
Appendix of ARMA Nets:
Expanding Receptive Field for Dense Prediction

A Supplementary Materials for Experiments

In this section, we explain detailed setups (datasets, model architectures, learning strategies, and
evaluation metrics) of all experiments, and provide additional visualizations of the results.

A.1 Visualization of Effective Receptive Field

In the simulations in subsection 3.2, all linear networks have 32 channels and 64× 64 feature size at
each layer. The filter size for both moving-average coefficients and autoregressive coefficients is set to
3× 3: each moving-average kernelW is initialized using Xavier’s method, while the autoregressive
kernelA is initialized randomly within a stable region −a ≤ f (q)−1,t+ f

(q)
1,t ≤ 0,−a ≤ g(q)−1,t+ g

(q)
1,t ≤

0,∀t ∈ [T ], q ∈ [Q] (see section 5 for details). We compute each heat map in Figure 3 as an average
of 32 gradient maps from different channels.

A.2 Multi-frame Video Prediction

Datasets and Metrics We generate the Moving-MNIST-2 dataset by moving two digits of size
28× 28 in MNIST dataset within a 64× 64 black canvas [12]. Each digit starts from a random initial
location, moves with constant velocity in the canvas, and bounces when they reach the boundary. In
addition to the default velocity in the public generator [12], we increase the velocity to 2× and 3× to
test all models on videos with stronger motions. For each velocity, we generate 10,000 videos for
the training set, 3,000 for the validation set, and 5,000 for the test set, where each video contains 20
frames. We train all models to predict the next 10 frames given 10 input frames, and we evaluate
their performance based on the metrics of mean square error (MSE), peak signal-noise ratio (PSNR)
and structure similarity (SSIM) [37].

Model Architectures (1) Baselines. The backbone architecture consists of a stack of 12 Conv-
LSTM modules, and each module contains 32 units (channels). Following [6], two skip connections
that perform channel concatenation are added between (3, 9) and (6, 12) module. An additional
traditional convolutional layer is applied on top of all recurrent layers to compute the predicted frames.
The backbone architecture is illustrated in Figure 7. In the baseline networks, we consider three
different convolutions at each layer: (a) Traditional convolution with filter size 3× 3; (b) Traditional
convolution with filter size 5× 5; and (c) 2-dilated convolution with filter size 3× 3.

(2) ARMA networks. Our ARMA networks use the same backbone architecture as baselines and
replace their convolutional layers with ARMA layers. For all ARMA models, we set the filter size for
both moving-average and autoregressive parts to 3× 3. In the ARMA networks, we consider two
different convolutions each layer: (a) The moving-average part is a traditional convolution; (b) We
further consider using 2-dilated convolution in the moving-average part.

(3) Non-local networks. In non-local networks, we additionally insert two non-local blocks in the
backbone architecture, as illustrated in Figure 8. In each non-local block, we use embedded Gaussian
as the non-local operation [34], and we replace the batch normalization by instance normalization
that is compatible with recurrent neural networks. In non-local networks, we consider three types
of convolutions at each layer: (1)(2) Traditional convolutions with filter size 3 × 3 and 5 × 5; (3)
ARMA layer with 3× 3 moving-average and autoregressive filters.
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Figure 7: Conv(ARMA)-LSTM.
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Figure 8: Non-Local Conv(ARMA)-LSTM.

Training Strategy All models are trained using ADAM optimizer [18], with L1 + L2 loss and for
500 epochs. We set the initial learning rate to 10−3, and the value for gradient clipping to 3. Learning
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rate decay and scheduled sampling [1] are used to ease training. Scheduled sampling starts once the
model does not improve in 20 epochs (in term of validation loss), and the sampling ratio is decreased
linearly by 4× 10−4 each epoch (i.e., scheduling sampling lasts for 250 epochs). Learning rate decay
is further activated if the validation loss does not drop in 20 epochs, and the learning rate is decreased
exponentially by 0.98 every 5 epochs. All convolutional layers and moving-average parts in ARMA
layers are initialized by Xavier’s normalized initializer [13], and autoregressive coefficients in ARMA
layers are initialized as zeros (i.e., each ARMA layer is initialized as a traditional layer).

Visualization of the Predictions We visualize the predictions by different models under three
moving velocites in Figure 9, Figure 10 and Figure 11 Notice that the gridding artifacts by dilated
convolutions are removed by ARMA layer: since each neuron receives information from all pixels
in a local region (Figure 2d), adjacent neurons are on longer computed from separate sets of pixels.
Moreover, for videos with a higher moving speed, the advantage of our ARMA layer is more
pronounced as expected due to ARMA’s ability to expand the ERF.

input ground truth (top) / predictions
t = 1 2 3 4 5 6 7 8 9 10 11 12 13

Traditional (Kw = 3)

2-dilated (Kw = 3)

Traditional (Kw = 5)

2-dilated ARMA (Kw = 3, Ka = 3)

ARMA (Kw = 3, Ka = 3)

Figure 9: Prediction on Moving-MNIST-2 (original speed). The first row contains the last 3 input
frames and 10 ground-truth frames for models to predict.

input ground truth (top) / predictions
t = 1 2 3 4 5 6 7 8 9 10 11 12 13

Traditional (Kw = 3)

2-dilated (Kw = 3)
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2-dilated ARMA (Kw = 3, Ka = 3)

ARMA (Kw = 3, Ka = 3)

Figure 10: Prediction on Moving-MNIST-2 (2× speed). The first row contains the last 3 input
frames and 10 ground-truth frames for models to predict.
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input ground truth (top) / predictions
t = 1 2 3 4 5 6 7 8 9 10 11 12 13

