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Abstract

Multivariate time-series forecasting plays a crucial role in many real-world ap-
plications. It is a challenging problem as one needs to consider both intra-series
temporal correlations and inter-series correlations simultaneously. Recently, there
have been multiple works trying to capture both correlations, but most, if not
all of them only capture temporal correlations in the time domain and resort to
pre-defined priors as inter-series relationships.

In this paper, we propose Spectral Temporal Graph Neural Network (StemGNN) to
further improve the accuracy of multivariate time-series forecasting. StemGNN
captures inter-series correlations and temporal dependencies jointly in the spectral
domain. It combines Graph Fourier Transform (GFT) which models inter-series
correlations and Discrete Fourier Transform (DFT) which models temporal de-
pendencies in an end-to-end framework. After passing through GFT and DFT,
the spectral representations hold clear patterns and can be predicted effectively by
convolution and sequential learning modules. Moreover, StemGNN learns inter-
series correlations automatically from the data without using pre-defined priors.
We conduct extensive experiments on ten real-world datasets to demonstrate the
effectiveness of StemGNN.

1 Introduction

Time-series forecasting plays a crucial role in various real-world scenarios, such as traffic forecasting,
supply chain management and financial investment. It helps people to make important decisions if
the future evolution of events or metrics can be estimated accurately. For example, we can modify
our driving route or reschedule an appointment if there is a severe traffic jam anticipated in advance.
Moreover, if we can forecast the trend of COVID-19 in advance, we are able to reschedule important
events and take quick actions to prevent the spread of epidemic.

Making accurate forecasting based on historical time-series data is challenging, as both intra-series
temporal patterns and inter-series correlations need to be modeled jointly. Recently, deep learning
models shed new lights on this problem. On one hand, Long Short-Term Memory (LSTM) [L1],
Gated Recurrent Units (GRU) [6], Gated Linear Units (GLU) [8] and Temporal Convolution Networks
(TCN) [3] have achieved promising results in temporal modeling. At the same time, Discrete Fourier
Transform (DFT) is also useful for time-series analysis. For instance, State Frequency Memory
(SFM) network [36]] combines the advantages of DFT and LSTM jointly for stock price prediction;
Spectral Residual (SR) model [25]] leverages DFT and achieves state-of-the-art performances in
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time-series anomaly detection. Another important aspect of multivariate time-series forecasting is
to model the correlations among multiple time-series. For example, in the traffic forecasting task,
adjacent roads naturally interplay with each other. Current state-of-the-art models highly depend on
Graph Convoluational Networks (GCNs) [14] originated from the theory of Graph Fourier Transform
(GFT). These models [35} 18] stack GCN and temporal modules (e.g., LSTM, GRU) directly, which
only capture temporal patterns in the time domain and require a pre-defined topology of inter-series
relationships.

In this paper, our goal is to better model the intra-series temporal patterns and inter-series correlations
jointly. Specifically, we hope to combine both the advantages of GFT and DFT, and model multivariate
time-series data entirely in the spectral domain. The intuition is that after GFT and DFT, the spectral
representations could hold clearer patterns and can be predicted more effectively. It is non-trivial
to achieve this goal. The key technical contribution of this work is a carefully designed StemGNN
(Spectral Temporal Graph Neural Network) block. Inside a StemGNN block, GFT is first applied to
transfer structural multivariate inputs into spectral time-series representations, while different trends
can be decomposed to orthogonal time-series. Furthermore, DFT is utilized to transfer each univariate
time-series into the frequency domain. After GFT and DFT, the spectral representations become
easier to be recognized by convolution and sequential modeling layers. Moreover, a latent correlation
layer is incorporated in the end-to-end framework to learn inter-series correlations automatically,
so it does not require multivariate dependencies as priors. Moreover, we adopt both forecasting
and backcasting output modules with a shared encoder to facilitate the representation capability of
multivariate time-series.

The main contributions of this paper are summarized as follows:

* To the best of our knowledge, StemGNN is the first work that represents both intra-series
and inter-series correlations jointly in the spectral domain. It encapsulates the benefits of
GFT, DFT and deep neural networks simultaneously and collaboratively. Ablation studies
further prove the effectiveness of this design.

* StemGNN enables a data-driven construction of dependency graphs for different time-
series. Thereby the model is general for all multivariate time-series without pre-defined
topologies. As shown in the experiments, automatically learned graph structures have good
interpretability and work even better than the graph structures defined by humans.

* StemGNN achieves state-of-the-art performances on nine public benchmarks of multivariate
time-series forecasting. On average, it outperforms the best baseline by 8.1% on MAE an
13.3% on RMSE. A case study on COVID-19 further shows its feasibility in real scenarios.

2 Related Work

Time-series forecasting is an emerging topic in machine learning, which can be divided into two
major categories: univariate techniques [22},24 120,30} 36} 21} 20] and multivariate techniques [26),
2301181135, 134 132 27, [17, [16l]. Univariate techniques analyze each individual time-series separately
without considering the correlations between different time-series [24]. For example, FC-LSTM [33]
forecasts univariate time-series with LSTM and fully-connected layers. SMF [36] improves the
LSTM model by breaking down the cell states of a given univariate time-series into a series of
different frequency components through Discrete Fourier Transform (DFT). N-BEATS [21]] proposes
a deep neural architecture based on a deep stack of fully-connected layers with basis expansion.

Multivariate techniques consider a collection of multiple time-series as a unified entity [26} [10].
TCN [3] is a representative work in this category, which treats the high-dimensional data entirely as
a tensor input and considers a large receptive field through dilated convolutions. LSTNet [15] uses
convolution neural network (CNN) and recurrent neural network (RNN) to extract short-term local
dependence patterns among variables and discover long-term patterns of time series. DeepState [23]]
marries state space models with deep recurrent neural networks and learns the parameters of the
entire network through maximum log likelihood. DeepGLO [27] leverages both global and local
features during training and forecasting. The global component in DeepGLO is based on matrix
factorization and is able to capture global patterns by representing each time-series as a linear
combination of basis components. There is another category of works using graph neural networks
to capture the correlations between different time-series explicitly. For instance, DCRNN [18]
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Figure 1: The overall architecture of Spectral Temporal Graph Neural Network.

incorporates both spatial and temporal dependencies in the convolutional recurrent neural network
for traffic forecasting. ST-GCN [35] is another deep learning framework for traffic prediction,
integrating graph convolution and gated temporal convolution through spatio-temporal convolutional
blocks. GraphWaveNet [32] combines graph convolutional layers with adaptive adjacency matrices
and dilated casual convolutions to capture spatio-temporal dependencies. However, most of them
either ignore the inter-series correlations or require a dependency graph as priors. In addition,
although Fourier transform has showed its advantages in previous works, none of existing solutions
capture temporal patterns and multivariate dependencies jointly in the spectral domain. In this paper,
StemGNN is proposed to address these issues. We refer you to recent surveys 31,138, 137] for more
details about related works.

