
We thank the reviewers for their time and their valuable feedback and thoughtful suggestions. We remain confident that1

our work is of strong interest to the NeurIPS community and can be further strengthened by incorporating the suggested2

changes in a final version of the paper. Below are our answers to the reviewers’ comments, grouped by topic.3

Novelty of dual formulation. R2 considered our method requiring a “discretized proxy.” This is not correct. The4

proxy support measure in the formulation is a continuous measure, and in the implementation we choose a uniform5

measure on the bounding box containing the support of all source distributions (estimated by samples). Such choice6

of support measure allows us to design a novel barycenter algorithm in a free-support and continuous setting: both7

the source distributions and the resulting barycenter are continuous (except for optional recovery method (a), but we8

suggest continuous alternatives). To the best of our knowledge, all prior works either consider fixed-support (e.g., [3]) or9

discrete source measures (e.g., [2]). We thank R2 for pointing out [3] which we will add to the references. The method10

in [3] utilizes entropic regularization and uses a fixed discrete proxy, making it sufficient to parameterize only one of the11

dual potentials as the other can be retrieved in closed form based on first-order optimality [3]. For a continuous setting,12

this becomes infeasible as the closed form will become an integral in high dimensions. Moreover, such closed form is13

not possible for quadratic regularization which we found to be more stable and more accurate in higher dimensions.14

R2 and R3 asked about the novelty of our approach over existing continuous methods on regularized OT distances15

[4, 5]. First of all, a different, more challenging optimization problem is studied in our work. The variables in the16

barycenter problem we consider include not only the individual transport plan from each source to the barycenter,17

but importantly also the barycenter itself. There is no clear way to extend [4, 5] to the barycenter setting without18

introducing non-convex min-max optimization. By introducing a novel regularizing measure µi ⊗ η that does not rely19

on the unknown barycenter but only on a proxy measure η, we are able to encode the information of the barycenter in20

the dual potentials themselves without an explicit parametrization, thanks to Theorem 3.1. We will further emphasize21

the novelty of our method compared to [4, 5] in the final version of the related-work section.22

Comparison of recovery methods. We agree with R3 that the numerical comparison of 5 barycenter recovery methods23

is another highlight of the paper; even for computing regularized transport distance such comparison is lacking in the24

existing literature. In particular, we proposed the MCMC recovery strategy (b) which is suitable theoretically since we25

use continuous parametrization of the dual potentials (so gradient-based MCMC methods are viable) but is slow in26

practice. To address R2’s concern of lack of conclusion on which method to choose, we have included a discussion27

explaining each method’s advantages and disadvantages in the paragraph “qualitative results in 2 and 3 dimensions”28

on page 6. We will add recommendation for higher-dimensional situations to accompany the results in Table B.1 and29

Table B.2. To address R1’s concern about recovery methods being costly, method (d) in fact comes at almost no cost30

(gradient computation), and method (e) requires a secondary SGD optimization that is no more costly than Algorithm 1.31

Relevance to NeurIPS. R3 suggested applying similar strategies to a wider range of variational problems of interest to32

NeurIPS. We thank R3 for the detailed references, which we will incorporate into the related-work section. We would33

like to point out that there are three accepted papers at NeurIPS last year inspired by Wasserstein barycenters. The34

application to large-scale Bayesian posterior computation is also of considerable interest to the NeurIPS community.35

Theoretical analysis. R3 suggested analyzing the duality gap for the algorithm in practice since parametrization will36

restrict the functional space. On a related note, R1 asked about theoretical analysis of recovery methods. These are37

challenging questions that depend on the specific structure of parameterization and the particular recovery method.38

Even for continuous regularized OT distance [5] this is not well-understood. We agree these are areas for future work.39

Experiments and improvements over SOTA. R2 is concerned about the level of improvements over SOTA. Our40

improvements are quite significant in the experiments: in Table 1, the covariance difference computed by our algorithm41

is consistently 1.5-2× smaller in higher dimensions as those of SOTA. Additionally, this example only deals with42

Gaussians, whose low sample complexity favors discretized methods more than other settings. R2 mentions the43

efficiency of [6], but [6] is not applicable in high dimensions as a discretized grid is needed. While improvements44

in Table 2 appear more modest, covariance difference does not fully characterize discrepancy of measures for non-45

Gaussians. The comparison using 2-Wasserstein distance in Figure 3 reveals significant improvement, which we expect46

to further increase if we use more samples from our barycenter for the 2-Wasserstein distance. R4 suggested testing47

with different MLP architectures. We tested with deeper/wider networks but found no noticeable improvement over48

the proposed architecture. We will add more details on the runtimes for different methods as R4 suggested. In high49

dimensional experiments, our method takes around 15 minutes, [2] takes 20 minutes, and [1] takes an hour or longer.50

The relative ease of training is likely due to the convexity of our formulation (Equation 11).51
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