Traditional (Kw = 3)
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Traditional (Kw = 5)
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Figure 11: Prediction on Moving-MNIST-2 (3× speed). The first row contains the last 3 input
frames and 10 ground-truth frames for models to predict.
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Figure 12: Per-frame performance comparison of our ARMA and our dilated ARMA networks
v.s. the Conv-LSTM, dilated Conv-LSTM baselines for Moving-MNIST-2 (original speed). Lower
MSE values (in 10−3) or higher PSNR/SSIM values indicate better performance.
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Figure 13: Per-frame performance comparison of our ARMA and our dilated ARMA networks
v.s. the Conv-LSTM, dilated Conv-LSTM baselines for Moving-MNIST-2 (2× speed). Lower MSE
values (in 10−3) or higher PSNR/SSIM values indicate better performance.
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Figure 14: Per-frame performance comparison of our ARMA and our dilated ARMA networks
v.s. the Conv-LSTM, dilated Conv-LSTM baselines for Moving-MNIST-2 (3× speed). Lower MSE
values (in 10−3) or higher PSNR/SSIM values indicate better performance.

A.3 Medical Image Segmentation

To demonstrate ARMA networks’ applicability to image segmentation, we evaluate it on a challenging
medical image segmentation problem.

Dataset and Metrics For all experiments, we use a dataset from ISIC 2018: Skin Lesion Analysis
Towards Melanoma Detection [9], which can be downloaded online1. In this task, a model aims to
predict a binary mask that indicates the location of the primary skin lesion for each input image. The
dataset consists of 2594 images, and we resize each image to 224× 224. We split the dataset into
a training set, validation set and test set with ratios of 0.7, 0.1, and 0.2, respectively. All models
are evaluated using the following metrics: AC = (TP + TN)/(TP + TN + FP + FN), SE =
TP/(TP +FN), SP = TN/(TN+FP ), PC = TP/(TP +FP ), F1 = 2PC ·SE/(PC+SE)
and JS = |GT ∩ SR|/|GT ∪ SR|, where TP stands for true positive, TN for true negative, FP for
false positive, FN for false negative, GT for ground truth mask and SR for predictive mask.

Model Architectures (1) Baselines. We use U-Net [30] and non-local U-Net [36] as baseline
models. U-Net has a contracting path to capture context, and a symmetric expanding path enables
precise localization. The network architecture is illustrated in Figure 15a. Non-local U-Net further
contains dglobal aggregation blocks based on the self-attention operator to aggregate global infor-
mation without a deep encoder for biomedical image segmentation, as illustrated in Figure 15b. (2)
Our architectures. We replace all traditional convolution layers with ARMA layers in U-Net and
non-local U-Net.

(a) U-Net architecture. (b) Non-local U-Net architecture.

Figure 15: Backbone architectures.

Training Strategy. All models are trained using ADAM optimizer [18] with binary cross entropy
(BCE) loss. For initial learning rate, we search from 10−2 to 10−5 and choose 10−3 for U-Net and

1https://challenge2018.isic-archive.com/task1/training/
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10−2 for non-local U-Net. The learning rate is decayed by 0.98 every epoch. During training, each
image is randomly augmented by rotation, cropping, shifting, color jitter, and normalization following
the public source code2.

Input
image

Ground
truth

U-net
with ARMA

U-net
without ARMA

Non-Local U-net
with ARMA

Non-Local U-net
without ARMA

Figure 16: Predictive results of U-Net and Non-local U-Net with/without ARMA layers.

A.4 Image Classification

Model Architectures and Datasets We replace the traditional convolutional layers by ARMA
layers in three benchmarking architectures for image classification: AlexNet [19], VGG-11 [31],
and ResNet-18 [14]. We apply our proposed ARMA networks on CIFAR10 and CIFAR100 datasets.
Both datasets have 50000 training examples and 10000 test examples, and we use 5000 examples
from the training set for validation (and leave 45000 examples for training).

Training Strategy We train all models using cross-entropy loss and SGD optimizer with batch
size 128, learning rate 0.1, weight decay 0.0005 and momentum 0.9. For CIFAR10, the models are
trained for 300 epochs and we half the learning rate every 30 epochs. For CIFAR100, the models are
trained for 200 epochs and we divide the learning rate by 5 at the 60th, 120th, 160th epochs.

Results The experimental results are summarized in Table 5. Our results show that ARMA models
achieve comparable or slightly better results than the benchmarking architectures. Replacing the tra-
ditional convolutional layer with our proposed ARMA layer slightly boosts VGG-11 and ResNet-18
by 0.01%-0.1% in terms of accuracy. Since image classifications tasks do not require convolu-
tional layers to have large receptive fields, the learned autoregressive coefficients concentrate
around 0, as shown in Figure 6. Consequently, ARMA networks effectively reduce to traditional
convolutional neural networks and therefore achieve comparable results.

AlexNet VGG-11 ResNet-18
Conv. ARMA Conv. ARMA Conv. ARMA

CIFAR10 86.30± 0.29 85.67± 0.19 91.57± 0.59 91.57± 0.73 95.01± 0.15 95.07± 0.13

CIFAR100 58.99± 0.37 57.43± 0.24 68.25± 0.11 68.36± 1.67 73.71± 0.23 73.72± 0.52

Table 5: Image classification on CIFAR10 and CIFAR100. We report accuracy (%) and standard
deviations from 10 runs with different seeds. Since image classifications tasks do not require
convolutional layers to have large receptive fields, the learned autoregressive coefficients are highly
concentrated around 0, as shown in Figure 6. Consequently, ARMA networks effectively reduce to
traditional CNNs and therefore achieve comparable results.