3 Problem Definition

In order to emphasize the relationships among multiple time-series, we formulate the problem of
multivariate time-series forecasting based on a data structure called multivariate temporal graph,
which can be denoted as G = (X, W). X = {z;+} € RV*T stands for the multivariate time-series
input, where NN is the number of time-series (nodes), and 7" is the number of timestamps. We denote
the observed values at timestamp ¢ as X; € RY. W € RV*¥ is the adjacency matrix, where w;; > 0
indicates that there is an edge connecting nodes ¢ and j, and w;; indicates the strength of this edge.

Given observed values of previous K timestamps X;_f, - - - , X;_1, the task of multivariate time-
series forecasting aims to predict the node values in a multivariate temporal graph G = (X, W) for

the next H timestamps, denoted by Xt, Xt+1, e ,XH H—1. These values can be inferred by the
forecasting model F' with parameter ¢ and a graph structure G, where G can be input as prior or
automatically inferred from data.

Xp, Xyt Xewm—1 = F(Xi— ey ooy X421 G; @). (1)

4 Spectral Temporal Graph Neural Network

4.1 Overview

Here, we propose Spectral Temporal Graph Neural Network (StemGNN) as a general solution for
multivariate time-series forecasting. The overall architecture of StemGNN is illustrated in Figure



[I] The multivariate time-series input X is first fed into a latent correlation layer, where the graph
structure and its associated weight matrix ¥ can be inferred automatically from data.

Next, the graph G = (X, W) serves as input to the StemGNN layer consisting of two residual
StemGNN blocks. A StemGNN block is by design to model structural and temporal dependencies
inside multivariate time-series jointly in the spectral domain (as visualized in the top diagram of
Figure [T). It contains a sequence of operators in a well-designed order. First, a Graph Fourier
Transform (GFT) operator transforms the graph G into a spectral matrix representation, where
the univariate time-series for each node becomes linearly independent. Then, a Discrete Fourier
Transform (DFT) operator transforms each univariate time-series component into the frequency
domain. In the frequency domain, the representation is fed into 1D convolution and GLU sub-layers
to capture feature patterns before transformed back to the time domain through inverse DFT. Finally,
we apply graph convolution on the spectral matrix representation and perform inverse GFT.

After the StemGNN layer, we add an output layer composed of GLU and fully-connected (FC)
sub-layers. There are two kinds of outputs in the network. The forecasting outputs Y; are trained
to generate the best estimation of future values, while the backcasting outputs X; are used in an
auto-encoding fashion to enhance the representation power of multivariate time-series. The final loss
function can be formulated as a combination of both forecasting and backcasting losses:

L(X,X; ) ZIIXt Xt|\2+ZZ||BH — X3 )

t=K i=1

where the first term represents for the forecasting loss and the second term denotes the back-
casting loss. For each timestamp ¢, {X;_k, ..., X;—1} are input values within a sliding window,
and X, is the ground truth value to forecast; Xt is the forecasted value for the timestamp ¢, and
{Bi—k(X), ..., Bi—1(X)} are reconstructed values from the backcasting module. B indicates the
entire network that generates backcasting output, Ay denotes all parameters in the network.

In the inference phase, we adopt a rolling strategy for multi-step prediction. First, X, is predicted by
taking {X+_k, ..., X¢—1} as input. Then, the input will be changed to {X;_ g1, ..., X¢—1, Xt} for
predicting the next timestamp Xt+1. By applying this rolling strategy consecutively, we can obtain
forecasting values of the next H timestamps.

4.2 Latent Correlation Layer

GNN-based approach requires a graph structure when modeling multivariate time-series. It can be
constructed by human knowledge (such as road network in traffic forecasting), but sometimes we
do not have a pre-defined graph structure as prior. In order to serve general cases, we leverage the
self-attention mechanism to learn latent correlations between multiple time-series automatically. In
this way, the model emphasizes task-specific correlations in a data-driven fashion.

First, the input X € RV*7 is fed into a Gated Recurrent Unit (GRU) layer, which calculates the
hidden state corresponding to each timestamp ¢ sequentially. Then, we use the last hidden state R
as the representation of entire time-series and calculate the weight matrix W by the self-attention
mechanism as follows,

T

Q=RW® K=RWE W= Softmax(QK ) (3)
Vd
where () and K denote the representation for query and key, which can be calculated by linear
projections with learnable parameters W< and WX in the attention mechanism, respectively; and d
is the hidden dimension size of  and K. The output matrix W € R¥*¥ is served as the adjacency
weight matrix for graph G. The overall time complexity of self-attention is O(N2d).

4.3 StemGNN Block

The StemGNN layer is constructed by stacking multiple StemGNN blocks with skip connections.
A StemGNN block is designed by embedding a Spectral Sequential (Spe-Seq) Cell into a Spectral
Graph Convolution module. In this section, we first introduce the motivation and architecture of the
StemGNN block, and then briefly describe the Spe-Seq Cell and Spectral Graph Convolution module
separately.



StemGNN Block Spectral Graph Convolution has been widely used in time-series forecasting task
due to its extraordinary capability of learning latent representations of multiple time-series in the
spectral domain. The key component is applying Graph Fourier Transform (GFT) to capture inter-
series relationships. It is worth noting that the output of GFT is also a multivariate time-series while
GFT does not learn intra-series temporal relationships explicitly. Therefore, we can utilize Discrete
Fourier Transform (DFT) to learn the representations of the input time-series on the trigonometric
basis in the frequency domain, which captures the repeated patterns in the periodic data or the
auto-correlation features among different timestamps. Motivated by this, we apply the Spe-Seq Cell
on the output of GFT to learn temporal patterns in the frequency domain. Then the output of the
Spe-Seq Cell is processed by the rest components of Spectral Graph Convolution.

Our model can also be extended to multiple channels. We apply GFT and Spe-Seq Cell on each
individual channel X; of input data and sum the results after graph convolution with kernel ©.;. Next,
Inverse Graph Fourier Transform (IGFT) is applied on the sum to obtain the jth channel Z; of the
output, which can be written as follows,

z,=GF" (Z geij<Ai>s<gf<Xi>>) . @

Here GF, GF ! and S denote GFT, IGFT, and Spe-Seq Cell respectively, ©; ; 1s the graph convolution
kernel corresponding to the ith input and the jth output channel, and A; is the eigenvalue matrix of
normalized Laplacian and the number of eigenvectors used in GFT is equivalent to the multivariate
dimension (V) without dimension reduction. After that we concatenate each output channel Z; to
obtain the final result Z.

