A Omitted proofs

Proof of Proposition 1. We recall the -MMSE relation (11):
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Let us first assume that the all-or-nothing phenomenon holds. Since D(Qq,n || Qo,n) = 0, we can
write
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where in (%) we have used the dominated convergence theorem and the fact that MMSE y (kAn) €
[0, 1] and where the last equality follows from the all-or-nothing phenomenon.

In the other direction, we use the fact that MMSE y (8 ) is a non-increasing function of 3 [see,
e.g., Miol9, Proposition 1.3.1]. Combined with the -MMSE relation, this immediately yields that
ﬁ D(Qgxy.~ || Qo,n) is convex. We therefore have by standard facts in convex analysis [HUL93,
Proposition 4.3.4] that
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for all 3 for which the right side exists. Since we have assumed that

1

. 1
ngnoo pye D(Qgry,~ || Qo,n) = 5(5 =14,

the right side is 0 when 8 < 1 and % when 8 > 1. The all-or-nothing property immediately
follows. O

Proof of Proposition 2. The first claim follows directly from Lemma 6. Indeed, for the sparse vector
model, log M), = (1 + o(1))klog £, and by Lemma 6,

lim

Flog 7 %8 PE[(X,X') > 1] = —t. (7
k

Since t < 1% for all ¢ € (0, 1), the claim holds.
We now turn to the proof of the all-or-nothing phenomenon. By Theorem 1, it suffices to show

D(Q210g 1, || Qo,p) = 0 (log M) .

We write
D(Q 105 11, | Q0.0) = B ~arg ., 108 Bxcrmr, exp (/2108 M, (Y, X') — log M, )
= ExEz log Ex/p, exp ( 2log M, (Z, X') + 2log M, (X, X') — log M,,)

Now, given X and any vector v € R?, let us denote by v|x € RP? the vector given by

Ole)ei= {7

0 otherwise.
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Similarly, let v|xc := v — v|x. Given X, the vectors Z|x and Z|xc are independent; thus we can
apply Jensen’s inequality to the expectation with respect to Z|xc to obtain

D(Qz210g M,,p | Qop) < ExEz|« log EX/NPP]EZ\XC exp (\/ 2log M, (Z, X') +2log My (X, X') —log Mp)
= ExEg), log Ex/p, exp (w/z log M, (Z|x., X'|x) + log My (| X/ |xc ||? + 2(X, X'} — 1)) .

Since the entries of X and X' are all either 0 or 1/v/k and X has unit norm, we have that (X, X') =
|X’|x||?, and since X’|xc and X’|x are orthogonal, we obtain

X' |xe |* +2(X,X') =1 = (X, X).

Continuing from above and using that || X'|x||oc < 1/Vk, we have

D(Qz10g 11, 5 || Qo,p) < ExEz)y log Ex/p, exp ( 2log M, /k||Z|x ||, + log M,,(X,X/>>
= ]EX 10g EX’NPP exp (lOg Mp<X, X/>> + ]Esz‘x (2 10g Mp/k)HZ‘an

< Ex logEx/p, exp (log M,(X, X')) + O (w /2kTog Mp)

Since £ = o(p), we also have that k = o(klog #) = o(log M,); therefore, the second term is
o(log M,). Hence it suffices to focus on the first term.

We proceed via a large deviations argument as in the proof of Theorem 4. Write p = (X, X’) for the
overlap; note that the law of p is the same for all X in the support of P, so it suffices to understand
log E exp (plog M,). We have, for any fixed positive integer ¢,

-1
1
Eexp (plog M,) < > Pn[p > m/{]exp (m ha

m=0

log M,,)
m+1

</ ~r- >

</ Orgngicgexp ( 7 log M, + log Py [p > m/ﬂ) ,
which implies

m+1 m

i <

lllzris;p log 11, log Eexp (plog M,) < orgnﬁ}ée 7 7
where we have used (7). Therefore lim sup,, , ., ﬁ log E exp (plog M,) = O(1/¢), and letting
{ — oo proves the claim. O

Proof of Proposition 3. Denote by Sy, the set of k-sparse vectors in RP. Note that the cardinality of
{0,1/VE} NSy is (?) and the cardinality of {—1/vk,0,1/Vk}? NSy is (£)2*. In the case of the
Bernoulli prior, the identification x — x®¢ is a bijection, so My for the Bernoulli prior is (Z) In
the case of the Bernoulli-Rademacher prior, when d is odd the map x > x®¢ is still a bijection, but
when d is even, the vectors x and —x give rise to the same tensor. Therefore M for the Bernoulli-
Rademacher prior is either (£)2% or (7)2"~!. Nevertheless, using Stirling’s approximation, since
k = o(p), we have for both the Bernoulli and Bernoulli-Rademacher prior that

log My = (1 + o(l))klog% .