2https://github.com/LeeJunHyun/Image_Segmentation
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B Analysis of Effective Receptive Field (ERF)

In this section, we prove Theorem 3 in subsection 3.2. Here, we use a(`) = {· · · , a(`)−1, a
(`)
0 , a

(`)
1 , · · · }

to denote the `th layer’s autoregressive (AR) coefficients, andw(`) = {· · · , w(`)
−1, w

(`)
0 , w

(`)
1 , · · · } the

`th layer’s moving-average (MA) coefficients.

B.1 ERF of General Linear Convolutional Networks

The proof of Theorem 3 is based on the following theorem on linear convolutional networks [25],
which includes both CNN and ARMA networks as special cases.

Theorem 8 (ERF of Linear Convolutional Networks with Infinite Horizon). Consider anL-layer
linear convolutional network (without activation and pooling layers), where its `th-layer computes
a weighted-sum of its input y(`)i =

∑+∞
p=−∞ w

(`)
p y

(`−1)
i−p . Suppose the weights are non-negative

w
(`)
p ≥ 0 and normalized at each layer

∑+∞
p=−∞ w

(`)
p = 1, the network has an ERF radius as

r(ERF)2 =
L∑
`=1

 +∞∑
p=−∞

p2w(`)
p −

(
+∞∑
p=−∞

pw(`)
p

)2
 . (B.1)

Furthermore, the ERF converges to a Gaussian density function when L tends to infinity.

Proof. In this linear convolutional network, the gradient maps can be computed with chain rule as

gi,: = w
(1)> ∗w(2)> · · · ∗w(L)>, ∀i ∈ Z, (B.2)

where w(`)> denotes the reversed version of w(`). Notice that (1) The gradient maps do not depend
on the input, i.e., they are data-independent; (2) The gradient maps are identical across different
locations in the output. Consequently, the ERF is equal to any one gradient map above

ERF = w(1)> ∗w(2)> · · · ∗w(L)>. (B.3)

The remaining part of the proof makes use of the probabilistic method, which interprets the operation
at each layer as a discrete random variable. Since the weights at each layer are non-negative and
normalized, we interpret them as values of a probability mass function. Concretely, we construct
L independent random variables {W (1), · · · ,W (L)} such that P[W (`) = p] = w

(`)
−p. Similarly, we

introduce a random variable S(L) to represent the ERF, i.e., P[S(L) = p] = ERFp. As a result, the
ERF radius is equal to standard deviation of S(L), or equivalently r(ERF)2 = V[S(L)].

Recall that addition of independent random variables results in convolution of their probability
mass functions, Equation B.3 implies that S(L) is an addition of all W (`)’s, i.e., S(L) =

∑L
`=1W

(`).
Therefore, the variance of S(L) is equal to a summation of the variances for W (`)’s. Thus,

V[S(L)] =

L∑
`=1

V[W (`)] =

L∑
`=1

[
E[(W (`))2]− E[W (`)]2

]
(B.4)

=

L∑
`=1

 +∞∑
p=−∞

p2w(`)
p −

(
+∞∑
p=−∞

pw(`)
p

)2
 , (B.5)

which proves the Equation B.1. Furthermore, the Lyapunov central limit theorem shows that (S(L) −
E[S(L)])/V[S(L)] converges to a standard normal random variable if L tends to infinity

S(L) − E[S(L)]√
V[S(L)]

=

∑L
`=1

(
W (`) − E[W (`)]

)√∑L
`=1 V[W (`)]

D−→ N (0, 1). (B.6)

That is, the ERF function is approximately Gaussian when the number of layersL is large enough.
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B.2 ERF of Traditional CNNs (a(`)1 = −a(`) = 0)

As a warmup, we first provide a proof for the special case of traditional CNN where a(`) = 0 for all
layers. For reference, we list the first two cases of Faulhaber’s formula:

K−1∑
p=0

p =
K(K − 1)

2
, (B.7a)

K−1∑
p=0

p2 =
K(K − 1)(2K − 1)

6
. (B.7b)

Proof. In this special case, we can plug w(`)
p = 1/K(`) for p = 0, d(`), · · · , d(`)(K(`) − 1) into

Equation B.1 directly to obtain ERF radius.

r(ERF)2 =

L∑
`=1

K(`)−1∑
p=0

(
pd(`)

)2
K(`)

−

K(`)−1∑
p=0

pd(`)

K(`)

2
 (B.8)

=

L∑
`=1

d(`)2
K(`)

K(`)
(
K(`) − 1

) (
2K(`) − 1

)
6

−

(
d(`)

K(`)

K(`)
(
K(`) − 1

)
2

)2
 (B.9)

=

L∑
`=1

d(`)
2
(
K(`)2 − 1

)
12

, (B.10)

where the infinite series are computed using Equation B.7a and Equation B.7b. Taking square root on
both sides completes the proof for the special case of CNNs.

ERF Analysis of CNNs. If we further assume that all layers are identical, i.e., K(`) = K, d(`) = d
for 1 ≤ ` ≤ L, we can simplify Equation B.10 as

r(ERF) =
√
L ·
√
d2(K2 − 1)

12
= O

(
dK
√
L
)
. (B.11)

That is, the ERF radius grows linearly with the kernel size K and the dilation d, but sub-linearly with
the number of layers L in the linear network.

B.3 ERF of ARMA networks (a(`)1 = −a(`) ≤ 0)

In the part, we provide a proof for general ARMA networks where a(`) ≤ 0. In sketch, the proof
consists of three steps: (1) we introduce inverse convolution and convert each ARMA model to a
moving-average model: a ∗ y = w ∗ x =⇒ y = f ∗ x, where f represents a convolution with
infinite number of coefficients, x and y are the input and output of the model respectively. (2) We
derive the moment generating function (MGF) of the moving-average coefficients from the first step,
and use the functions to compute the first and second moments. (3) We plug the moments from the
second step into Equation B.1 to obtain Equation 4.