Following [21], we use learnable parameters to represent basis vectors V' and a fully-connected
layer to generate basis expansion coefficients 6 based on Z. Then the output can be calculated by a
combination of different bases: Y = V. We have two branches of this module in the StemGNN
block, one to forecast future values, namely forecasting branch, and the other to reconstruct history
values, namely backcasting branch (denoted by B). The backcasting branch helps regulate the
functional space for the block to represent time-series data.

Furthermore, we employ residual connections to stack multiple StemGNN blocks to build deeper
models. In our case, we use two StemGNN blocks. The second block tries to approximate the
residual between the ground-truth values and the reconstructed values from the first block. Finally, the
outputs from both blocks are concatenated and fed into GLU and fully-connected layers to generate
predictions.

Spectral Sequential Cell (Spe-Seq Cell) The Spe-Seq Cell S aims to decompose each individual
time-series after GFT into frequency basis and learn feature representations on them. It consists of
four components in order: Discrete Fourier Transform (DFT, F), 1D convolution, GLU and Inverse
Discrete Fourier Transform (IDFT, 1), where DFT and IDFT transforms time-series data between
temporal domain and frequency domain, while 1D convolution and GLU learn feature representations
in the frequency domain. Specifically, the output of DFT has real part (X) and imaginary part (X ),
which are processed by the same operators with different parameters in parallel. The operations can
be formulated as:

M*(X3) = GLUG; (X7). 0:(X2)) = 0:(£2) © 0" (0:(X;)), € {r.i} )

T

where 67 is the convolution kernel with the size of 3 in our experiments, © is the Hadamard product
and nonlinear sigmoid gate o* determines how much information in the current input is closely
related to the sequential pattern. Finally, the result can be obtained by M" (2" ) +iM?*(2¢)), and IDFT
is applied on the final output.

Spectral Graph Convolution The Spectral Graph Convolution [14]] is composed of three steps.
(1) The multivariate time-series input is projected to the spectral domain by GFT. (2) The spectral
representation is filtered by a graph convolution operator with learnable kernels. (3) Inverse Graph
Fourier Transform (IGFT) is applied on the spectral representation to generate final output.

Graph Fourier Transform (GFT) [9] is a basic operator for Spectral Graph Convolution. It projects the
input graph to an orthonormal space where the bases are constructed by eigenvectors of the normalized

graph Laplacian. The normalized graph Laplacian [1]] can be computed as: L = Iy — D WDz,



where Iy € RV*Y is the identity matrix and D is the diagonal degree matrix with D;; = j Wij.

Then, we perform eigenvalue decomposition on the Laplacian matrix, forming L = UAU”, where
U € RYXN is the matrix of eigenvectors and A is a diagonal matrix of eigenvalues. Given multivariate

time-series X € RN*T | the operators of GFT and IGFT are defined as GF(X) = UTX = X and

GFY(X) = UX respectively. The graph convolution operator is implemented as a function ge (A)
of eigenvalue matrix A with parameter ©. The overall time complexity is O(N?)

5 Experiments

5.1 Setup

Table 1: Summary of Datasets
| METR-LA PEMS-BAY PEMS07 PEMS03 PEMS04 PEMS08  Solar  Electricity ECGS5000 COVID-19

# of nodes 207 325 228 358 307 170 137 321 140 25
# of timesteps 34,272 52,116 12,672 26,209 16,992 17,856 52,560 26,304 5,000 110
Granularity Smin Smin Smin Smin Smin Smin 10min 1hour - lday
Start time 9/1/2018 1/1/2018 7/1/2016  5/1/2012  7/1/2017 ~ 3/1/2012  1/1/2006  1/1/2012 - 1/22/2020

We compare the performances of StemGNN on nine public datasets, ranging from traffic, energy and
electrocardiogram domains with other state-of-the-art models, including FC-LSTM [29]], SFM [36],
N-BEATS [21], DCRNN [18]], LSTNet [15], ST-GCN [35], DeepState [23], TCN [3], Graph
Wavenet [32] and DeepGLO [27]]. We tune the hyper-parameters on the validation data by grid
search for StemGNN. Finally, the channel size of each graph convolution layer is set as 64 and the
kernel size of 1D convolution is 3. Following [35]], we adopt the RMSprop optimizer, and the number
of training epochs is set as 50. The learning rate is initialized by 0.001 and decayed with rate 0.7 after
every 5 epochs. We use the Mean Absolute Errors (MAE) [[12]], Mean Absolute Percentage Errors
(MAPE) [12], and Root Mean Squared Errors (RMSE) [[12] to measure the performances, which are
averaged by H steps in multi-step prediction. We report the performances of baseline models in their
original publications unless otherwise stated. The dataset statistics are summarized in Table|T]

We conduct the dataset into three part for training, validation and testing with a ratio of 6:2:2 on
PEMSO03, PMES04, PEMSO0S, and 7:2:1 on META-LA, PEMS-BAY, PEMSO07, Solar, Electricity and
ECG. The inputs of ECG are normalized by min-max normalization following [5]. Besides, the
inputs are normalized by Z-Score method [21]]. That means StemGNN is trained on normalized input
where each time-series in the training set is re-scaled as X, = (X;n, — 1(Xin))/0(Xsn), where p
and o denote the mean and standard deviation respectively. More details descriptions about datasets,
evaluation metrics, and experimental settings can be found in Appendix B, C and D.

5.2 Results

The evaluation results are summarized in Table [2} and more details can be found in Appendix
E.1.Generally, StemGNN establishes a new state-of-the-art on most of the datasets. Furthermore, the
model does not need apriori topology and demonstrates the feasibility of learning latent correlations
automatically. In particular, on all datasets, StemGNN improves an average of 8.1% on MAE and
13.3% on RMSE compared to the best baseline for each dataset. In terms of baseline models, FC-
LSTM only takes temporal information into consideration and performs estimation in the time domain.
SFM models the time-series data in the frequency domain and shows stable improvement over FC-
LSTM. Besides, N-BEATS, TCN and DeepState are state-of-the-art deep learning models specialized
for sequential modeling. A common limitation is that they do not capture the correlations among
multiple time-series explicitly, hindering their application to multivariate time-series forecasting.
Therefore, it is natural that StemGNN shows much better performances against these baselines.

