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Abstract

Multivariate time-series forecasting plays a crucial role in many real-world ap-
plications. It is a challenging problem as one needs to consider both intra-series
temporal correlations and inter-series correlations simultaneously. Recently, there
have been multiple works trying to capture both correlations, but most, if not
all of them only capture temporal correlations in the time domain and resort to
pre-defined priors as inter-series relationships.
In this paper, we propose Spectral Temporal Graph Neural Network (StemGNN) to
further improve the accuracy of multivariate time-series forecasting. StemGNN
captures inter-series correlations and temporal dependencies jointly in the spectral
domain. It combines Graph Fourier Transform (GFT) which models inter-series
correlations and Discrete Fourier Transform (DFT) which models temporal de-
pendencies in an end-to-end framework. After passing through GFT and DFT,
the spectral representations hold clear patterns and can be predicted effectively by
convolution and sequential learning modules. Moreover, StemGNN learns inter-
series correlations automatically from the data without using pre-defined priors.
We conduct extensive experiments on ten real-world datasets to demonstrate the
effectiveness of StemGNN.

1 Introduction

Time-series forecasting plays a crucial role in various real-world scenarios, such as traffic forecasting,
supply chain management and financial investment. It helps people to make important decisions if
the future evolution of events or metrics can be estimated accurately. For example, we can modify
our driving route or reschedule an appointment if there is a severe traffic jam anticipated in advance.
Moreover, if we can forecast the trend of COVID-19 in advance, we are able to reschedule important
events and take quick actions to prevent the spread of epidemic.

Making accurate forecasting based on historical time-series data is challenging, as both intra-series
temporal patterns and inter-series correlations need to be modeled jointly. Recently, deep learning
models shed new lights on this problem. On one hand, Long Short-Term Memory (LSTM) [10],
Gated Recurrent Units (GRU) [6], Gated Linear Units (GLU) [7] and Temporal Convolution Networks
(TCN) [3] have achieved promising results in temporal modeling. At the same time, Discrete Fourier
Transform (DFT) is also useful for time-series analysis. For instance, State Frequency Memory
(SFM) network [32] combines the advantages of DFT and LSTM jointly for stock price prediction;
Spectral Residual (SR) model [23] leverages DFT and achieves state-of-the-art performances in
∗The work was done when the author did internship at Microsoft.
†Equal Contribution
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time-series anomaly detection. Another important aspect of multivariate time-series forecasting is
to model the correlations among multiple time-series. For example, in the traffic forecasting task,
adjacent roads naturally interplay with each other. Current state-of-the-art models highly depend on
Graph Convoluational Networks (GCNs) [13] originated from the theory of Graph Fourier Transform
(GFT). These models [31, 17] stack GCN and temporal modules (e.g., LSTM, GRU) directly, which
only capture temporal patterns in the time domain and require a pre-defined topology of inter-series
relationships.

In this paper, our goal is to better model the intra-series temporal patterns and inter-series correlations
jointly. Specifically, we hope to combine both the advantages of GFT and DFT, and model multivariate
time-series data entirely in the spectral domain. The intuition is that after GFT and DFT, the spectral
representations could hold clearer patterns and can be predicted more effectively. It is non-trivial
to achieve this goal. The key technical contribution of this work is a carefully designed StemGNN
(Spectral Temporal Graph Neural Network) block. Inside a StemGNN block, GFT is first applied to
transfer structural multivariate inputs into spectral time-series representations, while different trends
can be decomposed to orthogonal time-series. Furthermore, DFT is utilized to transfer each univariate
time-series into the frequency domain. After GFT and DFT, the spectral representations become
easier to be recognized by convolution and sequential modeling layers. Moreover, a latent correlation
layer is incorporated in the end-to-end framework to learn inter-series correlations automatically,
so it does not require multivariate dependencies as priors. Moreover, we adopt both forecasting
and backcasting output modules with a shared encoder to facilitate the representation capability of
multivariate time-series.

The main contributions of this paper are summarized as follows:

• To the best of our knowledge, StemGNN is the first work that represents both intra-series
and inter-series correlations jointly in the spectral domain. It encapsulates the benefits of
GFT, DFT and deep neural networks simultaneously and collaboratively. Ablation studies
further prove the effectiveness of this design.

• StemGNN enables a data-driven construction of dependency graphs for different time-
series. Thereby the model is general for all multivariate time-series without pre-defined
topologies. As shown in the experiments, automatically learned graph structures have good
interpretability and work even better than the graph structures defined by humans.

• StemGNN achieves state-of-the-art performances on nine public benchmarks of multivariate
time-series forecasting. On average, it outperforms the best baseline by 8.1% on MAE an
13.3% on RMSE. A case study on COVID-19 further shows its feasibility in real scenarios.