Now notice that the overlap (X, X’) in the case that x is Bernoulli-Rademacher is stochastically
dominated by the overlap when x is Bernoulli. To prove this, let us consider the natural coupling
between the two different priors on x: we first sample x; from the sparse Bernoulli distribution
and then choose uniformly at random the signs for the non-zero values of x; to form a sample x»
from the Bernoulli-Rademacher distribution. Notice that by triangle inequality under this coupling
it holds almost surely

(x5, x377) < (x4, x| < (7, x17).
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For this reason it suffices to prove our result only in the case the prior ﬁp is the uniform distribution
over {0, 1/vk}? N Sy,. We therefore focus on this case in the rest of the proof.

Now fix any ¢ € [0, 1] and notice that by elementary algebra for any v, v’ € R? with |Jv|| = ||v']| = 1
since d > 2 it holds (v®? v/®?) = (v, v/)¢ < (v,v')2. Hence as x,x’ live on the sphere of
dimension p,
PRIX,X) 2 1] = P2 [(x®, %) = ] = PP2[(x,x')* = 4
p®2 2

< P x)? 2 1

_ p®2

= PY?[(x,x') > V1. (8)

Since x, x’ are drawn from the uniform distribution over {0, 1/v/k}” NSy, Lemma 6 combined with
(8) yields

i ®2 N> < —VE
NLHEOO log log PRI X) > <~V

The elementary inequality —/t < — - concludes the proof. [

1+

Proof of Proposition 4. Let

2v)= Lol s enp (VAN (X0 - )

Following mutatis mutandis the first two arguments in the proof of [BMV 18, Theorem 5] we obtain

D(Qay,n | Qo.v) < D(Quy,wv | Qo) + 0 \/]EY~QA [log”® Z (Y)]. )
It is straightforward to see that for all Y,

AN
log Z(Y)| < /A X vy+ 22X
[log Z(Y)| < NX/es$§§t<pN>< YY)+

which implies that

Ey~qs, 1082 Z(Y) < 22y -Eynq,, » Xfes£§§t<PN)<X/’Y>2 +0(X\%).  (10)

Now recall Y = v/AnX + Z for Z ~ Qo v and for all X’ € Support(Py) it holds |(X, X")| <
[IX||[|X’|] = 1 almost surely. Hence,

2
Ev~ max X' Y)2=E ~ VA X/ Xl Z
Y~Qay.N X’GSupri)rt(PN)< ’ > ZrQon <X/€Support (Pn) | ’ >|)

< 2\ny + Q]EZNQO,N X’esgg(ﬁt(pN)<X/’ Z> .

Since Qq,n is simply the law of a vector with i.i.d. standard Gaussian coordinates and the car-
dinality of the discrete subset of the sphere Support(Py) is equal to My, by Lemma 5 we have
Ez~Qox MaXx/csupport(Py) (X » Z)? = O (log My ). Therefore since Ay = O(log M),

Ev. X' Y)Y <Oy +logMy) = O (log My) .
YQXN'NX’esgsgit(PN# ) >7O(N+0g N) O(Og N)

Combining the last inequality with (10), we conclude that
EYNQAN,N 10g2 Z(Y)=0 ()‘?V) =0 (1Og‘2 MN) .

Using (9) completes the proof of the proposition. O

Proof of Proposition 5. We let C denote an absolute positive constant whose value may change from
line to line. Let us write W = (X, Z) /v/Ay and W’ = (X' Z)/+/An. Recall that X, X' lie on the
unit sphere with (X, X’) = p.
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Then W and W' are are jointly Gaussian with mean O and covariance ﬁ (; [1)) =: LZP.

Under this parametrization, we have
exp(VAn (X, Z) + (X', 2)) — Ax) = exp(Aw (W + W’ — 1)).
Let us write S for the set {(w,w’) : jw — 1| < /\&1/4, |w —1| < /\]_\,1/4}.