On the other hand, spatial and temporal correlations can be modeled in GNN-based approaches, such
as DCRNN, ST-GCN and GraphWaveNet. However, most of them need a pre-defined topology of
different time-series and are not applicable to Solar, Electricity and ECG datasets. GraphWaveNet is
able to work without a pre-defined structure but the performance is not satisfied. For traffic forecasting
tasks, StemGNN outperforms these models consistently without any prior knowledge of the road
network. It is convincing that a data-driven latent correlation layer works more effectively than human
defined priors. Moreover, DeepGLO is a hybrid method that enables the model to focus both on



Table 2: Forecasting results on different datasets
MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)

METR-LA [13] PEMS-BAY [4] PEMSO07 [4]
FC-LSTM [29] 3.44 6.3 9.6 2.05 4.19 4.8 3.57 6.2 8.6
SFM [36] 3.21 6.2 8.7 2.03 4.09 4.4 2.75 4.32 6.6
N-BEATS [21] 3.15 6.12 7.5 1.75 4.03 4.1 3.41 5.52 7.65
DCRNN [18] 2.77 5.38 7.3 1.38 2.95 2.9 2.25 4.04 5.30
LSTNet [15] 3.03 591 7.67 1.86 391 3.1 2.34 4.26 5.41
ST-GCN [35] 2.88 5.74 7.6 1.36 2.96 2.9 2.25 4.04 5.26
TCN [3] 2.74 5.68 6.54 1.45 3.01 3.03 3.25 5.51 6.7
DeepState [23] 2.72 5.24 6.8 1.88 3.04 2.8 3.95 6.49 7.9
GraphWaveNet [32]  2.69 5.15 6.9 1.3 2.74 2.7 - - -
DeepGLO [27] 291 5.48 6.75 1.39 291 3.01 3.01 5.25 6.2
StemGNN (ours) 2.56 5.06 6.46 1.23 2.48 2.63 2.14 4.01 5.01
PEMSO03 [4] PEMS04 [4] PEMSO8 [4]
FC-LSTM [29] 21.33  35.11 23.33 27.14  41.59 18.2 222 34.06 14.2
SFM [36] 17.67  30.01 18.33 2436  37.10 17.2 16.01  27.41 10.4
N-BEATS [21] 18.45 31.23 18.35 25.56 39.9 17.18 19.48  28.32 13.5
DCRNN [18] 18.18  30.31 18.91 24.7 38.12 17.12 17.86  27.83 11.45
LSTNet [15] 19.07  29.67 17.73 24.04  37.38 17.01 20.26  31.96 11.3
ST-GCN [35] 17.49  30.12 17.15 2270 35.50 14.59 18.02 27.83 114
TCN [3] 18.23  25.04 19.44 2631  36.11 15.62 1593  25.69 16.5
DeepState [23] 1559  20.21 18.69 26.5 33.0 15.4 1934 27.18 16
GraphWaveNet [32] 19.85 32.94 19.31 26.85 39.7 17.29 19.13  28.16 12.68
DeepGLO [27] 17.25 2325 19.27 25.45 359 12.2 1512 2522 13.2
StemGNN (ours) 1432 21.64 16.24 20.24  32.15 10.03 15.83  24.93 9.26
Solar [15] Electricity [2] ECG [5]

FC-LSTM [29] 0.13 0.19 27.01 0.62 0.2 24.39 0.32 0.54 31.0
SFM [36] 0.05 0.09 13.4 0.08 0.13 17.3 0.17 0.58 11.9
N-BEATS [21] 0.09 0.15 23.53 - - - 0.08 0.16 12.428
LSTNet [15] 0.07 0.19 19.13 0.06 0.07 14.97 0.08 0.12 12.74
TCN [3] 0.06 0.06 21.1 0.072 0.51 16.44 0.1 0.3 19.03
DeepState [23] 0.06 0.25 19.4 0.065 0.67 15.13 0.09 0.76 19.21
GraphWaveNet [32]  0.05 0.09 18.12 0.071 0.53 16.49 0.19 0.86 19.67
DeepGLO [27] 0.09 0.14 21.6 0.08 0.14 15.02 0.09 0.15 12.45
StemGNN (ours) 0.03 0.07 11.55 0.04 0.06 14.77 0.05 0.07 10.58

Table 3: Results for ablation study of the PEMSO07 dataset
StemGNN w/oLC w/o Spe-Seq Cell w/o DFT w/o GFT w/oResidual w/o Backcasting

MAE 2.144 2.158 2.612 2.299 2.237 2.256 2.203
RMSE 4.010 4.017 4.692 4.170 4.068 4.155 4.077
MAPE(%) 5.010 5.113 6.180 5.336 5222 5.230 5.130

local properties of individual time-series as well as global properties, while multivariate correlations
are encoded by a matrix factorization module. It shows competitive performances on some datasets
like solar and PEMSO08, but StemGNN is generally more advantageous. Arguably, it is beneficial to
recognize both structural and sequential patterns jointly in the spectral domain.

5.3 Ablation Study

To better understand the effectiveness of different components in StemGNN, we design six variants
of the model and conduct ablation study on several datasets. Table [3|summarizes the results obtained
on PEMSO07 [4], and more results on other datasets can be found in Appendix E.2.

The results show that all the components are indispensable. Specifically, w/o Spe-Seq Cell indicates
the importance of temporal patterns for multivariate time-series forecasting. The Discrete Fourier
Transform inside the cell also brings benefits as verified by w/o DFT. Furthermore, w/o Residual and
w/o Backcasting demonstrate that both residual and backcasting designs can learn supplementary
information and enhance time-series representation. w/o GFT shows the advantages of leveraging
GFT to capture structural information in a graph. Moreover, we use a pre-defined topology instead of
correlations learned by the Latent Correlation Layer in w/o LC, which indicates the superiority of
StemGNN for learning inter-series correlations automatically.



6 Analysis

6.1 Traffic Forecasting

Figure 2: The adjacent matrix obtained from latent correlation layer.

To investigate the validity of our proposed latent correlation layer, we perform a case study in
the traffic forecasting scenarios. We choose 6 detectors from PEMS-BAY and show the average
correlation matrix learned from the training data (the right part in Figure2). Each column represents a
sensor in the real world. As shown in the figure, column  represents the correlation strength between
detector ¢ and other detectors. As we can see, some columns have a higher value like column s; , and
some have a smaller value like column so5 . This indicates that some nodes are closely related to
each other while others are weakly related. This is reasonable, since detector s; is located near the
intersection of main roads, while detector ss5 is located on a single road, as shown in the left part of
Figure[2] Therefore, our model not only obtains an outstanding forecasting performance, but also
shows an advantage of interpretability.

