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Abstract

We consider the stochastic block model where connection between vertices is
perturbed by some latent (and unobserved) random geometric graph. The objective
is to prove that spectral methods are robust to this type of noise, even if they are
agnostic to the presence (or not) of the random graph. We provide explicit regimes
where the second eigenvector of the adjacency matrix is highly correlated to the
true community vector (and therefore when weak/exact recovery is possible). This
is possible thanks to a detailed analysis of the spectrum of the latent random graph,
of its own interest.

Introduction

In a d-dimensional random geometric graph, N vertices are assigned random coordinates in Rd, and
only points close enough to each other are connected by an edge. Random geometric graphs are used
to model complex networks such as social networks, the world wide web and so on. We refer to [19] -
and references therein - for a comprehensive introduction to random geometric graphs. On the other
hand, in social networks, users are more likely to connect if they belong to some specific community
(groups of friends, political party, etc.). This has motivated the introduction of the stochastic block
models (see the recent survey [1] and the more recent breakthrough [5] for more details), where in
the simplest case, each of the N vertices belongs to one (and only one) of the two communities that
are present in the network.

The two types of connections – geometric graph vs. block model – are conceptually quite different
and co-exist independently. Two users might be connected because they are “endogenously similar”
(their latent coordinates are close enough to each others) or because they are “exogenously similar”
(they belong to the same community). For instance, to oversimplify a social network, we can consider
that two different types of connections can occur between users: either they are childhood friends
(with similar latent variables) or they have the same political views (right/left wing).

We therefore model these simultaneous types of interaction in social networks as a simple stochastic
block model (with 2 balanced communities) perturbed by a latent geometric graph. More precisely,
we are going to assume that the probability of endogenous connections between vertices i and j,
with respective latent variables Xi, Xj 2 R

d, is given by the Gaussian1 kernel exp(��kXi �Xjk
2)

where � is the (inverse) width. On the other hand, exogenous connections are defined by the block
model where half of the N vertices belong to some community, half of them to the other one. The
probability of connection between two members of the same community is equal to p1 and between
two members from different communities is equal to p2. We also consider an extra parameter

1We emphasize here that geometric interactions are defined through some kernel so that different recovery
regimes can be identified with respect to a unique, simple width parameter �. Similarly, the choice of the
Gaussian kernel might seem a bit specific and arbitrary, but this purely for the sake of presentation: our approach
can be generalized to other kernels (the “constants” will be different; they are defined w.r.t. the kernel chosen).
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 2 [0, 1] to represent the respective strengths of exogenous vs. endogenous connections (and we
assume that +max{p1, p2}  1 for technical reason).

Overall, the probability of connection between i and j, of latent variable Xi and Xj is

P
�
i ⇠ j

��Xi, Xj

 
= e

��kXi�Xjk2

+

⇢
p1 if i, j are in the same community
p2 otherwise

In stochastic block models, the key idea is to recover the two communities from the observed set
of edges (and only from those observations, i.e., the latent variables Xi are not observed). This
recovery can have different variants that we enumerate now (from the strongest to the weakest). Let
us denote by � 2 {

±1p
N
}
N the normalized community vector illustrating to which community each

vertex belong (�i = �
1p
N

if i belongs the the first community and �i =
1p
N

otherwise).

Given the graph-adjency matrix A 2 {0, 1}N
2

, the objective is to output a normalized vector x 2 RN

(i.e., with kxk = 1) such that, for some " > 0,

Exact recovery: with probability tending to 1,
���>

x
�� = 1, thus x 2 {

±1p
N
}
N

Weak recovery: with probability tending to 1,
���>

x
�� � " and x 2 {

±1p
N
}
N

Soft recovery: with probability tending to 1,
���>

x
�� � "

We recall here that if x is chosen at random, independently from �, then
���>

x
�� would be of the order

of 1p
N

, thus tends to 0. On the other hand, weak recovery implies that the vector x has (up to a change
of sign) at least N

2 (1 + ") coordinates equal to those of �. Moreover, we speak of soft recovery (as
opposed to hard recovery) in the third case by analogy to soft vs. hard classifiers. Indeed, given
any normalized vector x 2 Rd, let us construct the vector sign(x) =

� 21{Xi�0}�1p
N

�
2 {

±1p
N
}
N .