2 Related Work

Time-series forecasting is an emerging topic in machine learning, which can be divided into two
major categories: univariate techniques [20, 22, 18, 27, 32, 19, 18] and multivariate techniques [24,
21, 17, 31, 3, 29, 25, 16, 15]. Univariate techniques analyze each individual time-series separately
without considering the correlations between different time-series [22]. For example, FC-LSTM [30]
forecasts univariate time-series with LSTM and fully-connected layers. SMF [32] improves the
LSTM model by breaking down the cell states of a given univariate time-series into a series of
different frequency components through Discrete Fourier Transform (DFT). N-BEATS [19] proposes
a deep neural architecture based on a deep stack of fully-connected layers with basis expansion.

Multivariate techniques consider a collection of multiple time-series as a unified entity [24, 9].
TCN [3] is a representative work in this category, which treats the high-dimensional data entirely as
a tensor input and considers a large receptive field through dilated convolutions. LSTNet [14] uses
convolution neural network (CNN) and recurrent neural network (RNN) to extract short-term local
dependence patterns among variables and discover long-term patterns of time series. DeepState [21]
marries state space models with deep recurrent neural networks and learns the parameters of the
entire network through maximum log likelihood. DeepGLO [25] leverages both global and local
features during training and forecasting. The global component in DeepGLO is based on matrix
factorization and is able to capture global patterns by representing each time-series as a linear
combination of basis components. There is another category of works using graph neural networks
to capture the correlations between different time-series explicitly. For instance, DCRNN [17]
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Figure 1: The overall architecture of Spectral Temporal Graph Neural Network.

incorporates both spatial and temporal dependencies in the convolutional recurrent neural network
for traffic forecasting. ST-GCN [31] is another deep learning framework for traffic prediction,
integrating graph convolution and gated temporal convolution through spatio-temporal convolutional
blocks. GraphWaveNet [29] combines graph convolutional layers with adaptive adjacency matrices
and dilated casual convolutions to capture spatio-temporal dependencies. However, most of them
either ignore the inter-series correlations or require a dependency graph as priors. In addition,
although Fourier transform has showed its advantages in previous works, none of existing solutions
capture temporal patterns and multivariate dependencies jointly in the spectral domain. In this paper,
StemGNN is proposed to address these issues. We refer you to recent surveys [28, 34, 33] for more
details about related works.

3 Problem Definition

In order to emphasize the relationships among multiple time-series, we formulate the problem of
multivariate time-series forecasting based on a data structure called multivariate temporal graph,
which can be denoted as G = (X,W ). X = {xit} ∈ RN×T stands for the multivariate time-series
input, where N is the number of time-series (nodes), and T is the number of timestamps. We denote
the observed values at timestamp t asXt ∈ RN . W ∈ RN×N is the adjacency matrix, where wij > 0
indicates that there is an edge connecting nodes i and j, and wij indicates the strength of this edge.

Given observed values of previous K timestamps Xt−K , · · · , Xt−1, the task of multivariate time-
series forecasting aims to predict the node values in a multivariate temporal graph G = (X,W ) for
the next H timestamps, denoted by X̂t, X̂t+1, · · · , X̂t+H−1. These values can be inferred by the
forecasting model F with parameter Φ and a graph structure G, where G can be input as prior or
automatically inferred from data.

X̂t, X̂t+1..., X̂t+H−1 = F (Xt−K , ..., Xt−1;G; Φ). (1)

4 Spectral Temporal Graph Neural Network

4.1 Overview

Here, we propose Spectral Temporal Graph Neural Network (StemGNN) as a general solution for
multivariate time-series forecasting. The overall architecture of StemGNN is illustrated in Figure
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1. The multivariate time-series input X is first fed into a latent correlation layer, where the graph
structure and its associated weight matrix W can be inferred automatically from data.

Next, the graph G = (X,W ) serves as input to the StemGNN layer consisting of two residual
StemGNN blocks. A StemGNN block is by design to model structural and temporal dependencies
inside multivariate time-series jointly in the spectral domain (as visualized in the top diagram of
Figure 1). It contains a sequence of operators in a well-designed order. First, a Graph Fourier
Transform (GFT) operator transforms the graph G into a spectral matrix representation, where
the univariate time-series for each node becomes linearly independent. Then, a Discrete Fourier
Transform (DFT) operator transforms each univariate time-series component into the frequency
domain. In the frequency domain, the representation is fed into 1D convolution and GLU sub-layers
to capture feature patterns before transformed back to the time domain through inverse DFT. Finally,
we apply graph convolution on the spectral matrix representation and perform inverse GFT.

After the StemGNN layer, we add an output layer composed of GLU and fully-connected (FC)
sub-layers. There are two kinds of outputs in the network. The forecasting outputs Yi are trained
to generate the best estimation of future values, while the backcasting outputs X̂i are used in an
auto-encoding fashion to enhance the representation power of multivariate time-series. The final loss
function can be formulated as a combination of both forecasting and backcasting losses:

L(X̂,X; ∆θ) =

T∑
t=0

||X̂t −Xt||22 +

T∑
t=K

K∑
i=1

||Bt−i(X)−Xt−i||22 (2)

where the first term represents for the forecasting loss and the second term denotes the back-
casting loss. For each timestamp t, {Xt−K , ..., Xt−1} are input values within a sliding window,
and Xt is the ground truth value to forecast; X̂t is the forecasted value for the timestamp t, and
{Bt−K(X), ..., Bt−1(X)} are reconstructed values from the backcasting module. B indicates the
entire network that generates backcasting output, ∆θ denotes all parameters in the network.