Definition 9 (Inverse Convolution). Given a convolution (with coefficients) a, its inverse convolu-
tion a is defined such that a ∗ a = a ∗ a = δ is an identical mapping, i.e.,

+∞∑
p=−∞

ai−pap = δi =

{
1 i = 0

0 i 6= 0
(B.12)

Remark: The inverse convolution does not exist for any convolution a. A necessary and sufficient
condition for invertibility of a is that its Fourier transform is non-zero everywhere [29].
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Definition 10 (Moments and Moment Generating Function, MGF). Given a convolution (with
coefficients) f , its ith moment is defined as

Mi(f) =

+∞∑
p=−∞

fpp
i. (B.13)

Furthermore, we define the moment generating function of the coefficients f as

Mf (λ) =

+∞∑
p=−∞

fpe
λp. (B.14)

The name “moment generating” comes from the fact that

Mi(f) =
diMf (λ)

dλi

∣∣∣∣
λ=0

. (B.15)

Remark: Since moment generating function (MGF) could be interpreted as a real-valued discrete-time
Fourier transform (DTFT), the properties of MGF are very similar to the ones of DTFT. In particular,
the convolution theorem also holds for MGF, i.e., Mf∗g(λ) =Mf (λ)Mg(λ). If two convolutions a
and a are inverse to each other, we have Ma(λ)Ma(λ) = 1.

Now we are ready to prove Theorem 3 using Theorem 8 and Definitions 9 and 10.

Proof. Let f (`) = a(`) ∗w(`), we have

y(`) = δ ∗ y(`) =
(
a(`) ∗ a(`)

)
∗ y(`) = a(`) ∗

(
a(`) ∗ y(`)

)
= a(`) ∗

(
w(`) ∗ y(`−1)

)
=
(
a(`) ∗w(`)

)
∗ y(`−1) = f (`) ∗ y(`−1),

(B.16)

where each f (`) has infinite number of coefficients. We denote the MGF of f (`) as Mf(`) , and its
first and second moments as M1(f

(`)) and M2(f
(`)). With the moments of f (`), we can rewrite

Equation B.1 in Theorem 8 as

r(ERF)2 =

L∑
`=1

[
M2(f

(`))−
(
M1(f

(`))
)2]

. (B.17)

The remaining part is to compute Mf(`) for each f (`), with which M1(f
(`)) and M2(f

(`)) are
generated. Notice that f (`) = a(`) ∗w(`) is a convolution between a(`) and w(`), we have

Mf(`)(λ) =Ma(`)(λ)Mw(`)(λ) =
Mw(`)(λ)

Ma(`)(λ)
(B.18)

=
1

1− a(`)eλ
K(`)−1∑
p=0

1− a(`)

K(`)
eλpd

(`)

, (B.19)

where the first equation uses the property that Ma(`)(λ)Ma(`)(λ) = 1 for any λ. The first moment
M1(f

(`)) is therefore

M1(f
(`)) =

dMf(`)(λ)

dλ

∣∣∣∣
λ=0

(B.20)

=
a(`)(

1− a(`)λ
)2 K

(`)−1∑
p=0

1− a(`)

K(`)
eλpd

(`)

+
1

1− a(`)eλ
K(`)−1∑
p=0

1− a(`)

K(`)
pd(`)eλpd

(`)

∣∣∣∣∣∣
λ=0

(B.21)

=
a(`)

1− a(`)
+

d(`)

K(`)

K(`)−1∑
p=0

p

 (B.22)

=
a(`)

1− a(`)
+
d(`)

(
K(`) − 1

)
2

, (B.23)
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where the last equation makes use of Equation B.7a. Similarly, the second moment M2(f
(`)) is

M2(f
(`)) =

d2Mf(`)(λ)

dλ2

∣∣∣∣
λ=0

(B.24)

=

a(`)
2(

1− a(`)
)3 K

(`)−1∑
p=0

1− a(`)

K(`)
eλpd

(`)

+
2a(`)(

1− a(`)eλ
)2 K

(`)−1∑
p=0

1− a(`)

K(`)
pd(`)eλpd

(`)

+
1

1− a(`)eλ
K(`)−1∑
p=0

1− a(`)

K(`)

(
pd(`)

)2
eλpd

(`)

∣∣∣∣
λ=0

(B.25)

=

(
a(`)

1− a(`)

)2

+
2a(`)

1− a(`)
d(`)

K(`)

K(`)−1∑
p=0

p

+
d(`)

2

K(`)

K(`)−1∑
p=0

p2

 (B.26)

=

(
a(`)

1− a(`)

)2

+
2a(`)

1− a(`)
d(`)

(
K(`) − 1

)
2

+
d(`)

2 (
K(`) − 1

) (
2K(`) − 1

)
6

. (B.27)

Plugging Equation B.23 and Equation B.27 into Equation B.17, we have

r(ERF)2 =

L∑
`=1

[
d(`)

2 (
K(`) − 1

)2
12

+
a(`)(

1− a(`)
)2
]
. (B.28)

Taking square root on both sides completes the proof.

ERF Analysis of ARMA Networks. If we assume all layers are identical, i.e., K(`) = K, d(`) =
d, a(`) = a for 1 ≤ ` ≤ L, we can simplify Equation B.28 as

r(ERF) =
√
L ·

√
d2(K2 − 1)

12
+

a

(1− a)2
= O

(√
Lmax

(
dK,

√
a

1− a

))
. (B.29)

The ERF radius is dominated by the AR coefficient when a / 1 regardless of the kernel size K and
the dilation d. The radius still grows sub-linearly with the number of layers L.

C Computation of ARMA Layers

In the section, we first derive the backpropagation rules in Theorem 4. We then show how to efficiently
compute both forward and backward passes in ARMA layer using Fast Fourier Transform.

