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Review 12

Regarding the definition of Pareto optimality: Please refer to the explanation in lines 173–177, which is based on3

the idea of pooling different RUM-produced datasets. This context motivated our definition, and in this model the4

demanding restriction on a vs x pairs is appropriate. (Your example makes sense, and is reminiscent of PMC.)5

Your question about lines 231–242: Note that we assume (line 238) that the number of comparisons is uniform across6

all pairs, so we will see many #i-comparisons of a vs x for every x. Since we assume that the difference βa − βx has7

increased, we will (whp) see more comparisons that go a > x.8

Theorems 5.3 and 6.3 for more than three alternatives: crucially, the proofs of these theorems construct universal9

counterexamples, and these can easily be extended to more than three alternatives. We will mention this.10

“only 12 numbers”: this is because we don’t need counts for x vs x comparisons. We’ll clarify. The claim of line 181 is11

indeed provable. Regarding ε-perturbations, we were using a continuous relaxation, but by choosing rational ε and12

blowing the counts up, we can achieve integral counts.13

Review 214

On the existence of parameters leading to high probability of PMC violations: Our proof sketch in lines 181–18315

suggests that if datasets are generated by a RUM, it satisfies the Pareto condition of Definition 3.1 for all pairs, and16

hence the dataset is very unlikely to lead to a PMC violation.17

Regarding examples of other aggregation rules that satisfy PMC and separability: this is a good point. A simple example18

of such a rule is the one where for each alternative x ∈ X , we let β̂x be the number of comparisons where x wins minus19

the number where it loses. (In a sense, this is a generalization of Borda’s rule.) This rule satisfies Pareto, monotonicity,20

and separability, but still fails PMC (due to Example 5.2). In fact, separability and PMC are incompatible since one can21

prove that all separable aggregators are variants of this counting rule. Overall, we don’t think this rule is promising: for22

instance, on dataset #1 of Example 6.2, it places c above a, which seems wrong as we argue in lines 291–292. Thus, in23

the applications we have in mind, RUMs seem more appropriate than this simple counting scheme, also because RUMs24

will have more predictive accuracy.25

Review 326

Regarding necessity of log-concavity assumptions (also raised in Review 4): indeed it would be desirable to know more27

about this. As Reviewer 4 notes, this is probably a difficult project, since uniqueness of the MLE is tricky to ascertain,28

and since the MLE cannot be computed anymore by straightforwardly solving a convex program.29

Review 430

Thank you for pointing that we seem to have rediscovered conditions for existence and uniqueness, and that (for31

Bradley–Terry) these were already known by Ford (1957). Searching further, it turns out that Ford himself rediscovered32

the conditions, which were already contained in Zermelo (1928). It was separately pointed out to us that the conditions33

for general RUMs were stated in an ICML-18 paper by Zhao and Xia. In the revised version, we will be careful to34

reference the appropriate literature. Please note, though, that we did not view these results as contributions of the35

paper — that is why we deliberately put them in the model section. We just need them as lemmas for our main theorems36

about the axioms. For those proofs, we also need the more explicit (and apparently novel) bounds using the inf-norm.37

Regarding combining the conditions about existence and uniqueness into one: in some places (chiefly for Pareto38

optimality), we only need existence. For Pareto optimality, as you note, we were not completely clear about existence39

requirements. We will say that the statement on line 180 of Definition 3.1 is conditioned on the existence of β̂.40

Regarding your proposed generalization of the Pareto definition: This is an interesting suggestion. It is possible that a41

condition like this can be satisfied if the MLE first normalizes counts so that all pairs are seen equally often. However,42

such a normalization might be a disadvantage on other examples.43

Regarding whether monotonicity is a participation incentive: There are two separate strategic models at play here. In44

the context that you describe, the alternatives are strategic players (such as competitors in a sports tournament) and need45

to decide whether to engage in another game with an uncertain outcome. You are right that in this model, monotonicity46

does not necessarily give a participation incentive. However, we were motivated by a different model. We think of the47

problem as aggregating preferences or opinions from voters, and then a participation incentive must assure voters that if48

they report additional pairwise comparisons, then the aggregate will move to be more aligned with the voter’s opinion.49

Monotonicity, as we define it, gives exactly this guarantee.50

Regarding the uniqueness requirement in Definition 4.1: we include a uniqueness requirement here so it makes sense to51

compare the positions of alternatives on different datasets. In general, the definition makes sense applied to aggregators52

that are not always unique. To keep it general, we prefer not to refer to the function F in the definition of an axiom.53