In the inference phase, we adopt a rolling strategy for multi-step prediction. First, X̂t is predicted by
taking {Xt−K , ..., Xt−1} as input. Then, the input will be changed to {Xt−K+1, ..., Xt−1, X̂t} for
predicting the next timestamp X̂t+1. By applying this rolling strategy consecutively, we can obtain
forecasting values of the next H timestamps.

4.2 Latent Correlation Layer

GNN-based approach requires a graph structure when modeling multivariate time-series. It can be
constructed by human knowledge (such as road network in traffic forecasting), but sometimes we
do not have a pre-defined graph structure as prior. In order to serve general cases, we leverage the
self-attention mechanism to learn latent correlations between multiple time-series automatically. In
this way, the model emphasizes task-specific correlations in a data-driven fashion.

First, the input X ∈ RN×T is fed into a Gated Recurrent Unit (GRU) layer, which calculates the
hidden state corresponding to each timestamp t sequentially. Then, we use the last hidden state R
as the representation of entire time-series and calculate the weight matrix W by the self-attention
mechanism as follows,

Q = RWQ,K = RWK ,W = Softmax(
QKT

√
d

) (3)

where Q and K denote the representation for query and key, which can be calculated by linear
projections with learnable parameters WQ and WK in the attention mechanism, respectively; and d
is the hidden dimension size of Q and K. The output matrix W ∈ RN×N is served as the adjacency
weight matrix for graph G. The overall time complexity of self-attention is O(N2d).

4.3 StemGNN Block

The StemGNN layer is constructed by stacking multiple StemGNN blocks with skip connections.
A StemGNN block is designed by embedding a Spectral Sequential (Spe-Seq) Cell into a Spectral
Graph Convolution module. In this section, we first introduce the motivation and architecture of the
StemGNN block, and then briefly describe the Spe-Seq Cell and Spectral Graph Convolution module
separately.
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StemGNN Block Spectral Graph Convolution has been widely used in time-series forecasting task
due to its extraordinary capability of learning latent representations of multiple time-series in the
spectral domain. The key component is applying Graph Fourier Transform (GFT) to capture inter-
series relationships. It is worth noting that the output of GFT is also a multivariate time-series while
GFT does not learn intra-series temporal relationships explicitly. Therefore, we can utilize Discrete
Fourier Transform (DFT) to learn the representations of the input time-series on the trigonometric
basis in the frequency domain, which captures the repeated patterns in the periodic data or the
auto-correlation features among different timestamps. Motivated by this, we apply the Spe-Seq Cell
on the output of GFT to learn temporal patterns in the frequency domain. Then the output of the
Spe-Seq Cell is processed by the rest components of Spectral Graph Convolution.

Our model can also be extended to multiple channels. We apply GFT and Spe-Seq Cell on each
individual channel Xi of input data and sum the results after graph convolution with kernel Θ·j . Next,
Inverse Graph Fourier Transform (IGFT) is applied on the sum to obtain the jth channel Zj of the
output, which can be written as follows,

Zj = GF−1

(∑
i

gΘij(Λi)S(GF(Xi))

)
. (4)

Here GF , GF−1 and S denote GFT, IGFT, and Spe-Seq Cell respectively, Θij is the graph convolution
kernel corresponding to the ith input and the jth output channel, and Λi is the eigenvalue matrix of
normalized Laplacian and the number of eigenvectors used in GFT is equivalent to the multivariate
dimension (N ) without dimension reduction. After that we concatenate each output channel Zj to
obtain the final result Z.

Following [19], we use learnable parameters to represent basis vectors V and a fully-connected
layer to generate basis expansion coefficients θ based on Z. Then the output can be calculated by a
combination of different bases: Y = V θ. We have two branches of this module in the StemGNN
block, one to forecast future values, namely forecasting branch, and the other to reconstruct history
values, namely backcasting branch (denoted by B). The backcasting branch helps regulate the
functional space for the block to represent time-series data.

Furthermore, we employ residual connections to stack multiple StemGNN blocks to build deeper
models. In our case, we use two StemGNN blocks. The second block tries to approximate the
residual between the ground-truth values and the reconstructed values from the first block. Finally, the
outputs from both blocks are concatenated and fed into GLU and fully-connected layers to generate
predictions.