6.2 COVID-19

Table 4: Forecasting results (MAPE%) on COVID-19
FC-LSTM SFM [36] N-BEATS TCN [3] DeepState GraphWaveNet DeelpGLO StemGNN (ours)

7 Day 203 19.6 16.5 18.7 17.3 18.9 17.1 15.5
14 Day 229 21.3 18.5 23.1 20.4 24.4 18.9 17.1
28 Day 274 227 204 26.1 24.5 25.2 23.1 19.3
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To investigate the feasibility of StemGNN for real problems, we conduct additional analyses on daily
number of newly confirmed COVID-19 cases. We select the time-series of 25 countries with severe
COVID-19 outbreak from 1/22/2020 to 5/10/2020 (110 days). Specifically, we use the first 60 days
for training and the rest 50 days for testing. In this analysis, we forecast the values of H days in the
future, where H is set to be 7, 14 and 28 separately. Table ] shows the evaluation results where we
can see that StemGNN outperforms other state-of-the-art solutions in different horizons.

Figure illustrates the forecasting results of Brazil, Germany and Singapore in advance of 28 days.
Specifically, we set H = 28 and take the predicted value of the 28th day for visualization. Each
timestamp is predicted with the historical data four weeks before that timestamp. As shown in the
figure, the predicted value is consistent with the ground truth. Taking Singapore as an example, after
4/14/2020, the volume has rapidly increased. StemGNN forecasts such trend successfully in advance
of four weeks.

The dependencies among different countries learned by the Latent Correlation Layer are visualized in
Figure[3(b)] Larger numbers indicate stronger correlations. We observe that the correlations captured
by StemGNN model are in line with human intuition. Generally, countries adjacent to each other are
highly correlated. For example, as expected, US, Canada and Mexico are highly correlated to each
other, so are China, Japan and Korea.

We further analyze the effect of GFT and DFT

10 — in StemGNN. We choose the top two eigenvec-
T AN tors obtained by eigenvalue decomposition of
05| 1oFT the normalized Laplacian matrix L and visual-

ize their corresponding time-series after GFT
in Figure ] As encoded by the eigenvectors,
the first time-series captures a common trend in
the world and the second time-series captures
a common trend from Asian countries. For a
clear comparison, we also visualize the ground
truth of daily number of newly confirmed in the
whole world and Asian countries. As shown
Figure 4: Effectiveness of GFT and DFT. in Figure [ the time-series after GFT capture
these two major trends obviously. Moreover, the
time-series data in the spectral space becomes
smoother, which increases the generalization capability and reduces the difficulty of forecasting. We
also draw the time-series after processed by the Spectral Sequential Cell (denoted by IDFT in Figure
M), which recognizes the data patterns in a frequency domain. Compared to the ones after GFT, the
result time-series turn to be smoother and more feasible for forecasting.

T2 2/11 312 3/22 411 51

7 Conclusion

In this paper, we propose a novel deep learning model, namely Spectral Temporal Graph Neural Net-
work (StemGNN), to take the advantages of both inter-series correlations and temporal dependencies
by modeling them jointly in the spectral domain. StemGNN outperforms existing approaches consis-
tently in a variety of multivariate time-series forecasting applications. Future works are considered in
two directions. First, we will investigate approximation method to reduce the time complexity of
StemGNN, because directly applying eigenvalue decomposition is prohibitive for very large graphs of
high-dimensional time-series. Second, we will look for its application to more real-world scenarios,
such as product demand, stock price prediction and budget analysis. We also plan to apply StemGNN
for predictive maintenance, which is an important topic in AIOps.



Broader Impact

Time-series analysis is an important research domain for machine learning, while multivariate time-
series forecasting is one of the most prevalent tasks in this domain. This paper proposes a novel
model, StemGNN, for the task of multivariate time-series forecasting. For the first time, we model
the inter-series correlations and temporal patterns jointly in the spectral domain, which improves the
representation power of multivariate time-series. Signals in the time domain can be easily restored by
the orthogonal basis in the frequency domain, so we could leverage the rich information beneath the
hood of the frequency domain to improve the forecasting results. StemGNN is neat yet powerful as
proved by extensive experiments and analyses. It is one of the first attempts that incorporate Discrete
Fourier Transform with Graph Neural Networks. We believe it will motivate more exploration along
this direction in other related domains with temporal features, such as social graph mining and
sentiment analysis. Moreover, StemGNN adopts a latent correlation layer in an end-to-end framework
to learn relationships among multivariate signals automatically. This makes StemGNN a general
approach that could be applied to a wide range of applications, including surveillance of traffic flows,
healthcare data monitoring, natural disaster forecasting and economy.

Multivariate time-series forecasting has significant societal implications as well. A sophisticated
supply chain management system may be built if we can predict market trend precisely. It also brings
benefit to our daily life. For example, there is a real case about ‘Flooding Risk Analysis’. The task is
to predict when there will be a flooding in certain areas near the city. The prediction mainly depend
on two external factors, tides and rainfalls. Accurate prediction can alert people to keep away from
the area at the corresponding time to avoid unnecessary losses. For COVID-19, accurate prediction
of the trend may help the government make suitable decisions to control the spread of the epidemic.
According to a case study on COVID-19 in this paper, we can reasonably forecast the daily number of
newly confirmed cases four weeks in advance based on historical data. Nevertheless, how to predict
the trend from the beginning without sufficient historical data is more challenging and remained to
be investigated. Moreover, we are aware of the negative impact of this technique to infringement
of personal privacy. Customers’ behavior may be predicted by unscrupulous business persons on
historical records, which provides a convenient way to send spam information. Hackers may also use
the predicted data to avoid surveillance of a bank’s security system for fraud credit card transactions.