Then sign(x) is a candidate for weak/exact recovery. Standard comparisons between Hamming and
Euclidian distance (see, e.g., [16]) relates soft to weak recovery as

���> sign(x)
�� � 4

���>
x
��� 3;

In particular, weak-recovery is ensured as soon as soft recovery is attained above the threshold of
" = 3/4 (and obviously exact recovery after the threshold 1� 1/4N ).

For simplicity, we are going to assume2 that Xi are i.i.d., drawn from the 2-dimensional Gaussian
distribution N (0, I2). In particular, this implies that the law Ai,j (equal to 1 if there is an edge
between i and j and 0 otherwise) is a Bernoulli random variable (integrated over Xi and Xj)
Ber
⇣

p1+p2

2 + 

1+4�

⌘
; Notice that Ai,j and Ai0,j0 are identically distributed but not independent if

i = i
0 or j = j

0. Recovering communities can be done efficiently (in some regime) using spectral
methods and we will generalize them to this perturbed (or mis-specified) model. For this purpose, we
will need a precise and detailed spectral analysis of the random geometric graphs considered (this has
been initiated in [20], [10] and [4] for instance).

There has been several extensions of the standard stochastic block models to incorporate latent
variables or covariables in perturbed stochastic block models. We can mention cases where covariables
are observed (and thus the algorithm can take their values into account to optimize the community
recovery) [25, 23, 9, 14], when the degree of nodes are corrected [12] or the case of labeled edges
[13, 24, 15, 16, 26]. However, these papers do not focus on the very simple question of the robustness
of recovery algorithm to (slight) mis-specifications in the model, i.e., to some small perturbations
of the original model and this is precisely our original motivations. Regarding this question, [21]
consider the robustness of spectral methods for a SBM perturbed by adversarial perturbation in
the sparse degree setup. Can we prove that a specific efficient algorithm (here, based on spectral
methods) still exactly/weakly/softly recover communities even if it is agnostic to the presence, or
not, of endogenous noise ? Of course, if that noise is too big, then recovery is impossible (consider
for instance the case � = 0 and  � 0). However, and this is our main contribution, we are able

2The fact that d = 2 does not change much compared to d > 3; it is merely for the sake of computations;
any Gaussian distribution N (0,�2I2) can be recovered by dividing � by �2.
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to pinpoint specific range of perturbations (i.e., values of  and �) such that spectral methods – in
short, output the normalized second highest eigenvector – still manage to perform some recovery of
the communities. Our model is motivated to simplify the exposition but can be generalized to more
complicated models (more than two communities of different sizes).

To be more precise, we will prove that:
- if 1/� is in the same order than p1 and p2 (assuming that p1 ⇠ p2 is a standard assumption in
stochastic block model), then soft recovery is possible under a mild assumption (p1�p2

2 � 4

�
(1+"));

- if �(p1 � p2) goes to infinity, then exact recovery happens.
However, we mention here that we do not consider the “sparse” case (when pi ⇠

a

n
), in which regimes

where partial recovery is possible or not (and efficiently) are now clearly understood [7, 17, 8, 18], as
the geometric graphs perturbes too much the delicate arguments.

Our main results are summarised in Theorem 8 (when the different parameters are given) and Theorem
10 (without knowing them, the most interesting case). It is a first step for the study of the robustness of
spectral methods in the presence of endogenous noise regarding the question of community detection.
As mentioned before, those results highly rely on a careful and detailed analysis of the spectrum of
the random graph adjencency matrix. This is the purpose of the following Section 1, which has its
own interest in random graphs. Then we investigate the robustness of spectral methods in a perturbed
stochastic block model, which is the main focus of the paper, in Section 2. Finally, more detailed
analysis, other statements and some proofs are given in the Appendix.

1 Spectral analysis for the adjacency matrix of the random grah

Let us denote by P the conditional expectation matrix (w.r.t the Gaussian kernel), where Pij =

Pji = e
��||Xi�Xj ||2 , for i < j 2 [1, .., N ], and Pii = 0 for all i = 1, .., N . We will denote by

µ1 � µ2 � · · · � µN its ordered eigenvalues (in Section 2, µk are the eigenvalues of P ).