Spectral Sequential Cell (Spe-Seq Cell) The Spe-Seq Cell S aims to decompose each individual
time-series after GFT into frequency basis and learn feature representations on them. It consists of
four components in order: Discrete Fourier Transform (DFT, F), 1D convolution, GLU and Inverse
Discrete Fourier Transform (IDFT, F−1), where DFT and IDFT transforms time-series data between
temporal domain and frequency domain, while 1D convolution and GLU learn feature representations
in the frequency domain. Specifically, the output of DFT has real part (X̂r

u) and imaginary part (X̂i
u),

which are processed by the same operators with different parameters in parallel. The operations can
be formulated as:

M∗(X̂∗
u) = GLU(θ∗τ (X̂∗

u), θ∗τ (X̂∗
u)) = θ∗τ (X̂∗

u)� σ∗(θ∗τ (X̂∗
u)), ∗ ∈ {r, i} (5)

where θ∗τ is the convolution kernel with the size of 3 in our experiments, � is the Hadamard product
and nonlinear sigmoid gate σ∗ determines how much information in the current input is closely
related to the sequential pattern. Finally, the result can be obtained by Mr(x̂ru) + iM i(x̂iu), and IDFT
is applied on the final output.

Spectral Graph Convolution The Spectral Graph Convolution [13] is composed of three steps.
(1) The multivariate time-series input is projected to the spectral domain by GFT. (2) The spectral
representation is filtered by a graph convolution operator with learnable kernels. (3) Inverse Graph
Fourier Transform (IGFT) is applied on the spectral representation to generate final output.

Graph Fourier Transform (GFT) [8] is a basic operator for Spectral Graph Convolution. It projects the
input graph to an orthonormal space where the bases are constructed by eigenvectors of the normalized
graph Laplacian. The normalized graph Laplacian [1] can be computed as: L = IN −D− 1

2WD− 1
2 ,
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where IN ∈ RN×N is the identity matrix and D is the diagonal degree matrix with Dii =
∑
jWij .

Then, we perform eigenvalue decomposition on the Laplacian matrix, forming L = UΛUT , where
U ∈ RN×N is the matrix of eigenvectors and Λ is a diagonal matrix of eigenvalues. Given multivariate
time-series X ∈ RN×T , the operators of GFT and IGFT are defined as GF(X) = UTX = X̂ and
GF−1(X̂) = UX̂ respectively. The graph convolution operator is implemented as a function gΘ(Λ)
of eigenvalue matrix Λ with parameter Θ. The overall time complexity is O(N3)

5 Experiments

5.1 Setup

Table 1: Summary of Datasets
METR-LA PEMS-BAY PEMS07 PEMS03 PEMS04 PEMS08 Solar Electricity ECG5000 COVID-19

# of nodes 207 325 228 358 307 170 137 321 140 25
# of timesteps 34,272 52,116 12,672 26,209 16,992 17,856 52,560 26,304 5,000 110

Granularity 5min 5min 5min 5min 5min 5min 10min 1hour - 1day
Start time 9/1/2018 1/1/2018 7/1/2016 5/1/2012 7/1/2017 3/1/2012 1/1/2006 1/1/2012 - 1/22/2020

We compare the performances of StemGNN on nine public datasets, ranging from traffic, energy and
electrocardiogram domains with other state-of-the-art models, including FC-LSTM [26], SFM [32],
N-BEATS [19], DCRNN [17], LSTNet [14], ST-GCN [31], DeepState [21], TCN [3], Graph
Wavenet [29] and DeepGLO [25]. We tune the hyper-parameters on the validation data by grid
search for StemGNN. Finally, the channel size of each graph convolution layer is set as 64 and the
kernel size of 1D convolution is 3. Following [31], we adopt the RMSprop optimizer, and the number
of training epochs is set as 50. The learning rate is initialized by 0.001 and decayed with rate 0.7 after
every 5 epochs. We use the Mean Absolute Errors (MAE) [11], Mean Absolute Percentage Errors
(MAPE) [11], and Root Mean Squared Errors (RMSE) [11] to measure the performances, which are
averaged by H steps in multi-step prediction. We report the performances of baseline models in their
original publications unless otherwise stated. The dataset statistics are summarized in Table 1.

We conduct the dataset into three part for training, validation and testing with a ratio of 6:2:2 on
PEMS03, PMES04, PEMS08, and 7:2:1 on META-LA, PEMS-BAY, PEMS07, Solar, Electricity and
ECG. The inputs of ECG are normalized by min-max normalization following [5]. Besides, the
inputs are normalized by Z-Score method [19]. That means StemGNN is trained on normalized input
where each time-series in the training set is re-scaled as Xin = (Xin − µ(Xin))/σ(Xin), where µ
and σ denote the mean and standard deviation respectively. More details descriptions about datasets,
evaluation metrics, and experimental settings can be found in Appendix B, C and D.