Although current models are still far away from predicting future data absolutely correct, we do
believe that the margin is decreasing rapidly. We hope that researchers could understand and mitigate
the potential risks in this domain. We would like to mention the concept of responsible AI, which
guides us to integrate fairness, interpretability, privacy, security, accountability into the design of Al
systems. We suggest researchers to take a people-centered approach to research, development, and
deployment of Al and cultivate a responsible Al-ready culture.
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A Notation

Table 5: Notations

multivariate temporal graph

multivariate time-series input, X; € R is observed values at timestamp ¢
all parameters in the network

adjacency matrix, where w;; € W indicates the strength of edge 7
the number of time-series

the number of previous time steps

the number of future time steps to forecast (horizon)

the entire network that generates backcasting output

forecasted time-series output, X, € RV is the value at timestamp ¢
the last hidden state of attention mechanism

query and key in the attention mechanism

learnable parameters for query and key projections

graph convolution kernel

Graph Fourier Transform

Inverse Graph Fourier Transform

the Spe-Seq Cell

basis vectors

the output after IGFT

the forecasting output

Discrete Fourier Transform

the real part X . and imaginary part X; after DFT

Inverse Discrete Fourier Transform

the convolution kernel of Spe-Seq Cell

the normalized graph Laplacian

the matrix of eigenvectors

the diagonal matrix of eigenvalue
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B Reproduction details for StemGNN

B.1 Datasets

We compare the performance of StemGNN with other state-of-the-art models on ten public datasets,
ranging from traffic, energy, electrocardiogram to COVID-19 domain. Among all the datasets, only
the datasets from traffic domain provide apriori topology. Table |I| shows the statistics of these
datasets.

Traffic Forecasting. These datasets are collected by the Caltrans Performance Measurement System
(PeMS) [4]] and the loop detectors in the highway of Los Angeles County (METR) [13]. The
monitoring data is aggregated by 5 minutes from 30-second data samples, which means there are
12 points in the flow data for each hour. We evaluate the performance of traffic flow forecasting on
PEMS03, PEMSO07, PEMSOS and traffic speed forecasting on PEMS04, PEMS-BAY and METR-LA.

Energy Forecasting. We consider two datasets in this perspective. (1) Solar. It contains photo-voltaic
production of 137 stations in Alabama State [[15], which is sampled every 10 minutes. (2) Electricity.
It contains hourly time-series of electricity consumption from 370 customers [2].

Electrocardiogram Forecasting. We adopt the ECG5000 dataset from the UCR time-series Classi-
fication Archive [3]], and this dataset is composed of 140 electrocardiograms (ECG) with a length of
5000.

COVID-19 Trend Forecasting. This dataset is provided by the Center for Systems Science and
Engineering (CSSE) at Johns Hopkins Universityﬂ which contains daily case reports including
confirmed, deaths and recovered number. We use the daily number of newly confirmed COVID-19

3https://github.com/CSSEGISandData/COVID-19
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cases as the time-series and select the time-series of 25 countries with severe COVID-19 outbreak
from 1/22/2020 to 5/10/2020 (totally 110 days). Specifically, we use the first 60 days for training and
the rest 50 days for testing.

B.2 Metrics

Let X, and X, be the predicted and ground truth values at timestamp ¢ respectively, T is the total
number of timestamps. The evaluation metrics we use in the experiments can be computed by:

MAE = & zT: |X, — Xy, (6)
tTl
MAPE = - Z x 100%, (7)
T
RMSE = \l Z - X ®)

C Reproduction details for baselines

FC-LSTM [29]: FC-LSTM can forecast univariate time-series with fully-connected LSTM hidden
units. The source code can be found at https://github.com/farizrahmandu/seq2seq. We use
4 stacked LSTM cells of 1000 hidden size and other detailed settings can be referred to [29].

SMF [36]: SMF improves the LSTM model to be able to break down the cell states of a given
univariate time-series into a series of different frequency components. We use SMF by setting hidden
dimension as 50, frequence dimension as 10. Other default configurations are given in the source
code: https://github.com/z331565360/State-Frequency-Memory-stock-predictionl

N-BEATS [21]: N-BEATS proposes a deep neural architecture based on backward and forward
residual links and a very deep stack of fully-connected layers without using time-series domain
knowledge. We use the open source code from: https://github.com/philipperemy/n-beats),
and only modify the data I/O interface for different shapes of inputs. In our experiments, the backcast
length is 10 and the hidden units number is 128. According to the recommendation, we turn on the
‘share_weights_in_stack’ option.

LSTNet [15]]: takes advantage of the convolution layer to discover the local dependence patterns
among multi-dimensional input variables, and the recurrent layer to captures the complex long-term
dependency patterns. We use the open source code from: https://github.com/fbadine/LSTNet|
and modify the data shapes of inputs. In our experiments, the number of output filters in the CNN
layer is 100 and the CNN filter size is 6. Other experimental settings we refer to papers and code
default values.

DCRNN [18]: DCRNN is a deep learning framework for traffic forecasting that incorporates both
spatial and temporal dependencies in the traffic flow. Some of the results of DCRNN are directly
reported in 18| 28], and we use the source code at https://github.com/liyaguang/DCRNN
when reproduction is necessary. The horizon size is 12 and the RNN layer number is 2 with 64 units
in our experiments. DCRNN is not applicable in scenarios without a priori topology. Thus, DCRNN
is only used to forecast the traffic data.

STGCN [35]]: STGCN is a novel deep learning framework for traffic prediction, integrating graph
convolution and gated temporal convolution through spatio-temporal convolutional blocks. The
performances of STGCN can be found at [35]] and the source code is available at https://github.
com/VeritasYin/STGCN_IJCAI-18. We use 12 history steps to forecast future data with batch
size as 50, epoch number as 50, and learning rate as 0.001. STGCN is not applicable to scenarios
without a priori topology.

TCN [3]: TCN combines best practices such as dilations and residual connections with the causal
convolutions for autoregressive prediction. We take the source code at https://github.com/
locuslab/TCN. We use a configuration similar to polyphonic music task mentioned in this paper,

15


https://github.com/farizrahman4u/seq2seq
https://github.com/z331565360/State-Frequency-Memory-stock-prediction
https://github.com/philipperemy/n-beats
https://github.com/fbadine/LSTNet
https://github.com/liyaguang/DCRNN
https://github.com/VeritasYin/STGCN_IJCAI-18
https://github.com/VeritasYin/STGCN_IJCAI-18
https://github.com/locuslab/TCN
https://github.com/locuslab/TCN

where the kernel size is 5, the gradient clip is 0.2, the upper epoch limit is 100 and the initial learning
rate is 0.001.

