2t

1 + t
8t 2 (0, 1) ,

so that {Pp} does not possess an overlap rate function satisfying (2). However, if k = o(p), then the
sparse vector model exhibits the all-or-nothing phenomenon with critical SNR 2k log

�
p

k

�
.

2.3 Application: the sparse tensor PCA model

We apply our framework to a well-studied inference model called sparse tensor PCA, and show
that it exhibits the all-or-nothing phenomenon for all sublinear sparsity levels. This model is a
generalization of the sparse vector model considered in Proposition 2 to higher dimension. As we
will see, when d � 2, Theorem 2 directly yields a proof of the all-or-nothing phenomenon.

For some d � 2, we define first the tensor PCA model to be the model given in (1), where the vectors
Y and Z live in dimension N = p

d and the discrete prior distribution PN is supported on a subset of
the vectorized d-tensors X = x⌦d, where this notation refers to the vector whose entry indexed by
(i1, . . . , id) 2 [p]

d is xi1 · · ·xid . We assume the vector x 2 Rp is drawn from a discrete distribution
ePp on the unit sphere in Rp, which induces a natural prior distribution PN on the tensors x⌦d.

We define the sparse tensor PCA model to be the above tensor PCA model with one of the following
two prior distributions:

Bernoulli: ePp is the uniform distribution over the subset of {0, 1/
p
k}p with exactly k nonzero

entries.
Bernoulli-Rademacher: ePp is the uniform distribution over the subset of {�1/

p
k, 0, 1/

p
k}p

with exactly k nonzero entries.

In the supplement, we prove the following elementary bound.

Proposition 3. Suppose that k = o(p) and that ePp is either Benoulli or Bernoulli-Rademacher, and
let PN be the induced prior distribution on RN

= Rp
d

. Then for any t 2 [0, 1] it holds

lim
N!+1

1

logMN

log P
⌦2
N

[hX,X0i � t]  � 2t

1 + t
.

Combining this bound with Theorem 2 immediately yields our main result for sparse tensor PCA.
Theorem 3. For any d � 2 and k = o(p), the sparse tensor PCA model

Y = �

r
2k log

⇣
p

k

⌘
x⌦d

+ Z , x ⇠ ePp

with Bernoulli or Bernoulli-Rademacher prior exhibits the all-or-nothing phenomenon:

lim
p!1

Ekx⌦d � E[x⌦d|Y]k2 =

⇢
1 if � < 1

0 if � > 1 .

3 Proof of Theorem 1

In this section, we present the proof of our main equivalence, Theorem 1. As noted above, it is a
consequence of Proposition 1, whose proof appears in the appendix.

We begin by giving a brief outline of the proof. It is simple to show that the function � 7!
1

�N
D(Q��N ,N kQ0,N ) possesses three key properties: it is increasing, it is 1

2 -Lipschitz, and as
N ! +1 it is bounded below by the function 1

2 (� � 1)+. As a result, showing that it is near zero
when � = 1 immediately implies that it in fact agrees with 1

2 (� � 1)+ for all � � 0; via Proposi-
tion 1, this implies that the all-or-nothing phenomenon holds. To establish the converse claim that
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the all-or-nothing phenomenon implies that the bound on D(Q2 logMN ,N kQ0,N ) holds, it suffices
to show that if the all-or-nothing phenomenon holds with SNR {�N}, then we can always take
�N = 2 logMN . To do this, we show that the “all” part of the all-or-nothing phenomenon implies
that the the mutual information between X and Y under (1) must be approximately �N

2 when � > 1.
On the other hand, if X can be perfectly recovered from Y, then the mutual information must be
approximately equal to the entropy of PN , which is logMN . Together, these facts, combined with
the geometric reasoning described above, yield the claim.