5.2 Results

The evaluation results are summarized in Table 2, and more details can be found in Appendix
E.1.Generally, StemGNN establishes a new state-of-the-art on most of the datasets. Furthermore, the
model does not need apriori topology and demonstrates the feasibility of learning latent correlations
automatically. In particular, on all datasets, StemGNN improves an average of 8.1% on MAE and
13.3% on RMSE compared to the best baseline for each dataset. In terms of baseline models, FC-
LSTM only takes temporal information into consideration and performs estimation in the time domain.
SFM models the time-series data in the frequency domain and shows stable improvement over FC-
LSTM. Besides, N-BEATS, TCN and DeepState are state-of-the-art deep learning models specialized
for sequential modeling. A common limitation is that they do not capture the correlations among
multiple time-series explicitly, hindering their application to multivariate time-series forecasting.
Therefore, it is natural that StemGNN shows much better performances against these baselines.

On the other hand, spatial and temporal correlations can be modeled in GNN-based approaches, such
as DCRNN, ST-GCN and GraphWaveNet. However, most of them need a pre-defined topology of
different time-series and are not applicable to Solar, Electricity and ECG datasets. GraphWaveNet is
able to work without a pre-defined structure but the performance is not satisfied. For traffic forecasting
tasks, StemGNN outperforms these models consistently without any prior knowledge of the road
network. It is convincing that a data-driven latent correlation layer works more effectively than human
defined priors. Moreover, DeepGLO is a hybrid method that enables the model to focus both on
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Table 2: Forecasting results on different datasets
MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)

METR-LA [12] PEMS-BAY [4] PEMS07 [4]
FC-LSTM [26] 3.44 6.3 9.6 2.05 4.19 4.8 3.57 6.2 8.6
SFM [32] 3.21 6.2 8.7 2.03 4.09 4.4 2.75 4.32 6.6
N-BEATS [19] 3.15 6.12 7.5 1.75 4.03 4.1 3.41 5.52 7.65
DCRNN [17] 2.77 5.38 7.3 1.38 2.95 2.9 2.25 4.04 5.30
LSTNet [14] 3.03 5.91 7.67 1.86 3.91 3.1 2.34 4.26 5.41
ST-GCN [31] 2.88 5.74 7.6 1.36 2.96 2.9 2.25 4.04 5.26
TCN [3] 2.74 5.68 6.54 1.45 3.01 3.03 3.25 5.51 6.7
DeepState [21] 2.72 5.24 6.8 1.88 3.04 2.8 3.95 6.49 7.9
GraphWaveNet [29] 2.69 5.15 6.9 1.3 2.74 2.7 - - -
DeepGLO [25] 2.91 5.48 6.75 1.39 2.91 3.01 3.01 5.25 6.2
StemGNN (ours) 2.56 5.06 6.46 1.23 2.48 2.63 2.14 4.01 5.01

PEMS03 [4] PEMS04 [4] PEMS08 [4]
FC-LSTM [26] 21.33 35.11 23.33 27.14 41.59 18.2 22.2 34.06 14.2
SFM [32] 17.67 30.01 18.33 24.36 37.10 17.2 16.01 27.41 10.4
N-BEATS [19] 18.45 31.23 18.35 25.56 39.9 17.18 19.48 28.32 13.5
DCRNN [17] 18.18 30.31 18.91 24.7 38.12 17.12 17.86 27.83 11.45
LSTNet [14] 19.07 29.67 17.73 24.04 37.38 17.01 20.26 31.96 11.3
ST-GCN [31] 17.49 30.12 17.15 22.70 35.50 14.59 18.02 27.83 11.4
TCN [3] 18.23 25.04 19.44 26.31 36.11 15.62 15.93 25.69 16.5
DeepState [21] 15.59 20.21 18.69 26.5 33.0 15.4 19.34 27.18 16
GraphWaveNet [29] 19.85 32.94 19.31 26.85 39.7 17.29 19.13 28.16 12.68
DeepGLO [25] 17.25 23.25 19.27 25.45 35.9 12.2 15.12 25.22 13.2
StemGNN (ours) 14.32 21.64 16.24 20.24 32.15 10.03 15.83 24.93 9.26

Solar [14] Electricity [2] ECG [5]
FC-LSTM [26] 0.13 0.19 27.01 0.62 0.2 24.39 0.32 0.54 31.0
SFM [32] 0.05 0.09 13.4 0.08 0.13 17.3 0.17 0.58 11.9
N-BEATS [19] 0.09 0.15 23.53 - - - 0.08 0.16 12.428
LSTNet [14] 0.07 0.19 19.13 0.06 0.07 14.97 0.08 0.12 12.74
TCN [3] 0.06 0.06 21.1 0.072 0.51 16.44 0.1 0.3 19.03
DeepState [21] 0.06 0.25 19.4 0.065 0.67 15.13 0.09 0.76 19.21
GraphWaveNet [29] 0.05 0.09 18.12 0.071 0.53 16.49 0.19 0.86 19.67
DeepGLO [25] 0.09 0.14 21.6 0.08 0.14 15.02 0.09 0.15 12.45
StemGNN (ours) 0.03 0.07 11.55 0.04 0.06 14.77 0.05 0.07 10.58