1.1 The case where � is bounded

We study apart the case where lim sup
N!1 � < 1. The simplest case corresponds to the case

where � log(N) ! 0 as N ! 1 as with probability one, each Pi,j converges to one. And as a
consequence, the spectrum of P has a nonzero eigenvalue which converges to N (with probability
arbitrarily close to 1). In the case where � is not negligible w.r.t. 1

log(N) , arguments to understand the
spectrum of P – or at least its spectral radius – are a bit more involved.
Proposition 1. Assume that �(N) is a sequence such that limN!1 �(N) = �0 � 0. Then there

exists a constant C1(�0) such that the largest eigenvalue of P satisfies

µ1(P )

NC1(�0)
! 1 as N ! 1.

1.2 The spectral radius of P when � ! 1, � ⌧ N/ lnN

We now investigate the special case where � ! 1, but when � ⌧ N/ lnN (as in this regime the
spectral radius ⇢(P ) of P does not vanish). We will show that ⇢(P ) is in the order of N

2� .

We formally state this case under the following Assumption (H1) (implying that � ln � ⌧ N ).

� ! 1 and
1

�

N

lnN
! 1. (H1)

Proposition 2. If Assumption (H1) holds then, with probability tending to one,

N

2�
 ⇢(P ) 

N

2�
(1 + o(1)) .

Proof. By the Perron Frobenius theorem, one has that

min
i=1,...,N

NX

l=1

Pil  ⇢(P )  max
i=1,...,N

NX

l=1

Pil.
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To obtain an estimate of the spectral radius of P , we show that, with probability tending to 1,
maxi

P
N

l=1 Pil cannot exceed N

2� and for “a large enough number" of indices i, their connectivity

satisfies
NX

l=1

Pil =
N

2�
(1 + o(1)) .

The proof is going to be decomposed into three parts (each corresponding to a different lemma, whose
proofs are delayed to Appendix B.).

1. We first consider only vertices close to 0, i.e., such that |Xi|
2
 2 log(�)

�
. For those vertices,P

j
Pi,j is of the order of N/2� with probability close to 1. See Lemma 3

2. For the other vertices, farther away from 0, it is easier to only provide an upper bound onP
j
Pi,j with a similar proof. See Lemma 4

3. Then we show that the spectral radius has to be of the order N/2� by considering the subset
J of vertices "close to 0" (actually introduced in the first step) and by proving that their
inner connectivity – restricted to J –, must be of the order N/2�. See Lemma 5.

Combining the following three Lemmas 3, 4 and 5 will immediately give the result.

Lemma 3. Assume that Assumption (H1) holds, then, as N grows to infinity,

P
n
9i  N s.t. |Xi|

2
 2

ln �

�
,

���
NX

j=1

Pij �
N

2�

���  o

⇣
N

2�

⌘o
! 1.

Lemma 3 states that the connectivities of vertices close to the origin converge to their expectation
(conditionally to Xi). Its proof decomposes the set of vertices into those that are close to i (the main
contribution in the connectivity, with some concentration argument), far from i but close to the origin
(negligible numbers) and those far from i and the origin (negligible contribution to the connectivity).

The second step of the proof of Proposition 2 considers indices i such that |Xi|
2
� 2 ln �

�
.

Lemma 4. For indices i such that |Xi|
2
� 2 ln �

�
one has with probability tending to 1 that

NX

j=1

Pij 
N

2�
(1 + o(1)) .

The proof just uses the fact that for those vertices, Pij are typically negligible.

To get a lower bound on the spectral radius of P , we show that if one selects the submatrix PJ :=
(Pij)i,j2J where J is the collection of indices

J =
n
1  i  N, |Xi|

2
 2

ln �

�

o
, (1)

the spectral radius of PJ is almost N

2� . This will give the desired estimate on the spectral radius of P .

Lemma 5. Let J be the subset defined in (1) and PJ the associated sub matrix. Let µ1(J) denote

the largest eigenvalue of PJ . Then, with h.p., one has that

µ1(J) �
N

2�
(1� o(1)).