C.1 Backpropagation in ARMA Models

In this part, we will prove a general theorem for backpropagation in ARMA models. To keep the
notations simple, we derive the backpropagation equations for ARMA models with one dimension
input/output and one channel. However, the proof techniques can be trivially extended to general
ARMA models with high-dimensional input/output with multiple channels.
Theorem 11 (Backpropagation in an ARMA Model). Consider an ARMA model a ∗ y = w ∗ x,
where a and w are the sequences of moving-average and autoregressive coefficients respectively, the
gradients {∂L/∂x, ∂L/∂w, ∂L/∂a} can be computed from ∂L/∂y with the following equations:

a> ∗ ∂L
∂x

= w> ∗ ∂L
∂y

, (C.1a)

−a> ∗ ∂L
∂a

= y> ∗ ∂L
∂y

, (C.1b)

a> ∗ ∂L
∂w

= x> ∗ ∂L
∂y

, (C.1c)

where a>, w>, and y> denote the reversed sequences of a, w, and y respectively.
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Notice that Theorem 4 is special case of Theorem 11, where Equation 6a is proved by Equation C.1b
and Equation 6b is proved by Equation C.1a.

We provide two different proofs of Theorem 11. (1) The analysis in our first proof only uses real
numbers and applicable to arbitrary convolution types. (2) If the convolution is circular (as in the im-
plementation of this paper), we provide a simplified proof using Fourier transform (therefore complex
numbers). The second proof also suggests an FFT-based algorithm to compute the backpropagation
in Equation 4 efficiently.

C.1.1 Proof in Real Numbers R

Before we prove the theorem, we first prove a useful lemma on the inverse of transposed convolution.
Lemma 12 (Inverse of transposed convolution). Given a convolution (with coefficients) a, the
operations of inversion and transposition are exchangeable,

a> = a>. (C.2)
In other words, the inverse transposed convolution is equal to the transposed inverse convolution.

Proof. The lemma is an immediate result of the definitions of inverse and transposed convolutions.
+∞∑
p=−∞

a>p a
>
i−p =

+∞∑
p=−∞

a−pap−i = δ−i = δi ∀i, (C.3)

which shows the inverse of a>, i.e., a>, is equal to a>.

Now we are ready to prove Theorem 11 at the beginning of this section.

Proof. To begin with, we write the ARMA model a ∗ y = w ∗ x in its weighted-sum form:
+∞∑
q=−∞

aqyi−q =

+∞∑
p=−∞

wpxi−p, ∀i. (C.4)

Taking derivative w.r.t. ar on both sides, and since the right side is a constant w.r.t. ar, we have

∂
(∑+∞

q=−∞ aqyq

)
∂ar

= 0, ∀i, r. (C.5)

By implicit function theorem, the left hand side can be further expanded as

∂
(∑+∞

q=−∞ aqyi−q

)
∂ar

=

+∞∑
q=−∞

∂(aqyi−q)

∂ar
(C.6)

=
∑
q 6=r

aq
∂yi−q
∂ar

+

(
yi−r + ar

∂yi−r
∂ar

)
(C.7)

=

+∞∑
q=−∞

aq
∂yi−q
∂ar

+ yi−r = 0, ∀i, r. (C.8)

Rearranging the equation above, we have

−
+∞∑
q=−∞

aq
∂yi−q
∂ar

= yi−r, ∀i, r. (C.9a)

Repeating the procedure twice for the derivatives w.r.t. wr and xr, we have two similar equations:
+∞∑
q=−∞

aq
∂yi−q
∂wr

= xi−r, ∀i, r, (C.9b)

+∞∑
q=−∞

aq
∂yi−q
∂xr

= ai−r, ∀i, r. (C.9c)

22



Since Equation C.9a, Equation C.9b and Equation C.9c take the same form, we only precede with
Equation C.9b and obtain ∂L/∂w. The other two can be derived using the same arguments.

Notice that Equation C.9b can be rewritten as

+∞∑
q=−∞

ai−q
∂yq
∂wr

= xi−r, ∀i, r (C.10)

by changing variable q to i − q. Since Equation C.10 holds for any i, we further introduce a new
index l and change i to i− l on both hand sides:

+∞∑
q=−∞

ai−q−l
∂yq
∂wr

= xi−r−l, ∀i, r, l. (C.11)

Now we convolve both hand sides with a, the inverse of a. Then for all i and r, we have

+∞∑
l=−∞

al

(
+∞∑
q=−∞

ai−q−l
∂yq
∂wr

)
=

+∞∑
l=−∞

alxi−r−l (C.12)

+∞∑
q=−∞

(
+∞∑
l=−∞

alai−q−l

)
∂yq
∂wr

=

+∞∑
l=−∞

alxi−r−l (C.13)

∂yi
∂wr

=

+∞∑
q=−∞

δi−q
∂yq
∂wr

=

+∞∑
l=−∞

alxi−r−l. (C.14)

Subsequently, we apply the chain rule to obtain ∂L/∂wr

∂L
∂wr

=

+∞∑
i=−∞

∂yi
∂wr

∂L
∂yi

=

+∞∑
i=−∞

+∞∑
l=−∞

alxi−r−l
∂L
∂yi

, ∀r. (C.15)

Finally, we convolve both hand sides with a>, the transpose of a, to obtain the ARMA form of
backpropagation rule.