‘We consider three cases:

Case 1: p < 0 Using the moment generating function of the univariate normal distribution yields
Eexp(An(W + W' — 1) 1g(W,W') < Eexp(An(W + W' — 1)) =P <1,

SO

1 p
—1 <0=(-——1—
pye ogmn(p) < (1+p>+

Case 2: p € (0,1/2] Write ¢,(w, w") for the joint density of W and W’. Note that on S

AN AN _
QSP(QU, w/) S m exp <2WTEP IW) N W = (’lU, ’LU/)
S C@iﬂiNﬁ%»C}\?;V/AL

)

where we use that A\y — +00 as N — +oo. Hence

]. 1 ’
—logmy(p) = — log/ AV =g (w, w') dw dw'’
AN s

AN
1 ’
< 71 AN(UH»w 71) d d
AN o (wrfvf’i)xese (wrglua)xes bp(w,w") dw dw’
< )\L log(vol(S) - ANFOOYY) | e HPJFCAM)
N
p C
=
- 1/4

Case 3: p € (1/2,1] The sum W + W' is Gaussian with mean 0 and variance /\ (14 p), and if
(w,w’) € S, then |w + w' —2| < 2)\N1/4.
We obtain

mN(p) = ]Eexp()\N(W + W/ - 1))]15(W,W/) < ]Eexp()\N(W” - 1))]]'|W” 2‘<2/\—1/4

where W’ "~ N(0, 2 ~—(1+ p)). Similar with the analysis in Case 2, the density of W" is bounded

/ —
by Ce™ T HONY onthe set T := {w” : jw” — 2| < 2)\N1/4}’ and we obtain
1 1 " /
ElogmN(p) < E10g g}%}%em(w “1) . o i Hory!
! ANFO(A Ny oN3/A
< )\—log(vol( ) N .Ce™ 1+p )
N
P C
<—+ —
= 1/4°
Ltp  AY
as claimed. -

B Additional lemmas

Lemma 1. For all N and X > 0, the function 3 — +D(Qgx n || Qo,n) is nonnegative, nonde-
creasing, and 1/2-Lipschitz.
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Proof. Let us fix some N and A. The nonnegativity follows from the nonnegativity of the KL
divergence. By Lemma 2, we have

%D(QBA,N | Qo,n) = b_ lIﬂ,\,N(X;Y) .

2 A
Differentiating with respect to 3 and using the [-lMMSE theorem [GSV05] we conclude
O D(Qury | Qo) = 5 — 5 MMSE (33) an
B\ AN [1QoN) =35 =5 N .
The results that 8 +— + D(Y g, || Z) is nondecreasing and 1/2-Lipschitz follow directly from the
fact that MMSE (8A) € [0, 1]. O

Lemma 2. Denote by I\ n(X;Y) the mutual information between X and Y in (1), and denote by

gi(]\’/Y) their joint law. Then

A
Ln(X;Y) = D(QE\%{A}Y) [Py ®Qan) = 5 D(Qx,~ [ Qo,n) -

Proof. The first equality is the definition of mutual information. We then have

(X,Y) _ Qv (YIX)
DQYN "IPN®QanN) = EQ(;,(J’VY) log Qo (Y)
Qi v (Y[X) Qv (Y)
=E log ——=————— —E log ———.
QX B TN (Y) e 8 v (Y)
Using the fact that Z has i.i.d. standard Gaussian entries we have
Qv (YIX) Y13 — Y = VAX[5 _ A
Fogo o8 =0 )~ Fags 2 T2
and by definition
Qv (Y)
D(Qxn | Qo,v) =Eq,  log Qon ()
The claim follows. O

Lemma 3. Forall A > 0,
A
D(Qan [ Qon) 2 5~ log My .

