
A Omitted proofs

Proof of Proposition 1. We recall the I-MMSE relation (11):
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where in (⇤) we have used the dominated convergence theorem and the fact that MMSEN (�N ) 2
[0, 1] and where the last equality follows from the all-or-nothing phenomenon.

In the other direction, we use the fact that MMSEN (��N ) is a non-increasing function of � [see,
e.g., Mio19, Proposition 1.3.1]. Combined with the I-MMSE relation, this immediately yields that
1

�N
D(Q��N ,N kQ0,N ) is convex. We therefore have by standard facts in convex analysis [HUL93,

Proposition 4.3.4] that
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for all � for which the right side exists. Since we have assumed that

lim
N!1

1
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D(Q��N ,N kQ0,N ) =
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2
(� � 1)+,

the right side is 0 when � < 1 and 1
2 when � > 1. The all-or-nothing property immediately

follows.

Proof of Proposition 2. The first claim follows directly from Lemma 6. Indeed, for the sparse vector
model, logMp = (1 + o(1))k log

p

k
, and by Lemma 6,

lim
1

k log
p

k

log P
⌦2
p

[hX,X0i � t] = �t . (7)

Since t <
2t
1+t

for all t 2 (0, 1), the claim holds.

We now turn to the proof of the all-or-nothing phenomenon. By Theorem 1, it suffices to show

D(Q2 logMp,p kQ0,p) = o (logMp) .

We write

D(Q2 logMp,p kQ0,p) = EY⇠Q2 log Mp,p logEX0⇠Pp exp

⇣p
2 logMphY,X0i � logMp

⌘

= EXEZ logEX0⇠Pp exp

⇣p
2 logMphZ,X0i+ 2 logMphX,X0i � logMp

⌘

Now, given X and any vector v 2 Rp, let us denote by v|X 2 Rp the vector given by

(v|X)i :=

⇢
vi if Xi 6= 0,
0 otherwise.
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Similarly, let v|XC := v � v|X. Given X, the vectors Z|X and Z|XC are independent; thus we can
apply Jensen’s inequality to the expectation with respect to Z|XC to obtain

D(Q2 logMp,p kQ0,p)  EXEZ|X logEX0⇠PpEZ|XC
exp

⇣p
2 logMphZ,X0i+ 2 logMphX,X0i � logMp

⌘

= EXEZ|X logEX0⇠Pp exp

⇣p
2 logMphZ|X,X0|Xi+ logMp(kX0|XCk2 + 2hX,X0i � 1)

⌘
.

Since the entries of X and X0 are all either 0 or 1/
p
k and X has unit norm, we have that hX,X0i =

kX0|Xk2, and since X0|XC and X0|X are orthogonal, we obtain

kX0|XCk2 + 2hX,X0i � 1 = hX,X0i .

Continuing from above and using that kX0|Xk1  1/
p
k, we have

D(Q2 logMp,p kQ0,p)  EXEZ|X logEX0⇠Pp exp

✓q
2 logMp/kkZ|Xk1 + logMphX,X0i

◆

= EX logEX0⇠Pp exp (logMphX,X0i) + EXEZ|X

q
(2 logMp/k)kZ|Xk1

 EX logEX0⇠Pp exp (logMphX,X0i) +O

⇣p
2k logMp

⌘

Since k = o(p), we also have that k = o(k log
p

k
) = o(logMp); therefore, the second term is

o(logMp). Hence it suffices to focus on the first term.

We proceed via a large deviations argument as in the proof of Theorem 4. Write ⇢ = hX,X0i for the
overlap; note that the law of ⇢ is the same for all X in the support of Pp, so it suffices to understand
logE exp (⇢ logMp). We have, for any fixed positive integer `,

E exp (⇢ logMp) 
`�1X

m=0

PN [⇢ � m/`] exp

✓
m+ 1

`
logMp

◆

 ` · max
0m<`

exp

✓
m+ 1

`
logMp + logPN [⇢ � m/`]

◆
,

which implies

lim sup
p!1

1

logMp

logE exp (⇢ logMp)  max
0m<`

m+ 1

`
� m

`
,

where we have used (7). Therefore lim supp!1
1

logMp
logE exp (⇢ logMp) = O(1/`), and letting

` ! 1 proves the claim.