DeepState [23]]: This model marries state space models with deep recurrent neural networks. First, it
uses recurrent neural networks to calculate hy = RN N (h;—1, z+). Then, this model uses k. to calculate
the parameters of state space ©; = ®(h,) . Finally, the likelihood pss(z1.7|©1.7) are calculated and
the parameters are learned through maximum log likelihood. DeepState is integrated in Gluon Time
Series (GluonTS), which is the Gluon toolkit for probabilistic time series modeling. The tutorials can
be found at https://gluon-ts.mxnet.io/. We use the default configuration given by the tool
and only change its sampling frequency as given in Table

GraphWaveNnet [32]: GraphWaveNet is a method that represents each node’s network neighborhood
via a low-dimensional embedding by leveraging heat wavelet diffusion patterns. The results of Graph
Wavenet are reported at [32) 134} 28], and the source code can be found at https://github.com/
nnzhan/Graph-WaveNet. We turn on the ‘add graph convolution layer’ option when reproduce on
some datasets. We set the weight decay rate as 0.0001 and dropout rate as 0.3. Other configurations
follow the options recommended in the paper. We use the priori topology when it is available (traffic
forecasting), and this method also works in scenarios without a priori topology (energy forecasting,
electrocardiogram forecasting and COVID-19 forecasting).

DeepGLO [27] : This model leverages both global and local features during training and forecasting.
The global component, TCN regularized Matrix Factorization (TCN-MF), captures global patterns
by representing each of the original time-series as a linear combination of k basis time-series,
and we set k = 128 in our experiments. We use the default setting of DeepGLO provided by
https://github.com/rajatsen91/deepglo. It has two batch sizes: horizontal batch size (set to
256) and vertical batch size (set to 128). Besides, we change the start time and frequency of different
datasets. The kernel size is set as 7 for both hybrid model and local model, and the learning rate is set
to be 0.005. We report the best results from the normalized and unnormalized settings in the paper.

Please refer to their publications for more detailed descriptions and settings.

D Experiment Details

We conduct all our experiments using one NVIDIA GeForce GTX 1080 GPU. We divide the dataset
into three part for training, validation and testing according to [10] (PEMSO03, PMES04, PEMSO0S),
[35] (PEMSO07), and [18] (META-LA, PEMS-BAY, Solar, Electricity, ECG). The inputs of ECG are
normalized by min-max normalization following [5]]. Besides, the inputs are normalized by Z-Score
method [21]. That means StemGNN is trained on normalized input where each time-series in the
training set is re-scaled as X;, = (X;n, — (1(Xin))/0(Xin), where p and o denote the mean and
standard deviation respectively. The evaluation of Solar, Electricity and ECG datasets is performed
on the re-scaled data following [S]] and [23]], i.e., first using the normalization algorithm to transform
Solar, Electricity and ECG into a value range of [0, 1], and then applying StemGNN to generate the
forecasting values. Afterwards, the predictions are transformed back to the original scale, and the
metrics are calculated on the original data.

In StemGNN, the dimension of self-attention layer is 32, which is chosen from a search space of [16,
32, 64, 128] on the validation data. The channel size of each graph convolution layer is 64 chosen
from a search space of [16, 32, 64, 128] and the kernel size of 1D convolution is 3, selected from a
search space of [3, 6, 9, 12]. The batch size is 50. The learning rate is initialized as 0.001 and decays
with rate 0.7 after every 5 epochs. The total number of training epochs is set as 50.

In the traffic datasets (METR-LA, PEMS-BAY, PEMS07, PEMS07, PEMS04, PEMSO08), the data is
aggregated by 5 minutes, so the number of timestamps per day is 288. For traffic speed forecasting
task, we use the one-hour historical data to predict the next 15 minutes data [[18,[35]); for traffic flow
forecasting task, we use one-hour historical data to predict the values in the next hour [[10]. The
solar dataset is aggregated every 10 minutes, according to [23| 27]], we forecast the trend in future
0.5 hour with 4-hour historical data. For the electricity data, we follow [23} [27]] which use 24-hour
historical data to infer the values in next 3 hours. For ECG5000 dataset, according to [21]], we set
the forecasting step as 3 and the sliding window size as 12. For COVID-19 dataset, we forecast the
future 4 weeks’ trend, which means the max forecasting step is 28 (days). Besides, we use averaging
MAE, MAPE, RMSE over the predicted time period to evaluate StemGNN and all baselines.
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E Results

E.1 More results on METR-LA and COVID-19

Table 6: Forecasting Results on METR-LA and COVID-19

MAE  RMSE  MAPE(%) MAE  RMSE  MAPE(%) MAE  RMSE  MAPE(%)
15min 30min Thour
FCLST™ 9] 34 53 9,60 377 73 1090 I3 569 320
SEM [36] 321 62 87 337 6.68 9.62 347 761 1015
N-BEATS {211 3.15 6.12 7.5 3.62 7.01 9.12 412 8.04 115
DCRNN (I8 277 5.38 7.30 3.15 6.45 8.80 36 7.59 10.50
. STGCN (3] 2.88 574 7.60 347 724 9.60 459 9.4 1270

METR-LA IS] pon 2.74 5.68 6.54 . . . - . .
DeepState [23] 272 524 68 313 6.16 831 361 742 108
GraphWaveNet [32 2.69 5.15 6.90 3.07 622 8.40 3.53 7.37 10
DeepGLO [27] 291 548 6.75 3.36 642 8.33 3.66 7.39 103
StemGNN (ours) 2.56 5.063 6.46 3.011 6.03 8.23 343 7.23 9.85

7Day 14Day 28Day

FCLSTM [0 1803.65 328477 203 313554 385575 729 755407 43184 774
SFM [36] 169985 34995 196 181282 3589 213 1851 3720 27
N-BEATS (211 59443 92837 165 847.14 128636 18.5 88242 1349.46 204

COVID-19{7]  TCN (3] 66224 2363.95 18.7 1307 287117 231 201734 34193 26.1
DeepState (23] 92287 198232 173 185273 209132 204 23453 23864 245
GraphWaveNet (32 1056.1 12273 189 1899.5 21257 244 2315 24519 252
DeepGLO [27] 113123 1023.19 17.1 171869 173467 189 208451 229119 2.1
StemGNN (ours) 46224 71811 155 53367  87LI7 17.1 66224 1023.19 193

In order to prove that there is a steady improvement for multi-step forecasting, we choose METR-LA
and COVID-19 for an evaluation of longer time span. As shown in Table [6] StemGNN achieves
excellent performance in multi-steps forecasting scenarios. In particular, we use COVID-19 data
to forecast the number of infected people in the next 1-4 weeks which is of great significance to
help relevant departments make decisions. Compared to other solutions, StemGNN reduces the
time-dependent error accumulation and improves the performance of long-term forecasting.