Table 3: Results for ablation study of the PEMS07 dataset
StemGNN w/o LC w/o Spe-Seq Cell w/o DFT w/o GFT w/o Residual w/o Backcasting

MAE 2.144 2.158 2.612 2.299 2.237 2.256 2.203
RMSE 4.010 4.017 4.692 4.170 4.068 4.155 4.077
MAPE(%) 5.010 5.113 6.180 5.336 5.222 5.230 5.130

local properties of individual time-series as well as global properties, while multivariate correlations
are encoded by a matrix factorization module. It shows competitive performances on some datasets
like solar and PEMS08, but StemGNN is generally more advantageous. Arguably, it is beneficial to
recognize both structural and sequential patterns jointly in the spectral domain.

5.3 Ablation Study

To better understand the effectiveness of different components in StemGNN, we design six variants
of the model and conduct ablation study on several datasets. Table 3 summarizes the results obtained
on PEMS07 [4], and more results on other datasets can be found in Appendix E.2.

The results show that all the components are indispensable. Specifically, w/o Spe-Seq Cell indicates
the importance of temporal patterns for multivariate time-series forecasting. The Discrete Fourier
Transform inside the cell also brings benefits as verified by w/o DFT. Furthermore, w/o Residual and
w/o Backcasting demonstrate that both residual and backcasting designs can learn supplementary
information and enhance time-series representation. w/o GFT shows the advantages of leveraging
GFT to capture structural information in a graph. Moreover, we use a pre-defined topology instead of
correlations learned by the Latent Correlation Layer in w/o LC, which indicates the superiority of
StemGNN for learning inter-series correlations automatically.
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6 Analysis

6.1 Traffic Forecasting
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Figure 2: The adjacent matrix obtained from latent correlation layer.

To investigate the validity of our proposed latent correlation layer, we perform a case study in
the traffic forecasting scenarios. We choose 6 detectors from PEMS-BAY and show the average
correlation matrix learned from the training data (the right part in Figure 2). Each column represents a
sensor in the real world. As shown in the figure, column i represents the correlation strength between
detector i and other detectors. As we can see, some columns have a higher value like column s1 , and
some have a smaller value like column s25 . This indicates that some nodes are closely related to
each other while others are weakly related. This is reasonable, since detector s1 is located near the
intersection of main roads, while detector s25 is located on a single road, as shown in the left part of
Figure 2. Therefore, our model not only obtains an outstanding forecasting performance, but also
shows an advantage of interpretability.

6.2 COVID-19

Table 4: Forecasting results (MAPE%) on COVID-19
FC-LSTM [26] SFM [32] N-BEATS [19] TCN [3] DeepState [21] GraphWaveNet [29] DeelpGLO [25] StemGNN (ours)

7 Day 20.3 19.6 16.5 18.7 17.3 18.9 17.1 15.5
14 Day 22.9 21.3 18.5 23.1 20.4 24.4 18.9 17.1
28 Day 27.4 22.7 20.4 26.1 24.5 25.2 23.1 19.3
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(a) Forecasting result for the 28th day
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Figure 3: Analysis on COVID-19
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To investigate the feasibility of StemGNN for real problems, we conduct additional analyses on daily
number of newly confirmed COVID-19 cases. We select the time-series of 25 countries with severe
COVID-19 outbreak from 1/22/2020 to 5/10/2020 (110 days). Specifically, we use the first 60 days
for training and the rest 50 days for testing. In this analysis, we forecast the values of H days in the
future, where H is set to be 7, 14 and 28 separately. Table 4 shows the evaluation results where we
can see that StemGNN outperforms other state-of-the-art solutions in different horizons.

Figure 3(a) illustrates the forecasting results of Brazil, Germany and Singapore in advance of 28 days.
Specifically, we set H = 28 and take the predicted value of the 28th day for visualization. Each
timestamp is predicted with the historical data four weeks before that timestamp. As shown in the
figure, the predicted value is consistent with the ground truth. Taking Singapore as an example, after
4/14/2020, the volume has rapidly increased. StemGNN forecasts such trend successfully in advance
of four weeks.

The dependencies among different countries learned by the Latent Correlation Layer are visualized in
Figure 3(b). Larger numbers indicate stronger correlations. We observe that the correlations captured
by StemGNN model are in line with human intuition. Generally, countries adjacent to each other are
highly correlated. For example, as expected, US, Canada and Mexico are highly correlated to each
other, so are China, Japan and Korea.

0.0

0.5

1.0 World
GFT
IDFT

1/22 2/11 3/2 3/22 4/11 5/1
0.0

0.5

1.0 Asia
GFT
IDFT

Figure 4: Effectiveness of GFT and DFT.