Proof of Proposition 3. Denote by Sk the set of k-sparse vectors in Rp. Note that the cardinality of
{0, 1/

p
k}p \Sk is

�
p

k

�
and the cardinality of {�1/

p
k, 0, 1/

p
k}p \Sk is

�
p

k

�
2
k. In the case of the

Bernoulli prior, the identification x 7! x
⌦d is a bijection, so MN for the Bernoulli prior is

�
p

k

�
. In

the case of the Bernoulli-Rademacher prior, when d is odd the map x 7! x
⌦d is still a bijection, but

when d is even, the vectors x and �x give rise to the same tensor. Therefore MN for the Bernoulli-
Rademacher prior is either

�
p

k

�
2
k or

�
p

k

�
2
k�1. Nevertheless, using Stirling’s approximation, since

k = o(p), we have for both the Bernoulli and Bernoulli-Rademacher prior that

logMN = (1 + o(1))k log
p

k
.

Now notice that the overlap hX,X0i in the case that x is Bernoulli-Rademacher is stochastically
dominated by the overlap when x is Bernoulli. To prove this, let us consider the natural coupling
between the two different priors on x: we first sample x1 from the sparse Bernoulli distribution
and then choose uniformly at random the signs for the non-zero values of x1 to form a sample x2

from the Bernoulli-Rademacher distribution. Notice that by triangle inequality under this coupling
it holds almost surely

hx⌦d

2 ,x0⌦d

2 i  |hx⌦d

2 ,x0⌦d

2 i|  hx⌦d

1 ,x0⌦d

1 i.
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For this reason it suffices to prove our result only in the case the prior ePp is the uniform distribution
over {0, 1/

p
k}p \ Sk. We therefore focus on this case in the rest of the proof.

Now fix any t 2 [0, 1] and notice that by elementary algebra for any v, v
0 2 Rp with kvk = kv0k = 1

since d � 2 it holds hv⌦d
, v

0⌦di = hv, v0id  hv, v0i2. Hence as x,x0 live on the sphere of
dimension p,

P
⌦2
N

[hX,X0i � t] = eP⌦2
p

[hx⌦d
,x0⌦di � t] = eP⌦2

p
[hx,x0id � t]

 eP⌦2
p

[hx,x0i2 � t]

= eP⌦2
p

[hx,x0i �
p
t]. (8)

Since x,x0 are drawn from the uniform distribution over {0, 1/
p
k}p\Sk, Lemma 6 combined with

(8) yields

lim
N!+1

1

logMN

log P
⌦2
N

[hX,X0i � t]  �
p
t.

The elementary inequality �
p
t  � 2t

1+t
concludes the proof.

Proof of Proposition 4. Let

Z (Y ) =
Q�N ,N (Y )

Q0,N (Y )
= EX0⇠PN exp

✓p
�N hY,X0i � �N

2

◆

Following mutatis mutandis the first two arguments in the proof of [BMV+18, Theorem 5] we obtain

D(Q�N ,N kQ0,N )  D(eQ�N ,N kQ0,N ) + o (1) ·
q
EY⇠Q�N,N

⇥
log

2
Z (Y)

⇤
. (9)

It is straightforward to see that for all Y ,

| logZ(Y )| 
p
�N max

X02Support(PN )
hX 0

, Y i+ �N

2

which implies that

EY⇠Q�N,N log
2
Z(Y)  2�N · EY⇠Q�N,N max

X02Support(PN )
hX 0

,Yi2 +O
�
�
2
N

�
. (10)

Now recall Y =
p
�NX + Z for Z ⇠ Q0,N and for all X 0 2 Support(PN ) it holds |hX, X

0i| 
kXkkX 0k = 1 almost surely. Hence,

EY⇠Q�N,N max
X02Support(PN )

hX 0
,Yi2 = EZ⇠Q0,N

✓
max

X02Support(PN )
|
p

�N hX 0
,Xi+ hX 0

,Zi|
◆2

 2�N + 2EZ⇠Q0,N max
X02Support(PN )

hX 0
,Zi2.