The proof relies on the fact that vertices close to the origin get the most contribution to their
connectivity from the other vertices close to the origin.

The constant 1/2 that arises in the Proposition 2 is a direct consequence of the choice of the Gaussian
kernel. Had we chosen a different kernel, this constant would have been different (once the width
parameter � normalized appropriately). The techniques we developed can be used to compute it; this
is merely a matter of computations, left as exercices.
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2 A stochastic block model perturbed by a geometric graph

2.1 The model

We consider in this section the stochastic block model, with two communities (it can easily be extended
to the coexistence of more communities), yet perturbed by a geometric graph. More precisely, we
assume that each member i of the network (regardless of its community) is characterized by an i.i.d.
Gaussian vector Xi in R2 with distribution N (0, I2).

The perturbed stochastic block model is characterized by four parameters: the two probabilities of
intra-inter connection of communities (denoted respectively by p1 and p2 > 0) and two connectivity
parameters , �, chosen so that max(p1, p2) +   1:

-In the usual stochastic block model, vertices i and j are connected with probability ri,j where

rij =

⇢
p1 if Xi, Xj belong to the same community
p2 otherwise

,

where p1 and p2 are in the same order (the ratio p1/p2 is uniformly bounded).

-The geometric perturbation of the stochastic block model we consider is defined as follows. Condi-
tionally on the values of Xi, the entries of the adjacency matrix A = (Aij) are independent (up to
symmetry) Bernoulli random variables with parameter qij = e

��|Xi�Xj |2 + rij .
We remind that the motivation is independent to incorporate the fact that members from two different
communities can actually be “closer" in the latent space than members of the same community.
Thus in comparison with preceding model, the matrix P of the geometric graph is now replaced with

Q := P +

✓
p1J p2J

p2J p1J

◆
, where we assume, without loss of generality, that Xi, i  N/2 (resp.

i � N/2 + 1) belong to the same community. The matrix

P0 :=

✓
p1J p2J

p2J p1J

◆

has two non zero eigenvalues which are �1 = N(p1 + p2)/2 with associated normalized eigenvector
v1 = 1p

N
(1, 1, . . . 1)> and �2 = N(p1�p2)/2 associated to v2 = � = 1p

N
(1, . . . , 1,�1, . . .�1)>.

Thus, in principle, communities can be detected from the eigenvectors of P0 by using the fact that two
vertices i, j such that v2(i)v2(j) = 1 belong to the same community. Our method can be generalized
(using sign vectors) to more complicated models where the two communities are of different size, as
well as to the case of k communities (and thus the matrix P0 has k non zero eigenvalues).

For the sake of notations, we write the adjacency matrix of the graph as :

A = P0 + P1 +Ac,

where P1 = P with P the N ⇥ N -random symmetric matrix with entries (Pij) – studied in the
previous section – and Ac is, conditionnally on the Xi’s a random matrix with independent Bernoulli
entries which are centered.

2.2 Separation of eigenvalues: the easy case

We are going to use spectral methods to identify communities. We therefore study in this section a
regime where the eigenvalues of A are well separated and the second eigenvector is approximately
v2, i.e. the vector which identifies precisely the two communities.
Proposition 6. Assume that

N(p1 � p2) �
p

N +
N

�
.

Then, with probability tending to 1, the two largest eigenvalues of A denoted by ⇢1 � ⇢2 are given by

⇢i = �i(1 + o(1)), i = 1, 2.

Furthermore, with probability tending to 1, associated normalized eigenvectors (with non negative

first coordinate) denoted by w1 and w2 satisfy hvi, wii = 1� o(1); i = 1, 2.
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Proposition 6 implies that, in the regime considered, the spectral analysis of the adjacency matrix can
be directly used to detect communities, in the same way it is a standard technique for the classical
stochastic block model (if |p1 � p2| is big enough compared to p1 + p2, which is the case here).
Finding the exact threshold C0 such that if N(p1 � p2) = C0(

p
N + N

�
) then the conclusion of

Proposition 6 is still an open question.