+∞∑
r=−∞

a>j−r
∂L
∂wr

=

+∞∑
r=−∞

a>j−r

(
+∞∑
i=−∞

+∞∑
l=−∞

alxi−r−l
∂L
∂yi

)
(C.16)

=

+∞∑
r=−∞

+∞∑
i=−∞

+∞∑
l=−∞

a>j−ralxi−r−l
∂L
∂yi

(C.17)

=

+∞∑
r=−∞

+∞∑
i=−∞

+∞∑
l=−∞

a>j−ral−rxi−l
∂L
∂yi

(C.18)

=

+∞∑
r=−∞

+∞∑
i=−∞

+∞∑
l=−∞

a>j−ra
>
r−lx

>
l−i

∂L
∂yi

(C.19)

=

+∞∑
i=−∞

+∞∑
l=−∞

(
+∞∑
r=−∞

a>j−ra
>
r−l

)
x>l−i

∂L
∂yi

(C.20)

=

+∞∑
i=−∞

+∞∑
l=−∞

δj−lx
>
l−i

∂L
∂yi

(C.21)

=

+∞∑
i=−∞

x>j−i
∂L
∂yi

, ∀j, (C.22)

where the second last equality uses Lemma 12. Therefore, we prove a> ∗ ∂L/∂w = x> ∗ ∂L/∂y,
i.e., Equation C.1c in the theorem. Equation C.1b and Equation C.1a can be proved similarly.
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C.1.2 Proof in Complex Numbers C

In this part, we provide an alternative proof of Theorem 11 using Fourier transform.

Proof. If both convolutions in a ∗ y = w ∗ x are circular with period N , the celebrated convolution
theorem relates the discrete Fourier transform of a, y, w and x with

AlYl =WlXl


Al =

N−1∑
n=0

anω
nl
N , Yl =

N−1∑
n=0

ynω
nl
N

Wl =

N−1∑
n=0

wnω
nl
N , Xl =

N−1∑
n=0

xnω
nl
N

(C.23)

where ωN = exp(−j2π/N) is the N -th root of unity. For brevity, we only prove the most difficult
equation −a> ∗ ∂L/∂a = y> ∗ ∂L/∂y (Equation C.1b) here, and the proofs for the other two
equations can be obtained with minor modification.

Taking derivative w.r.t. Ak on both hand sides, we have
Al

∂Yl
∂Ak

= 0, l 6= k

Al
∂Yl
∂Ak

+ Yk = 0, l = k

(C.24)

Since Al 6= 0,∀l, the equation can be simplified as

∂Yl
∂Ak

=


0, l 6= k

− Yk
Ak

, l = k
(C.25)

Then we apply chain rule to obtain the gradient of Ak, which yields

∂L
∂Ak

=

N−1∑
l=0

∂L
∂Yl

∂Yl
∂Ak

= − Yk
Ak

∂L
∂Yk

. (C.26)

Again, since Ak 6= 0,∀k, we can simplify the equation as

Ak
∂L
∂Ak

= −Yk
∂L
∂Yk

. (C.27)

(Notice that the equation above suggests an efficient algorithm to evaluate the equation using FFT.)
To precede, we apply the chain rule one more time to obtain the derivatives w.r.t. an and yn as

∂L
∂an

=

N−1∑
k=0

∂L
∂Ak

∂Ak
∂an

=

N−1∑
k=0

∂L
∂Ak

ωknN , (C.28a)

∂L
∂yn

=

N−1∑
k=0

∂L
∂Yk

∂Yk
∂yn

=

N−1∑
k=0

∂L
∂Yk

ωknN . (C.28b)

With the equations above, the convolution between a> and ∂L/∂a can be rewritten as
N−1∑
n=0

a>i−n
∂L
∂an

=

N−1∑
n=0

an−i
∂L
∂an−i

(C.29)

=

N−1∑
n=0

an−i

(
N−1∑
k=0

∂L
∂Ak

ωknN

)
(C.30)

=

N−1∑
k=0

(
N−1∑
n=0

an−iω
k(n−i)
N

)
∂L
∂Ak

ωkiN (C.31)

=

N−1∑
k=0

Ak
∂L
∂Ak

ωkiN . (C.32)
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With identical arguments, we can rewrite the convolution between y> and ∂L/∂y as

N−1∑
n=0

y>i−n
∂L
∂yn

=

N−1∑
k=0

Yk
∂L
∂Yk

ωkiN . (C.33)

Recall the relation in Equation C.27, we have

−
N−1∑
n=0

a>i−n
∂L
∂an

=

N−1∑
n=0

y>i−n
∂L
∂yn

, (C.34)

i.e., −a> ∗ ∂L/∂a = y> ∗ ∂L/∂y, which completes the proof.

C.2 Efficient Computation using Fast Fourier Transform

The key to speeding up both forward and backward passes in ARMA layers is the Discrete Fourier
Transform (DFT), along with the Fast Fourier Transform (FFT) algorithm.
Definition 13 (Discrete Fourier Transform, DFT). Given a third-order tensor T ∈ RI1×I2×C , we
define its DFT of over the spatial coordinates as T̃ ∈ CI1×I2×C .

T̃k1,k2,c =
I1−1∑
i1=0

I2−1∑
i2=0

Ti1,i2,c ω
−i1k1
I1

ω−i2k2I2
, (C.35)

where ωI = exp(2π/I) is the Ith root of unity. Given the transformed tensor T̃ ∈ CI1×I2×C , the
original tensor T can be recovered by inverse DFT (IDFT) as

Ti1,i2,c =
1

I1I2

I1−1∑
k1=0

I2−1∑
k2=0

T̃i1,i2,cω
i1k1
I1

ωi2k2I2
. (C.36)

The definition above can be extended to convolutional kernels A by first zero-padding A to be
RI1×I2×C . With DFT, the autoregressive layer in Equation 5 can be computed as

Ãk1,k2,tỸk1,k2,t,= T̃k1,k2,t. (C.37)

where Ã, T̃ are computed from A, T with Equation C.35, and Y is recovered from Ỹ by Equa-
tion C.36. Similarly, the backpropagation in Equation 4 can be solved as

∂L
∂Ãk1,k2,t

= − Ỹk1,k2,t
Ãk1,k2,t

· ∂L
∂Ỹk1,k2,t

, (C.38a)

∂L
∂Ãk1,k2,t

=
1

Ãk1,k2,t
· ∂L
∂Ỹk1,k2,t

. (C.38b)

If every DFT is evaluated using FFT, the computational complexity of either forward or backward pass
reduces toO(log(max(I1, I2))I1I2T ), compared toO((I21+I

2
2 )I1I2T ) using Gaussian elimination.