Since Q0,N is simply the law of a vector with i.i.d. standard Gaussian coordinates and the car-
dinality of the discrete subset of the sphere Support(PN ) is equal to MN , by Lemma 5 we have
EZ⇠Q0,N maxX02Support(PN )hX 0

,Zi2 = O (logMN ). Therefore since �N = O(logMN ),

EY⇠Q�N,N max
X02Support(PN )

hX 0
,Yi2  O (�N + logMN ) = O (logMN ) .

Combining the last inequality with (10), we conclude that

EY⇠Q�N,N log
2
Z(Y) = O

�
�
2
N

�
= O

�
log

2
MN

�
.

Using (9) completes the proof of the proposition.

Proof of Proposition 5. We let C denote an absolute positive constant whose value may change from
line to line. Let us write W = hX,Zi/

p
�N and W0

= hX 0
,Zi/

p
�N . Recall that X,X

0 lie on the
unit sphere with hX,X

0i = ⇢.
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Then W and W0 are are jointly Gaussian with mean 0 and covariance 1
�N

✓
1 ⇢

⇢ 1

◆
=:

1
�N

⌃⇢.

Under this parametrization, we have

exp(

p
�N (hX,Zi+ hX 0

,Zi)� �N ) = exp(�N (W +W0 � 1)) .

Let us write S for the set {(w,w0
) : |w � 1|  �

�1/4
N

, |w0 � 1|  �
�1/4
N

}.

We consider three cases:

Case 1: ⇢  0 Using the moment generating function of the univariate normal distribution yields

E exp(�N (W +W0 � 1)) S(W,W0
)  E exp(�N (W +W0 � 1)) = e

�N⇢  1 ,

so
1

�N

logmN (⇢)  0 =

✓
⇢

1 + ⇢

◆

+

.

Case 2: ⇢ 2 (0, 1/2] Write �⇢(w,w
0
) for the joint density of W and W0. Note that on S

�⇢(w,w
0
)  �N

2⇡(1� ⇢2)
exp

✓
��N

2
w>

⌃
�1
⇢

w

◆
, w = (w,w

0
)

 Ce
� �N

1+⇢+C�
3/4
N ,

where we use that �N ! +1 as N ! +1. Hence
1

�N

logmN (⇢) =
1

�N

log

Z

S

e
�N (w+w

0�1)
�⇢(w,w

0
) dw dw

0

 1

�N

log

Z

S

max
(w,w0)2S

e
�N (w+w

0�1) · max
(w,w0)2S

�⇢(w,w
0
) dw dw

0

 1

�N

log(vol(S) · e�N+O(�3/4
N ) · Ce

� �N
1+⇢+C�

3/4
N )

 ⇢

1 + ⇢
+

C

�
1/4
N

.

Case 3: ⇢ 2 (1/2, 1] The sum W +W0 is Gaussian with mean 0 and variance 2
�N

(1 + ⇢), and if

(w,w
0
) 2 S, then |w + w

0 � 2|  2�
�1/4
N

.

We obtain

mN (⇢) = E exp(�N (W +W0 � 1)) S(W,W0
)  E exp(�N (W00 � 1)) |W00�2|2��1/4

N
,

where W00 ⇠ N (0,
2

�N
(1 + ⇢)). Similar with the analysis in Case 2, the density of W00 is bounded

by Ce
� �N

1+⇢+C�
3/4
N on the set T := {w00

: |w00 � 2|  2�
�1/4
N

}, and we obtain

1

�N

logmN (⇢)  1

�N

log

Z

T

max
w002T

e
�N (w00�1) · Ce

� �N
1+⇢+C�

3/4
N

 1

�N

log(vol(T ) · e�N+O(�3/4
N ) · Ce

� �N
1+⇢+C�

3/4
N )

 ⇢

1 + ⇢
+

C

�
1/4
N

,

as claimed.