2.3 Partial reconstruction when N

�
�
p
N(p1 + p2)

From Theorem 2.7 in [2], the spectral norm of Ac cannot exceed

⇢(Ac) 

 s


N

�
+

r
N(

p1 + p2

2
+O(



2�
))

!
(1 + ✏),

with probability tending to 1, since the maximal connectivity of a vertex does not exceed N
�
p1+p2

2 +


2�

�
(1 + o(1)). In the specific regime where

N

2�
⌧

r
N

p1 + p2

2
,

standard techniques [5] of communities detection would work, at the cost of additional perturbation
arguments. As a consequence, we will concentrate on the reconstruction of communities when

N

2�
�

r
N

p1 + p2

2
.

This essentially means that the spectrum of Ac is blurred into that of P1. More precisely, we are from
now going to consider the case where the noise induced by the latent random graph is of the same
order of magnitude as the signal (which is the interesting regime):

90 < c,C < 1 s.t. ��1
2

N

2�
2 [c, C],

�2

�1
2 [c, C] and �2 �

p
�1. (H2)

If (H2) holds, then the spectrum of P0 + P1 overwhelms that of Ac. As a consequence, the problem
becomes that of community detection based on P0 + P1, which will be done using spectral methods.

To analyze the spectrum of P0 + P1, we will use extensively the resolvent identity [3] : consider
✓ 2 C \R and set S = P0 + P1;RS(✓) = (S � ✓I)�1

, R1(✓) := (P1 � ✓I)�1. One then has that

RS(I + P0R1) = R1, (2)

where the variable ✓ is omitted for clarity when they are no possible confusion. Since P0 is a rank
two matrix, then P0 can be written as P0 = �1v1v

⇤
1 + �2v2v

⇤
2 where v1 and v2 are the eigenvectors

introduced before.

Eigenvalues of S that are not eigenvalues of P1 are roots of the rational equation det(I +P0R1) = 0:

det(I + P0R1) = 1 + �1�2hR1v1, v1ihR1v2, v2i+ �1hR1v1, v1i

+�2hR1v2, v2i � �1�2hR1v1, v2i
2
. (3)

Let µ1 � µ2 � · · ·µN be the ordered eigenvalues of P1 with associated normalized eigenvectors
w1, w2, . . . , wN , then one has that R1(✓) =

P
N

j=1
1

µj�✓
wjw

⇤
j
. Denote, for every j 2 {1, .., N},

rj = hv1, wji and sj = hv2, wji, so that Equation (3) rewrites into

det(I + P0R1(✓)) =: f�1,�2(✓) =1 +
NX

j=1

1

µj � ✓
(�1r

2
j
+ �2s

2
j
)

+ �1�2/2
X

j 6=k

1

(µj � ✓)(µk � ✓)
(rjsk � rksj)

2
. (4)

As mentioned before, we aim at using spectral methods to reconstruct communities based on the
second eigenvector of S. As a consequence, these techniques may work only if (at least) two

6



eigenvalues of S, that are roots of det(I + P0R1(✓)) = 0 exit the support of the spectrum of P1, i.e.,
such that they are greater than µ1.

So we will examine conditions under which there exist two real solutions to Equation (4), with
the restriction that they must be greater than µ1. If two such solutions exist, by considering the
singularities in (2), then two eigenvalues of S indeed lie outside the spectrum of P1.

2.3.1 Separation of Eigenvalues in the rank two case.

We now prove that two eigenvalues of S exit the support of the spectrum of P1. Recall the def-
inition of the function f�1,�2 given in Equation (4) (or equivalently Equation (3)). One has that
lim✓!1 f�1,�2(✓) = 1 , f�1,�2(✓(�1)) < 0 and similarly f�1,�2(✓(�2)) < 0, where ✓(·) is the
function introduced in the rank 1 case. Thus two eigenvalues exit the spectrum of P1 if

lim
✓!µ

+
1

f�1,�2(✓) > 0.

First, let us make the following claim (a consequence of (H1) and (H2), see Lemma 9).

lim inf
N!1

�1r
2
1 > 0. (H3)

Lemma 7. Assume (H1), (H2) and (H3) hold and that there exists ✏ > 0 such that

�2 � 4µ1(1 + ✏) = 4
N

2�
(1 + ✏).

Then at least two eigenvalues of P0 + P1 separate from the spectrum of P1.