D Stability of ARMA Layers

In this section, we will prove the main Theorem 6 in section 5. We organize the section into three
subsections: (1) In subsection D.1, we formally define the concept of BIBO stability, and prove
a lemma that relates the stability of a complicated model to the ones of its submodules; (2) In
subsection D.2, we repeatedly apply the lemma and deduce the stability of an ARMA layer to from
the stability of length-3 filters; (3) Lastly, in subsection D.3, we prove a theorem on the stability of a
length-3 filter.

D.1 Algebra of BIBO Stability

To analyze the stability of an ARMA model, we adopt the traditional notion of Bounded-Input
Bounded-Output (BIBO) stability [29] that characterizes the stability of linear systems.
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Definition 14 (BIBO Stability). An input x (or an output ) is bounded if |xi| < B1,∀i ∈ Z for
some B1 > 0 (or |yi < B2,∀i ∈ Z for some B2 > 0). A model is BIBO stable if the output y is
bounded given any bounded input x, that is

∀x, (∃B1 > 0, |xi| < B1,∀i ∈ Z) =⇒ (∃B2 > 0, |yi| < B2,∀i ∈ Z). (D.1)

The following lemma presents that the BIBO stability is preserved under simple algebraic operations
of cascade, addition and concatenation. This lemma allows us to reduce the stability analysis of a
complex model into its simpler submodules.
Lemma 15 (Preserved BIBO Stability). BIBO stability is preserved under the operations of cascade,
addition, and concatenation. Suppose f and g are two BIBO stable models and consider three
compound models: (1) h1 = g ◦ f is a cascaded model y = h1(x) = g(f(x)); (2) h2 = f + g
is a parallel model y = h2(x) = f(x) + g(x); (3) h3 = f ⊗ g is a concatenated model y =
[y(1),y(2)] = h3([x

(1),x(2)]) = [f(x(1)), g(x(2))]. Then h1, h2, and h3 are all BIBO stable.

Proof. (1) Cascaded model h1 = g ◦f : y = h1(x) = f(g(x)). Let t = h(x) denote the intermediate
result returned by the model f . Since f is BIBO stable, we have

(∃B1 > 0, |xi| < B1,∀i ∈ Z) =⇒ (∃B0 > 0, |ti| < B0,∀i ∈ Z). (D.2a)

Similarly, since g is BIBO stable, we further have

(∃B0 > 0, |ti| < B0,∀i ∈ Z) =⇒ (∃B2 > 0, |yi| < B2,∀i ∈ Z). (D.2b)

Combining both Equation D.2a and Equation D.2b, we achieve

(∃B1 > 0, |ti| < B1,∀i ∈ Z) =⇒ (∃B2 > 0, |yi| < B2,∀i ∈ Z), (D.3)

which is the definition of BIBO stability for the model h1.

(2) Parallel model h2 = f + g: y = h2(x) = f(x) + g(x). Let u = f(x) and v = g(x) be the
outputs of f and g. Since both f and g are BIBO stable, we have the following two relations:

(∃B1 > 0, |xi| < B1,∀i ∈ Z) =⇒ (∃B21 > 0, |ui| < B21,∀i ∈ Z), (D.4a)
(∃B1 > 0, |xi| < B1,∀i ∈ Z) =⇒ (∃B22 > 0, |vi| < B22,∀i ∈ Z). (D.4b)

Combining both Equation D.4a and Equation D.4b, we have

(∃B1 > 0, |ti| < B0,∀i ∈ Z) =⇒ (|yi| < B2 = B21 +B22,∀i ∈ Z). (D.5)

We achieve the definition of BIBO stability for the model h2.

(3) Concatenated model y = f ⊗ g: y = [y(1),y(2)] = h([x(1),x(2)]) = [f(x(1)), g(x(2))]: Since
f and g are both BIBO stable, we have the following relations:

(∃B1 > 0, |xi| < B1,∀i ∈ Z) =⇒ (∃B21 > 0, |y(1)i | < B21,∀i ∈ Z), (D.6a)

(∃B1 > 0, |xi| < B1,∀i ∈ Z) =⇒ (∃B22 > 0, |y(2)i | < B22,∀i ∈ Z). (D.6b)

Again, combining both equations we have

(∃B1 > 0, |xi| < B1,∀i ∈ Z) =⇒ (|y(2)i | < B2 = max(B21, B22),∀i ∈ Z). (D.7)

And we achieve the definition of BIBO stability for the model h3.

D.2 Reduction of an ARMA Layer

In what follows, we repeatedly use Lemma 15 to decompose an ARMA layer into simpler systems
until the stability analysis is tractable.

From ARMA Model to AR Model. In section 4, we show that an ARMA layer can be decomposed
into a cascade of a traditional convolutional layer and an autoregressive layer in Equation 5. Since
the traditional convolutional layer is always BIBO stable (by triangle inequality), it is sufficient to
guarantee the stability of the autoregressive layer:

A:,:,t ∗ Y:,:,t = T:,:,t, ∀t ∈ [T ]. (D.8)
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From Multiple Channels to Single Channel. Note that the autoregressive layer in Equation D.8 is
a concatenation of T channels of ARMA models, therefore it is sufficient to guarantee the stability
of each ARMA model. For simplicity, we drop the subscript t and denote A,Y, T asA,Y ,T . Our
goal now reduces to finding a sufficient condition for the stability of

A ∗ Y = T ⇐⇒
∑
p1,p2

Ap1,p2Yi1−p1,i2−p2 = Ti1,i2 , ∀i1, i2, (D.9)

whereA ∈ RKa×Ka and T ,Y ∈ RI1×I2 .