B Additional lemmas

Lemma 1. For all N and � > 0, the function � 7! 1
�
D(Q��,N kQ0,N ) is nonnegative, nonde-

creasing, and 1/2-Lipschitz.
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Proof. Let us fix some N and �. The nonnegativity follows from the nonnegativity of the KL
divergence. By Lemma 2, we have

1

�
D(Q��,N kQ0,N ) =

�

2
� 1

�
I��,N (X;Y) .

Differentiating with respect to � and using the I-MMSE theorem [GSV05] we conclude

d

d�

1

�
D(Q��,N kQ0,N ) =

1

2
� 1

2
MMSEN (��). (11)

The results that � 7! 1
�
D(Y�� kZ) is nondecreasing and 1/2-Lipschitz follow directly from the

fact that MMSEN (��) 2 [0, 1].

Lemma 2. Denote by I�,N (X;Y) the mutual information between X and Y in (1), and denote by
Q

(X,Y)
�,N

their joint law. Then

I�,N (X;Y) = D(Q
(X,Y)
�,N

kPN ⌦Q�,N ) =
�

2
�D(Q�,N kQ0,N ) .

Proof. The first equality is the definition of mutual information. We then have

D(Q
(X,Y)
�,N

kPN ⌦Q�,N ) = E
Q(X,Y)

�,N
log

Q�,N (Y|X)

Q�,N (Y)

= E
Q(X,Y)

�,N
log

Q�,N (Y|X)

Q0,N (Y)
� EQ�,N log

Q�,N (Y)

Q0,N (Y)
.

Using the fact that Z has i.i.d. standard Gaussian entries we have

E
Q(X,Y)

�,N
log

Q�,N (Y|X)

Q0 (Y)
= E

Q(X,Y)
�,N

kYk22 � kY �
p
�Xk22

2
=

�

2
,

and by definition

D(Q�,N kQ0,N ) = EQ�,N log
Q�,N (Y)

Q0,N (Y)
.

The claim follows.

Lemma 3. For all � � 0,

D(Q�,N kQ0,N ) � �

2
� logMN .

Proof. Writing explicitly the Kullback-Leibler divergence gives

D(Q�,N kQ0,N ) = E log
1

MN

X

X02Support(PN )

exp

✓p
�hY, X

0i � �

2

◆
Y ⇠ Q�,N

� E log
1

MN

exp

✓p
�hZ,Xi+ �

2

◆

= E
⇢p

�hZ,Xi+ �

2
� logMN

�
=

�

2
� logMN ,

where the inequality follows from writing Y =
p
�X+ Z and taking only the X

0
= X term in the

sum.

Lemma 4. Let ↵1 = (↵1)N2N and ↵2 = (↵2)N2N be two sequences in [0, 1] such that ↵1 = 1�o(1)

and ↵2 = o(1) as N ! 1, and let �N be any sequence tending to infinity as N ! +1 such that
1

�N
d(↵1 k↵2) is bounded. Then

lim sup
N!1

1

�N

d(↵1 k↵2) = lim sup
N!1

1

�N

log
1

↵2
.
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Proof. The given asymptotics imply

lim
N!1

(1� ↵1) log
1� ↵1

1� ↵2
= 0 .

Moreover, since ↵1 log↵1 is bounded, we have

lim
N!1

1

�N

↵1 log↵1 = 0 .

Combining these facts yields

lim sup
N!1

1

�N

d(↵1 k↵2) = lim sup
N!1

1

�N

↵1 log
↵1

↵2
+ (1� ↵1) log

1� ↵1

1� ↵2

= lim sup
N!1

1

�N

↵1 log
1

↵2
.

Since 1
�N

d(↵1 k↵2) is bounded, so is the sequence 1
�N

↵1 log
1
↵2

, and since ↵1 is bounded away
from 0, this implies that 1

�N
log

1
↵2

is bounded as well. Using that limN!1 ↵1 = 1 therefore yields
the claim.