Proof. Writing explicitly the Kullback-Leibler divergence gives

D(Qxn | Qo,v) = Elog ML > exp <\5<Y7X/> - ;) Y ~Qan

N X'’eSupport(Pn)

> Elog Mi exp (ﬁ(Z,X) + ;)

N

_]E{ﬁ<z,x> + % —1ogMN} = % —log My ,

where the inequality follows from writing Y = v/AX + Z and taking only the X’ = X term in the
sum. O

Lemmad. Let a; = (1) venand as = (a2) nen be two sequences in [0, 1] such that a; = 1—0(1)
and cs = o(1) as N — oo, and let A\ be any sequence tending to infinity as N — +o00 such that
ﬁd(al | ) is bounded. Then

1 1 1
lim sup —d(a || g) = lim sup — log — .
N~>oop AN (a [l az) Nﬁoop AN & Qo
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Proof. The given asymptotics imply

1-— aq
li 1-— 1 =0.
Ngnoo( al) 8 1-— (6%)
Moreover, since o log «vp is bounded, we have
li ! 1 0.
Ngnoo )\N 10801 =
Combining these facts yields
1 1 1-—
limsup ~—d(a || ) = limsup —o log 2L + (1 —ay)log A
Nooo AN Nooo AN Qo 1—an
1 1
= limsup —aq log — .
N—o0 N (6%)

Since ﬁd(al || a2) is bounded, so is the sequence ﬁal log a%, and since «; is bounded away
from 0, this implies that ﬁ log a% is bounded as well. Using that lim ., a1 = 1 therefore yields
the claim. 0

Lemma 5. Let M, N € N and let S be a discrete subset of the N-dimensional unit sphere with
cardinality M. Then for G the law of the N-dimensional random variable Z with i.i.d. standard
Gaussian coordinates it holds

Bz~ max (X', Z)* = O (log M).

Proof. 1t suffices to show that

!/ 2 > — .
Ezc %?§<X ,Z2)°1 <)r?,ax(X Z)? 210gM> 0O (1)

or

/ G(}r}l/&x(X Z)? >210gM+t> dt=0(1).
0

Using a union bound argument and the fact that for all X’ € S the quantity (X', Z) follows a
standard Gaussian distribution, we have for all t > 0,

G (&qax(X Z) > 210gM+t> < M exp (—logM— ;) = exp <_t>'

Hence

/ G(max(X Z)? >210gM—|—t> dtg/ exp(—;) dt=0(1),
0

X’ 0

as we wanted.

Lemma 6. Suppose that k = o(p) and the prior f’p is the uniform distribution on all the k-sparse
vectors with elements either 0 or 1/\/k. Then for any t € [0,1] it holds

DPR2 N> _
i Flog 2 log P%[(x,x") > 1] t.

Proof. First note that the claim follows immediately when ¢ = 1 as when k = o(p), the distribution
P, is distribution over a discrete subset of the unit sphere of cardinality (1+o0(1))klog £. Similarly,

since for all v, v’ in the support of ﬁp it holds (v, v’) > 0, the claim also follows straightforwardly
for t = 0. For the rest of the proof we assume ¢ € (0, 1).
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We first show that the limit superior is bounded above by —t. The distribution of the rescaled overlap
k(x,x') = (Vkx,VEkx') follows the Hypergeometric distribution Hyp (p, k, k) with probability
mass function p(s) = (¥)(?-%)/(?), for s = 0,.. ., k. Therefore for a fixed ¢ € (0, 1],

s/ \k—s
k
PO2[(x,x) > t] = > pls). (12)
s=[tk]
Now for any s > [tk] it holds
ps+1) () G750 (k — 5)°
p(s) *y @ (s+Dp-2k+s+1)

Using that k = o(p) and s > tk we conclude that for sufficiently large p and all s > [tk] it holds

‘LH_ D < 2E < 1.
p(s) tp 2
or by telescopic product,
pis) _ 1
p([tk]) = 2=kl

Hence, using (12) we have for large enough values of p,

k
Pxx) 2 1) < D2 plth]) gty < 20([1H]). (13)
s=[tk]

p([tk]) = <( Sﬂ) <I~cp—[t]zﬂ)/ (Z>

and combining with the elementary bound log (ZZ) = mgy log (%) + O(my), for my < my, we

We have

obtain

p—k
(1-1t)k

- —tklog% +O(k), (14)

1
Ing([tkD:tklogE—F(l—t)klog —klog%—i—O(k;)
where in the second step we have used that, for fixed ¢ € (0, 1), if & = o(p), then

p—k _ . D
log =0k —logk—i-O(l).

We therefore conclude

log PE2[(x,x') > #] < log p([tk]) = —tklog % +O (k). (15)

Using the fact that k£ = o(p) completes the proof of the upper bound.
We now prove the lower bound. By (12),
=22
P[(x,x") = 1] = p([tk]) ,
and combining this with (14) yields the claim. O
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