We further analyze the effect of GFT and DFT
in StemGNN. We choose the top two eigenvec-
tors obtained by eigenvalue decomposition of
the normalized Laplacian matrix L and visual-
ize their corresponding time-series after GFT
in Figure 4. As encoded by the eigenvectors,
the first time-series captures a common trend in
the world and the second time-series captures
a common trend from Asian countries. For a
clear comparison, we also visualize the ground
truth of daily number of newly confirmed in the
whole world and Asian countries. As shown
in Figure 4, the time-series after GFT capture
these two major trends obviously. Moreover, the
time-series data in the spectral space becomes

smoother, which increases the generalization capability and reduces the difficulty of forecasting. We
also draw the time-series after processed by the Spectral Sequential Cell (denoted by IDFT in Figure
4), which recognizes the data patterns in a frequency domain. Compared to the ones after GFT, the
result time-series turn to be smoother and more feasible for forecasting.

7 Conclusion

In this paper, we propose a novel deep learning model, namely Spectral Temporal Graph Neural Net-
work (StemGNN), to take the advantages of both inter-series correlations and temporal dependencies
by modeling them jointly in the spectral domain. StemGNN outperforms existing approaches consis-
tently in a variety of multivariate time-series forecasting applications. Future works are considered in
two directions. First, we will investigate approximation method to reduce the time complexity of
StemGNN, because directly applying eigenvalue decomposition is prohibitive for very large graphs of
high-dimensional time-series. Second, we will look for its application to more real-world scenarios,
such as product demand, stock price prediction and budget analysis. We also plan to apply StemGNN
for predictive maintenance, which is an important topic in AIOps.
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Broader Impact

Time-series analysis is an important research domain for machine learning, while multivariate time-
series forecasting is one of the most prevalent tasks in this domain. This paper proposes a novel
model, StemGNN, for the task of multivariate time-series forecasting. For the first time, we model
the inter-series correlations and temporal patterns jointly in the spectral domain, which improves the
representation power of multivariate time-series. Signals in the time domain can be easily restored by
the orthogonal basis in the frequency domain, so we could leverage the rich information beneath the
hood of the frequency domain to improve the forecasting results. StemGNN is neat yet powerful as
proved by extensive experiments and analyses. It is one of the first attempts that incorporate Discrete
Fourier Transform with Graph Neural Networks. We believe it will motivate more exploration along
this direction in other related domains with temporal features, such as social graph mining and
sentiment analysis. Moreover, StemGNN adopts a latent correlation layer in an end-to-end framework
to learn relationships among multivariate signals automatically. This makes StemGNN a general
approach that could be applied to a wide range of applications, including surveillance of traffic flows,
healthcare data monitoring, natural disaster forecasting and economy.

Multivariate time-series forecasting has significant societal implications as well. A sophisticated
supply chain management system may be built if we can predict market trend precisely. It also brings
benefit to our daily life. For example, there is a real case about ‘Flooding Risk Analysis’. The task is
to predict when there will be a flooding in certain areas near the city. The prediction mainly depend
on two external factors, tides and rainfalls. Accurate prediction can alert people to keep away from
the area at the corresponding time to avoid unnecessary losses. For COVID-19, accurate prediction
of the trend may help the government make suitable decisions to control the spread of the epidemic.
According to a case study on COVID-19 in this paper, we can reasonably forecast the daily number of
newly confirmed cases four weeks in advance based on historical data. Nevertheless, how to predict
the trend from the beginning without sufficient historical data is more challenging and remained to
be investigated. Moreover, we are aware of the negative impact of this technique to infringement
of personal privacy. Customers’ behavior may be predicted by unscrupulous business persons on
historical records, which provides a convenient way to send spam information. Hackers may also use
the predicted data to avoid surveillance of a bank’s security system for fraud credit card transactions.

Although current models are still far away from predicting future data absolutely correct, we do
believe that the margin is decreasing rapidly. We hope that researchers could understand and mitigate
the potential risks in this domain. We would like to mention the concept of responsible AI, which
guides us to integrate fairness, interpretability, privacy, security, accountability into the design of AI
systems. We suggest researchers to take a people-centered approach to research, development, and
deployment of AI and cultivate a responsible AI-ready culture.

10



References
[1] Rie K Ando and Tong Zhang. Learning on graph with laplacian regularization. In Advances in

Neural Information Processing Systems, pages 25–32, 2007.

[2] Arthur Asuncion and David Newman. UCI machine learning repository, 2007.

[3] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

[4] Chao Chen, Karl Petty, Alexander Skabardonis, Pravin Varaiya, and Zhanfeng Jia. Freeway
performance measurement system: mining loop detector data. Transportation Research Record,
1748(1):96–102, 2001.

[5] Yanping Chen, Eamonn Keogh, Bing Hu, Nurjahan Begum, Anthony Bagnall, Abdullah Mueen,
and Gustavo Batista. The UCR time series classification archive. 2015.

[6] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the
properties of neural machine translation: Encoder-decoder approaches. In Dekai Wu, Marine
Carpuat, Xavier Carreras, and Eva Maria Vecchi, editors, Proceedings of SSST@EMNLP 2014,
Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, Doha, Qatar, 25
October 2014, pages 103–111. Association for Computational Linguistics, 2014.