E.2 More results for ablation study

Table 7: Ablation results

15min 30min 45min
MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)
StemGNN 2.144 4.01 5.01 2994 535 7.25 3158 6.34 8.43
w/o Latent Correlations  2.158  4.017 5.113 3.004 5525 7.303 3214 6.496 8.672
w/o Spe-Seq Cell 2612 4.692 6.189 3459 6257 8.448 4505 8.241 11.343
PEMSO07 [4] w/o DFT 2.299 4.17 5.336 3.183 5945 7.532 3817 7.145 9.058
w/o GFT 2237  4.068 5222 3.065 5.755 7.355 3.691 6922 8.899
w/o Residual 2256  4.155 523 3.073  5.854 7.357 3.684  7.021 8.918
w/o Backcasting 2203  4.077 5.13 3.034 5.641 7.316 3394 6912 8.681
15min 30min Lhour
MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)
StemGNN 256  5.063 6.46 3.011 6.03 8.23 3.43 7.23 9.85
w/o Latent Correlations ~ 2.79 524 6.867 3122 6.922 8.36 3.568  7.462 9.97
w/o Spe-Seq Cell 3.077 571 6.99 3491  7.072 8.83 3.905  7.906 10.163
METR-LA [13] w/o DFT 2.81 537 6.93 3.24 6.95 8.52 3717 71571 9.99
w/o GFT 2.867 525 6.891 3.201 6.92 8.41 3701  7.552 10.02
w/o Residual 2.83 529 6.71 3.228 6.57 8.27 3724 7471 9.95
w/o Backcasting 2.85 5.219 6.57 3.06 6.233 8.51 3.56 772 10.03

* w/o Latent Correlations (LCs). We use a priori topology instead of automatic correla-
tions. As shown in Table /| dynamic latent correlations performs even better than a static
priori topology. The reason may be that a priori topology is static, but the StemGNN is
capable of building a topology for each sliding window dynamically, which captures the
newest knowledge about the interaction between different time-series.

* w/o Spe-Seq Cell. This setting does not equip with the Spe-Seq Cell. It performs the
worst among all settings, indicating that temporal dependency is the most important clue for
time-series forecasting.

* w/o DFT. It removes DFT and inverse DFT operators in the Spectral Sequential Cell.
Thus, temporal dependencies are modeled in the time domain. It shows improvement over
the naive baseline without Spe-Seq Cell, but under-performs StemGNN by a large margin,
which proves the benefit of DFT.
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* w/o GFT. We no longer use the entire StemGNN cell, but only take the Spectral Sequential
Cell. The performance drops significantly, which shows a necessity of capturing latent
correlations through graph Fourier transform.

* w/o Residual. This setting has two stacked StemGNN blocks without residual connection.
It verifies that the second block learns supplement information through a residual connection.

* w/o Backcasting. This model disables the backcasting branch, showing the benefit of
backcasting module for enhancing time-series representation.

F Analysis

F.1 Efficiency Analysis

Although the time complexity is O(N?3) w.r.t.

Table 8: Results of efficiency analysis the multivariate dimension [V, training process
——— on all the datasets can be finished in a reasonable
raining time (in seconds) A . .
SemGNN___SFM___N-BEATS _ STGCN time. For a concrete comparison, we summarize
PEMSO7 [4] 459 1013 1251 352 L .
METR-LA (T3 137 2288 by 1035 the training time of StemGNN, SFM, N-BEATS

and STGCN on the PEMS07 and METR-LA
datasets separately. The results are shown at
Table[8] StemGNN is similar to the first-order approximate graph convolution model (STGCN) in
time, but our performance is improved significantly. Comparing to other baselines, StemGNN has a
superior training speed, and inference speed shows the same conclusion.

F.2 Learning Curve Comparison

The learning curves for StemGNN and

— STGCN

— StemGiy major baselines on METR-LA dataset are

—— DCRNN

shown in Figure [5] where the x-axis de-
notes wall-clock time and the y-axis denotes
validation RMSE. It shows that StemGNN
has an effective training procedure and

Valid RMSE

O 200 400 6000 8000 10000 12000 14000 achieves a better RMSE score at convergence
Figure 5: Learning curves on METR-LA. than other SOTAs with comparable training
times.

F.3 Case Study on COVID-19

To investigate the usability and interpretability of StemGNN, we conduct a detailed analysis on
COVID-19 data. We assume the daily number of newly confirmed cases as time-series, and choose
25 countries with severe outbreak as multivariate input. Figure[6[a) shows the visualization of the
inter-series correlations captured automatically by our model. In this figure, row 7 represents the
correlation strength between country ¢ and other countries. As we can see, correlations are not
uniform across countries. This indicates that some nodes are closely related to neighboring countries
while weakly related to others. This is reasonable since countries on the same continent have higher
correlations in population mobility and related policies. Therefore, our model not only obtains the
best forecasting performance, but also shows the advantage of interpretability.

To prove that the conversion of graph Fourier transform over multivariate time-series data is effective,
we first visualize the matrix of eigenvectors (U) obtained by the decomposition of the normalized
Laplace matrix L on Figure [6(c). Each column of U represents an eigenvector corresponding to
a eigenvalue sorted from the highest to the lowest. We select three eigenvectors with the largest
eigenvalues (ug — uz) and visualize the corresponding time-series after GFT for further analysis. As
shown in Figure[6{c), uo captures the general trend countries across the world, u; learns the major
trend of Asian countries, and u2 learns the common trend of South American countries. As illustrated
in Figure [f[b), the three components capture these three trends respectively, and the time-series in
the spectral space is relatively smooth [[19] compared to the original data, reducing the difficulty
of forecasting. Thus, it is clear that graph Fourier transform can better leverage the relationships
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Figure 6: The latent correlations and forecasting results on COVID-19

learned by the latent correlation layer and make the forecasting easier through feature smoothness.
Moreover, IDFT also helps to improve the smoothness of time-series and lead to better generalization
(Figure [f[b)). Finally, Figure [6(d) shows the forecasting results for several exemplar countries
and demonstrate the feasibility of StemGNN. In the figure, ‘Canada’ represents for ground truth;
‘Canadal’ means forecasting in advance of 1 day; ‘Canada7’ means forecasting in advance of 7 days.
It is similar for other countries.

Figure [6] and Figure [7] show the result comparison of stemGNN and two major baselines which
respectively use historical data to forecast the number of confirmed people in advance of one day
(denoted by *-1) and one week (denoted by *-7). We select several typical countries, and the features
show that StemGNN can predict the future trends more accurately. Thanks to graph Fourier transform
and Spectral Sequential Cell, StemGNN captures the major trends more smoothly and predict the
changes of data more timely. The turning points predicted by other baselines have larger time delays
compared to StemGNN.
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Figure 7: The latent correlations and forecasting results on COVID-19
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