We now give the full proof. Let us first show that if D(Q2 logMN ,N kQ0,N ) = o(logMN ), then
{PN} satisfies the all-or-nothing phenomenon with critical SNR equal to 2 logMN . Setting �N =

2 logMN , we have by assumption that

lim
N!1

1

�N

D(Q�N ,N kQ0,N ) = 0 , (3)

which, since D(Q��N ,N kQ0,N ) is nonnegative and nondecreasing as a function of � (Lemma 1),
implies that

lim
N!1

1

�N

D(Q��N ,N kQ0,N ) = 0 8� 2 [0, 1] . (4)

By Lemma 3, we see

lim inf
N!1

1

�N

D(Q��N ,N kQ0,N ) � 1

2
(� � 1) .

However, since 1
�N

D(Q��N ,N kQ0,N ) is 1
2 -Lipschitz (Lemma 1), we have

lim sup
N!1

1

�N

D(Q��N ,N kQ0,N )  1

2
|� � 1|+ lim sup

N!1

1

�N

D(Q�N ,N kQ0,N ) =
1

2
|� � 1| .

We therefore obtain, for � � 1,

lim
N!1

1

�N

D(Q��N ,N kQ0,N ) =
1

2
(� � 1) .

Combined with (4), we obtain via Proposition 1 that {PN} satisfies the all-or-nothing phenomenon
with critical SNR 2 logMN .

In the other direction, we suppose that the all-or-nothing phenomenon holds with some SNR �N .
By Lemma 2, we can write

�N�

2
�D(Q��N ,N kQ0,N ) = D(Q

(X,Y)
��N ,N

kPN ⌦Q��N ,N ) , (5)

where Q
(X,Y)
��N ,N

indicates the joint law of X,Y generated according to (1).

Given an observation Y, let us denote by X0 a sample from the conditional distribution PN | Y. If
(X,Y) ⇠ Q

(X,Y)
��N ,N

, then this induces a joint distribution on (X,X0
) which we denote by P��N ,N .

On the other hand, if X and Y are independent, then X and X0 are independent and marginally each
has distribution PN , so the pair (X,X0

) has law P
⌦2
N

.

Applying the data processing inequality twice, we obtain for any event ⌦ that

D(Q
(X,Y)
��N ,N

kPN ⌦Q��N ,N ) � D(P��N ,N kP⌦2
N

) � d(P��N ,N (⌦) kP⌦2
N

(⌦)) ,

where d is the binary divergence function:

d(↵1 k↵2) := ↵1 log
↵1

↵2
+ (1� ↵1) log

1� ↵1

1� ↵2
.

Fix a t 2 [0, 1), and set
⌦t := {(x, x0

) : hx, x0i � t} .
Suppose (X,X0

) ⇠ P��N ,N . For any � > 1, the fact that the all-or-nothing phenomenon holds
implies that

EhX,X0i = EhX,E[X|Y]i = 1� o(1) ,
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Since hX,X0i  1 almost surely, this implies that we must also have

lim
N!1

P��N ,N (⌦t) = 1.

On the other hand, Assumption 1 implies that for t sufficiently close to 1,

lim
N!1

P
⌦2
N

(⌦t) = 0 .

Combining these observations, we obtain for any � > 1 and t sufficiently close to 1 that

lim sup
N!1

1

�N

D(Q��N ,N (X,Y) kPN ⌦Q��N ,N ) � lim sup
N!1

1

�N

d(P��N ,N (⌦t) kP⌦2
N

(⌦t))

= lim sup
N!1

1

�N

log
1

P
⌦2
N

(⌦t)
,

where we justify the final limit in Lemma 4, noting that (5) implies that
1

�N
D(Q��N ,N (X,Y) kPN ⌦Q��N ,N ) is bounded.

Under the all-or-nothing phenomenon, Proposition 1 and (5) imply that the left side of the above
inequality is 1/2. Combining this with Assumption 1, we obtain that for any � > 0, there exists
t 2 [0, 1) such that for all N sufficiently large,

1

�N

log P
⌦2
N

(⌦t) � �1

2
� �

1

logMN

log P
⌦2
N

(⌦t)  �1 + �

In particular, we must have �N � (2�O(�)) logMN for all N large enough, so that

lim inf
N!1

�N

logMN

� 2�O(�) ,

and letting � ! 0 yields

lim inf
N!1

�N

logMN

� 2 .