Lemma 5. Let M,N 2 N and let S be a discrete subset of the N -dimensional unit sphere with
cardinality M . Then for G the law of the N -dimensional random variable Z with i.i.d. standard
Gaussian coordinates it holds

EZ⇠G max
X02S

hX 0
,Zi2 = O (logM) .

Proof. It suffices to show that

EZ⇠G max
X02S

hX 0
,Zi2

✓
max
X02S

hX 0
,Zi2 � 2 logM

◆
= O (1) .

or Z 1

0
G

✓
max
X02S

hX 0
,Zi2 � 2 logM + t

◆
dt = O (1) .

Using a union bound argument and the fact that for all X 0 2 S the quantity hX 0
,Zi follows a

standard Gaussian distribution, we have for all t � 0,

G

✓
max
X02S

hX 0
,Zi2 � 2 logM + t

◆
 M exp

✓
� logM � t

2

◆
= exp

✓
� t

2

◆
.

Hence
Z 1

0
G

✓
max
X02S

hX 0
,Zi2 � 2 logM + t

◆
dt 

Z 1

0
exp

✓
� t

2

◆
dt = O (1) ,

as we wanted.

Lemma 6. Suppose that k = o(p) and the prior ePp is the uniform distribution on all the k-sparse
vectors with elements either 0 or 1/

p
k. Then for any t 2 [0, 1] it holds

lim
p!+1

1

k log
p

k

log eP⌦2
p

[hx,x0i � t] = �t.

Proof. First note that the claim follows immediately when t = 1 as when k = o(p), the distribution
ePp is distribution over a discrete subset of the unit sphere of cardinality (1+o(1))k log

p

k
. Similarly,

since for all v, v0 in the support of ePp it holds hv, v0i � 0, the claim also follows straightforwardly
for t = 0. For the rest of the proof we assume t 2 (0, 1).
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We first show that the limit superior is bounded above by �t. The distribution of the rescaled overlap
khx,x0i = h

p
kx,

p
kx0i follows the Hypergeometric distribution Hyp (p, k, k) with probability

mass function p(s) =
�
k

s

��
p�k

k�s

�
/
�
p

k

�
, for s = 0, . . . , k. Therefore for a fixed t 2 (0, 1],

eP⌦2
p

[hx,x0i � t] =

kX

s=dtke

p(s). (12)

Now for any s � dtke it holds

p(s+ 1)

p(s)
=

�
k

s+1

�
�
k

s

�
�

p�k

k�s�1

�
�
p�k

k�s

� =
(k � s)

2

(s+ 1)(p� 2k + s+ 1)
.

Using that k = o(p) and s � tk we conclude that for sufficiently large p and all s � dtke it holds

p(s+ 1)

p(s)
 2

k

tp
<

1

2
.

or by telescopic product,

p(s)

p(dtke)  1

2s�dtke .

Hence, using (12) we have for large enough values of p,

eP⌦2
p

[hx,x0i � t] 
kX

s=dtke

p(dtke) 1

2s�dtke  2p(dtke). (13)

We have
p(dtke) =

✓
k

dtke

◆✓
p� k

k � dtke

◆
/

✓
p

k

◆

and combining with the elementary bound log
�
m1

m2

�
= m2 log

⇣
em1
m2

⌘
+ O(m2), for m1  mk, we

obtain

log p(dtke) = tk log
1

t
+ (1� t)k log

p� k

(1� t)k
� k log

p

k
+O (k)

= �tk log
p

k
+O (k) , (14)

where in the second step we have used that, for fixed t 2 (0, 1), if k = o(p), then

log
p� k

(1� t)k
= log

p

k
+O(1) .

We therefore conclude

log eP⌦2
p

[hx,x0i � t]  log p(dtke) = �tk log
p

k
+O (k) . (15)

Using the fact that k = o(p) completes the proof of the upper bound.

We now prove the lower bound. By (12),

eP⌦2
p

[hx,x0i � t] � p(dtke) ,

and combining this with (14) yields the claim.

18