Proof. Let us first assume that

µ1 is isolated; there exists ⌘ > 0 such that for N large enough µ1 > µ2 + ⌘.

In this case, we look at the leading terms in the expansion of g as ✓ approaches µ1. It holds that

f�1,�2(✓) ⇠
1

✓ � µ1

0

@�1�2

X

j�2

1

✓ � µj

(r1sj � rjs1)
2
� �1r

2
1 � �2s

2
1

1

A .

Using that the spectral radius of P1 does not exceed µ1, we deduce that

f�1,�2(✓) �
1

✓ � µ1

0

@�1�2

2✓

X

j�2

(r1sj � rjs1)
2
� �1r

2
1 � �2s

2
1

1

A

�
1

✓ � µ1

✓
�1�2

2✓
(r21 + s

2
1)� �1r

2
1 � �2s

2
1

◆
�

1

✓ � µ1
�1(r

2
1 + s

2
1)✏,

provided �2 � 2µ1(1 + ✏). Note that if µ1 is isolated, the bound on �2 is improved by a factor of 2.

Now we examine the case where µ1 is not isolated. We then define

I
⇤ := {i : lim sup

N!1
µi � µ1 = 0},

and we define ṽi =
P

j2I⇤hvi, wjiwj , i = 1, 2. Then mimicking the above computations, we get

f�1,�2(✓) �
1 + o(1)

✓ � µ1

✓
�1�2

4✓
(||ṽ21 ||+ ||ṽ

2
2 ||)� �1||ṽ

2
1 ||� �2||ṽ

2
2 ||

◆
(5)

so that two eigenvalues separate from the rest of the spectrum as soon as �2 > 4µ1(1 + ✏). To get
that statement we simply modify step by step the above arguments. This finishes the proof of Lemma
7 as soon as lim infN!1 �1r

2
1 > 0.

The threshold exhibited for the critical value of �2 might not be the optimal one, however it is in the
correct scale as we do not a priori expect a separation if �2  µ1.
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2.3.2 Partial reconstruction when N
p1+p2

2 is known

In the specific case where N
p1+p2

2 is known beforehand for some reason, it is possible to weakly
recover communities using Davis-Kahan sin(✓)-theorem under the same condition than Lemma 7.

We recall that this theorem states that if M = ↵xx
> and fM = �exex> is the best rank-1 approximation

of M 0, where both x and ex are normalized to kxk = kexk = 1, then

min
�
kx� exk, kx+ exk

 


2
p
2

max{|↵|, |�|}
kM �M

0
k.

Theorem 8. Assume that (H1) and (H2) hold and that there exists ✏ > 0 such that

�2 � 4µ1(1 + ✏) ()
p1 � p2

2
�

2

�
(1 + ✏),

then weak recovery of the communities is possible.

Proof. We are going to appeal to Davis-Kahan theorem with respect to

M = P0 �N
p1 + p2

2
v1v

>
1 = N

p1 � p2

2
v2v

>
2

and

M
0 = A�N

p1 + p2

2
v1v

>
1 = P0 + P1 +Ac �N

p1 + p2

2
v1v

>
1 = P1 +Ac +M

As a consequence, let us denote by ex the first eigenvector of M 0 of norm 1 so that
1

N
dH(v2, sign(ex))  kv2 � exk2 

8

�
2
2

kP1 +Ack
2 =

8

�
2
2

µ
2
1(1 + o(1)) .

Weak reconstruction is possible if the l.h.s. is strictly smaller than 1/2, hence if �2 � 4µ1(1+").

It is quite interesting that weak recovery is possible in the same regime where two eigenvalues of
P0+P1 separate from the spectrum of P1. Yet the above computations imply that in order to compute
ex, it is necessary to know p1+p2

2 (at least up to some negligible terms). In the standard stochastic
block model, when  = 0, this quantity can be efficiently estimated since the N(N�1)

2 edges are
independently drawn with overall probability p1+p2

2 . As a consequence, the average number of edges
is a good estimate of p1+p2

2 up to its standard deviation. The latter is indeed negligible compared to
p1+p2

2 as it is in the order of 1
N

q
p1+p2

2 .