On the other hand, Lemma 3 implies

lim
N!1

1

�N

D(Q��N ,N kQ0,N ) � lim sup
N!1

⇢
1

2
� � logMN

�N

�
,

which, combined with Proposition 1 for some fixed � > 1, yields

lim sup
N!1

�N

logMN

 2 .

Hence, for " > 0,

lim sup
N!1

1

logMN

D(Q2 logMN ,N kQ0,N )  lim sup
N!1

1

logMN

D(Q(1+")�N ,N kQ0,N )

= 2 lim sup
N!1

1

�N

D(Q(1+")�N ,N kQ0,N )

= " .

Taking " ! 0 yields that D(Q2 logMN ,N kQ0,N ) = o(logMN ) and shows that we can take �N =

2 logMN .

4 Proof of Theorem 2: A conditional second moment method

In this section, we employ an argument known as the “conditional second moment method” to show
Theorem 2. The conditional second moment method is based on two ideas: first, rather than bound
the Kullback-Leilber divergence, it can be simpler to bound the �

2-divergence, which is always
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an upper bound. However, the �
2 divergence can be a poor upper bound for the Kullback-Leibler

divergence if the likelihood ratio has large fluctuations. The second idea is to avoid this problem by
conditioning on a high-probability event which controls these fluctuations.

We make use of the following definition which is essentially borrowed from [BMV+18, Section
3.3].

Definition 2. Write Q
(X,Y)
�,N

for the joint distribution of (X,Y) in (1). Given a sequence �N , we
say that a sequence of events ⌦N , N 2 N occurs with uniformly high probability if as N ! +1,

Q
(X,Y)
�N ,N

[⌦N |X = x] = 1� o(1),

uniformly over all x in the support of PN .

Given such a sequence, we write eQ�N ,N for the marginal law of Y when we condition on the
event ⌦N . In the appendix, we establish the following proposition.
Proposition 4. Let �N = 2 logMN . If ⌦N is a sequence of uniform high probability events, then
as N ! +1, it holds

D(Q�N ,N kQ0,N )  D(eQ�N ,N kQ0,N ) + o (logMN ) .

We now establish the following.
Theorem 4. Assume that {PN} has overlap rate function r. Let �N = 2 logMN . There exists a
uniformly high probability sequence of events ⌦N such that

lim sup
N!1

1

�N

D(eQ�N ,N kQ0,N )  sup

t2[0,1]

✓
t

1 + t
� r(t)

2

◆

+

.

The hypothesis that r(t) � 2t
1+t

implies that Assumption 1 holds, so Theorem 2 follows immediately
by combining Proposition 4, Theorem 1 and Theorem 4. For the rest section we focus on proving
Theorem 4.

Proof of Theorem 4. Let us write �N = 2 logMN . We define

⌦N = {(x, y) : |hx, yi �
p

�N |  �
1/4
N

} .

Since �N ! 1, the sequence ⌦N occurs with uniformly high probability.

We then have

deQ�N ,N

dQ0,N
(Y) = (1 + o(1))EX

⇢
⌦N (X,Y) · exp

⇣p
�N hX,Yi � �N

2

⌘�
,

which implies
 
deQ�N ,N

dQ0,N

!2

(Y) = (1+o(1))EX,X0

n
⌦N (X,Y) ⌦N (X0

,Y) · exp
⇣p

�N hX+X0
,Yi � �N

⌘o
,

where X,X0 are independent and identically distributed. Applying Fubini’s theorem, we obtain that
the chi-square divergence satisfies

1 + �
2
(eQ�N ,N ,Q0,N ) = (1 + o(1))EX,X0 [mN (X,X0

)] ,

where

mN (X,X
0
) := E

n
⌦N (X,Z) ⌦N (X

0
,Z) · exp

⇣p
�N hX +X

0
,Zi � �N

⌘o
, Z ⇠ Q0,�N .