From Separable 2D-Filter to 1D-Filters. In a separable ARMA layer (Equation 7), each filterA in
Equation D.9 is separable, i.e.,A = f ⊗ g is outer product of two 1D-filters f ∈ RI1 , g ∈ RI2 :

Ap1,p2 = fp1gp2 , ∀p1, p2. (D.10)

Given the factorization, the model in Equation D.9 can be written as a cascade of two submodules:∑
p1

fp1Si1−p1,i2 = Ti1,i2 , ∀i2, (D.11a)

∑
p2

gp2Yi1,i2−p2 = Si1,i2 , ∀i1, (D.11b)

where S ∈ RI1×I2 is an intermediate result. Notice that Equation D.11a is a concatenation of I2
submodules, each of which operates on a column of T . Similarly, Equation D.11b can be decomposed
into a concatenation of I1 submodules, and each submodule operates on a row of S. According to
Lemma 15, it is sufficient to guarantee the stability of f and g individually. For simplicity, we denote
both f and g as a, and rewrite each submodule in Equation D.11a or Equation D.11b as

a ∗ y = x ⇐⇒
∑
p

apyi−p = xi,∀i. (D.12)

From General 1D-Filter to Length-3 1D-Filters. By the fundamental theorem of algebra, any
one-dimensional filter can be decomposed as a composition of shorter filters [29]. Specifically,
suppose a ∈ RK is a filter of length-K, it can be factorized into a composition of Q = (K − 1)/2
length-3 filters such that

a = a(1) ∗ a(2) · · · ∗ a(Q), (D.13)
where each filter a(q) ∈ R3 has three coefficients. By the decomposition, the model in Equation D.12
is a cascade of Q submodules

a(1) ∗
(
a(2) ∗ · · ·

(
a(Q) ∗ y

))
= x. (D.14)

Therefore, we only need to guarantee the stability for each a(q) individually. In subsection D.3, we
will further drop the superscript q and assume a itself is a length-3 filter.

D.3 Stability of a Length-3 1D-Filter

Without loss of generality, we assume the filter a is centered at 0 with a0 = 1 (otherwise we can
rescale the moving-average coefficients). The model at consideration can be written as

a1yi−1 + yi + a−1yi+1 = xi. (D.15)

The stability analysis of this model follows the standard approach using Z-transform [29]. To begin
with, we review the concepts of Z-transform, Region of Convergence (ROC), and their relationships
to the BIBO stability of a linear model.
Definition 16 (Z-transform and ROC). Given a one-dimensional sequence h, the Z-transform
maps the sequence to a complex function on the complex plain C

H(z) =

+∞∑
i=−∞

hiz
−i (D.16)

Notice that the infinite series does not necessarily converge for any z ∈ C, and the transformation
exists only if the summation is convergent. The region in the complex plane that the Z-transform
exists is known as the ROC for the sequence h.
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Lemma 17 (ROC and BIBO Stability). Consider a linear model y = h ∗ x, and let H denote the
Z-transform of h, then a necessary and sufficient condition for the model being BIBO stable is that
the unit circle belongs to the ROC, i.e., the infinite series

H(ejω) =

+∞∑
i=−∞

hie
−jωi (D.17)

converges for any frequency ω ∈ R, i.e., discrete-time Fourier transform (DTFT) exists for h.

Lemma 18 (ROC of Length-3 AR Model). Consider an length-3 AR model a ∗ y = x, i.e.,
a−1yi−1 + yi + a1yi−1 = xi, the Z-transform of is a length-3 complex polynomial A(z) =
a−1z + 1 + a1z

−1 with two zeros z1 and z2. Then the Z-transform of its inverse convolution a is

A(z) =
1

A(z)
=

z

a−1z2 + z + a1
, (D.18)

with the corresponding ROC |z1| < z < |z2| as a ring. Since the model can be written as y = a ∗ x,
it is BIBO stable if |z1| < 1 < |z2| according to Lemma 17.

With the lemmas above, we are ready to prove Theorem 6.

Proof. Since the coefficients in a are real numbers, the zeros of F (z) = zA(z) = a−1z
2 + z + a1

are conjugate to each other: (1) Both zeros lie on the real axis, i.e., z1 and z2 are real numbers; and
(2) z1 and z2 are complex conjugate to each other, i.e., z∗1 = z2.

Notice that (2) also implies |z1| = |z2|. However, Lemma 18 shows that |z1| < 1 < |z2| is required
for BIBO stability, and therefore the second distribution is not feasible.

If both zeros are real, the inequality |z1| < 1 < |z2| is equivalent to F (1) · F (−1) < 0, i.e.,

(a−1 + 1 + a1)(a−1 − 1 + a1) < 0 (D.19)

=⇒ (a−1 + a1)
2 − 1 < 0 (D.20)

=⇒ |a−1 + a1| < 1, (D.21)

which completes the proof.

The constrain |a−1 + a1| < 1 can be removed by re-parameterizing (a−1, a1) into (α, β):(
a−1
a1

)
=

(√
2/2 −

√
2/2√

2/2
√
2/2

)(
α

tanh(β)

)
, (D.22)

where the learnable parameters (α, β) are unconstrained. The transformation in re-parameterization
is illustrated in the following figure.

shrink rotate
α

β

α

tanh (β)

a−1

a1

x1

−1
x

Figure 17: Visualization of the re-parameterization in Equation D.22.
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