[7] Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with
gated convolutional networks. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 933–941. JMLR. org, 2017.

[8] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. In Advances in Neural Information Processing
Systems, pages 3844–3852, 2016.

[9] Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages 922–929, 2019.

[10] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[11] Rob J Hyndman and Anne B Koehler. Another look at measures of forecast accuracy. Interna-
tional Journal of Forecasting, 22(4):679–688, 2006.

[12] HV Jagadish, Johannes Gehrke, Alexandros Labrinidis, Yannis Papakonstantinou, Jignesh M
Patel, Raghu Ramakrishnan, and Cyrus Shahabi. Big data and its technical challenges. Commu-
nications of the ACM, 57(7):86–94, 2014.

[13] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional
Networks. In Proceedings of the 5th International Conference on Learning Representations,
ICLR ’17, 2017.

[14] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. In The 41st International ACM SIGIR Conference
on Research & Development in Information Retrieval, pages 95–104, 2018.

[15] Jiachen Li, Hengbo Ma, Zhihao Zhang, and Masayoshi Tomizuka. Social-wagdat: Interaction-
aware trajectory prediction via wasserstein graph double-attention network. arXiv preprint
arXiv:2002.06241, 2020.

[16] Jiachen Li, Fan Yang, Masayoshi Tomizuka, and Chiho Choi. Evolvegraph: Multi-agent trajec-
tory prediction with dynamic relational reasoning. In Proceedings of the Neural Information
Processing Systems (NeurIPS), 2020.

[17] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural net-
work: Data-driven traffic forecasting. In International Conference on Learning Representations
(ICLR ’18), 2018.

11



[18] Pablo Montero-Manso, George Athanasopoulos, Rob J Hyndman, and Thiyanga S Talagala.
Fforma: Feature-based forecast model averaging. International Journal of Forecasting, 36(1):86–
92, 2020.

[19] Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-BEATS: neural
basis expansion analysis for interpretable time series forecasting. In 8th International Con-
ference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020.

[20] Jigar Patel, Sahil Shah, Priyank Thakkar, and Ketan Kotecha. Predicting stock market index
using fusion of machine learning techniques. Expert Systems with Applications, 42(4):2162–
2172, 2015.

[21] Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella, Yuyang Wang,
and Tim Januschowski. Deep state space models for time series forecasting. In Advances in
Neural Information Processing Systems, pages 7785–7794, 2018.

[22] Akhter Mohiuddin Rather, Arun Agarwal, and VN Sastry. Recurrent neural network and a hybrid
model for prediction of stock returns. Expert Systems with Applications, 42(6):3234–3241,
2015.

[23] Hansheng Ren, Bixiong Xu, Yujing Wang, Chao Yi, Congrui Huang, Xiaoyu Kou, Tony Xing,
Mao Yang, Jie Tong, and Qi Zhang. Time-series anomaly detection service at microsoft. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 3009–3017, 2019.

[24] David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic
forecasting with autoregressive recurrent networks. International Journal of Forecasting, 2019.

[25] Rajat Sen, Hsiang-Fu Yu, and Inderjit S Dhillon. Think globally, act locally: A deep neural net-
work approach to high-dimensional time series forecasting. In Advances in Neural Information
Processing Systems, pages 4838–4847, 2019.

[26] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In Advances in Neural Information Processing Systems, pages 3104–3112, 2014.

[27] Peter R Winters. Forecasting sales by exponentially weighted moving averages. Management
Science, 6(3):324–342, 1960.

[28] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 2020.

[29] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet
for deep spatial-temporal graph modeling. In Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI-19, pages 1907–1913. International Joint
Conferences on Artificial Intelligence Organization, 7 2019.

[30] SHI Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun
Woo. Convolutional lstm network: A machine learning approach for precipitation nowcasting.
In Advances in Neural Information Processing Systems, pages 802–810, 2015.

[31] Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: A
deep learning framework for traffic forecasting. In Proceedings of the Twenty-Seventh Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-18, pages 3634–3640. International
Joint Conferences on Artificial Intelligence Organization, 7 2018.

[32] Liheng Zhang, Charu Aggarwal, and Guo-Jun Qi. Stock price prediction via discovering multi-
frequency trading patterns. In Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 2141–2149, 2017.

[33] Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on graphs: A survey. IEEE Transactions
on Knowledge and Data Engineering, 2020.

12



[34] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng
Li, and Maosong Sun. Graph neural networks: A review of methods and applications. arXiv
preprint arXiv:1812.08434, 2018.

13


	Introduction
	Related Work
	Problem Definition
	Spectral Temporal Graph Neural Network
	Overview
	Latent Correlation Layer
	StemGNN Block

	Experiments
	Setup
	Results
	Ablation Study

	Analysis
	Traffic Forecasting
	COVID-19

	Conclusion