By the rotational invariance of the Gaussian measure, it is straightforward to show that mN depends
only on the overlap hX,X

0i between X and X
0, which we denote by ⇢. We require the following

proposition.
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Proposition 5. There exists a constant C > 0 such that for all ⇢ 2 [�1, 1], we have
1

�N

logmN (⇢) 
✓

⇢

1 + ⇢

◆

+

+
C

�
1/4
N

,

where we define (⇢/(1 + ⇢))+ = 0 for ⇢ = �1.

We defer the proof of Proposition 5 to the supplement and show how this claim implies the theorem.
Recall that D(eQ�N ,N kQ0,N )  log(1 + �

2
(eQ�N ,N ,Q0,N )). We therefore know that

lim sup
N!1

1

�N

D(eQ�N ,N kQ0,N )  lim sup
N!1

1

�N

logE[mN (⇢)] , ⇢ = hX,X0i . (6)

We employ a standard large deviations argument. Fix a positive integer k. We have

E[mN (⇢)] 
k�1X

`=�k

P
⌦2
N

[⇢ � `/k] sup

t2[`/k,(`+1)/k)
mN (t)

 2k · max
�k`<k

sup

t2[`/k,(`+1)/k)
exp

 
�N

✓
t

1 + t

◆

+

+ log P
⌦2
N

[⇢ � `/k] + C�
3/4
N

!

 2k · sup

t2[�1,1]
exp

 
�N

✓
t

1 + t

◆

+

+ log PN [⇢ � t] + C�
3/4
N

+O

✓
�N

k

◆!
.

Since �N ! 1, we have

lim sup
N!1

1

�N

logE[mN (⇢)]  sup

t2[�1,1]

(✓
t

1 + t

◆

+

� r(t)

2

)
+O(1/k) ,

and letting k ! 1 and using (6) yields

lim sup
N!1

1

�N

D(eQ�N ,N kQ0,N )  sup

t2[�1,1]

(✓
t

1 + t

◆

+

� r(t)

2

)
.

Note that since r is an overlap rate function, we must have r(�1) = 0; therefore, we obtain that the
supremum on the right side is nonnegative. However, since the quantity in question is nonpositive
when t < 0, we can restrict to the interval t 2 [0, 1] without loss of generality. This proves the
claim.

5 Conclusion

This work shows that the all-or-nothing phenomenon in Gaussian additive models is equivalent
to a condition on the Kullback-Leibler divergence between the model at a particular SNR and a
standard Gaussian vector. Using this equivalence, we derive a simple condition on the overlaps
which guarantees the existence of the all-or-nothing phenomenon, and as a corollary show that this
phenomenon indeed arises in sparse tensor PCA for all sublinear sparsity levels.

While this paper gives a characterization of the all-or-nothing phenomenon for Gaussian models,
we leave open the question of whether our framework can be extended to a more general setting.
Neither the results of [RXZ19b] for sparse linear regression, nor those of [TAS20] for Bernoulli
group testing, nor of [LBM20] for sparse generalized linear models are immediately implied by our
main theorems. It may yet be possible to obtain more general results which encompass all of these
settings.

Our results hold for the Bayes-optimal estimator E[X|Y], and we conjecture that the maximum
likelihood estimator is also optimal in this setting and thereby also exhibits the all-or-nothing phe-
nomenon. However, neither of these estimators is computationally efficient in general. Interest-
ingly, in [RXZ19a] the authors study, in the context of sparse linear regression, the all-or-nothing
phenomenon for the performance of a well-studied computationally efficient algorithm called Ap-
proximate Message Passing. Developing a general theory for the optimal recovery thresholds for
certain families of polynomial-time estimators—and establishing whether similar all-or-nothing be-
havior holds—is an important question for future work.
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