On the other hand, when  6= 0, such trivial estimates are no longer available; indeed, we recall that
the probability of having an edge between Xi and Xj is equal to p1+p2

2 + 

1+4� , where all those
terms are unknown (and moreover, activations of edges are no longer independent). We study in the
following section, the case where p1 + p2 is not known. First, we will prove that Assumption (H3) is
actually always satisfied (notice that it was actually not required for weak recovery). In a second step,
we will prove that soft recovery is possible, where we recall that this means we can output a vector
x 2 RN such that kxk = 1 and x

>
v2 does not converge to 0. Moreover, we also prove that weak

(and exact) recovery is possible if the different parameters p1, p2 and 1
�

are sufficiently separated.

2.3.3 The case of unknown p1 + p2

We now proceed to show that Assumption (H3) holds in the regime considered.
Lemma 9. Under (H1) and (H2), one has that 1) for some constant C > 0, �r

2
1 � C. and 2) for

some ✏ > 0 small enough, �1r
2
1 � ✏.

The first point of Lemma 9 implies (H3) with an explicit rate if �  AN
1
2 for some constant A. The

second point proves this result in the general case.
Theorem 10. If (H1) and (H2) hold true and �1 > �2+2 

2� then the correlation |w
>
2 v2| is uniformly

bounded away from 0 hence soft recovery is always possible. Moreover, if the ratio �2/µ1 goes to

infinity, then |w
>
2 v2| tends to 1, which gives weak (and even exact at the limit) recovery.

An (asymptotic) formula for the level of correlation is provided at the end of the proof.

8



Figure 1: The spectrum of the different block models for different values of �.

3 Experiments

The different results provided are theoretical and we proved that two eigenvalues separate from the
bulk of the spectrum if the different parameters are big enough and sufficiently far from each other.
And if they are too close to each other, it is also quite clear that spectral methods will not work.
However, we highlight these statements in Figure 1. It illustrates the effect of perturbation on the
spectrum of the stochastic block models for the following specific values: N = 2000, p1 = 2.5%,
p2 = 1%,  = 0.97 and � 2 {50, 70, 100, 110}. Notice that for those specific values with get
�1 = 35, �2 = 15 and µ1 2 {20, 14.3, 10, 9.1}; in particular, two eigenvalues are well separated in
the unperturbed stochastic block model.

The spectrum of the classical stochastic block model is coloured in red while the spectrum of the

Figure 2: The correlation between the second high-
est eigenvector and the community vector goes
from 0 to 0.9 around the critical value � = 60.

perturbed one is in blue ( the spectrum of the
conditionnal adjacency matrix, given the Xi’s is
in gray). As expected, for the value of � = 50,
the highest eigenvalue of P1 is bigger than �2

and the spectrum of the expected adjacency
matrix (in red) as some "tail". This prevents
the separation of eigenvalues in the perturbed
stochastic block model. Separation of eigenval-
ues starts to happen, empirically and for those
range of parameters, around � = 70 for whichp
�1  µ1 = 10  �2.

We also provide how the correlations between
the second highest eigenvector and �, the nor-
malized vector indicating to which community
vertices belong, evolve with respect to � for this
choice of parameters, see Figure 2.

Conclusion

The method exposed hereabove can be generalized easily. In the case where there are k � 2
communities of different sizes, P0 has rank k. If k eigenvalues of S exit the support of the spectrum
of P1, then communities may be reconstructed using a set of k associated (sign) eigenvectors, whether
the parameters are known or not.

We have proved that spectral methods to recover communities are robust to slight mis-specifications
of the model, i.e., the presence of endogenous noise not assumed by the model (especially when
p1 + p2 is not known in advance). Our results hold in the regime where 1

�
�

logN

N
and with 2

communities (balancedness and the small dimension of latent variables were just assumed for the sake
of computations) - those theoretical results are validated empirically by some simulations provided in
the Appendix. Obtaining the same robustness results for more than 2 communities, for different types
of perturbations and especially in the sparse regime 1

�
⇠ pi ⇠

1
N

seems quite challenging as standard
spectral techniques in this regime involve the non-backtracking matrix [5], and its concentration
properties are quite challenging to establish.
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Broader Impact

This paper deals with theoretical detection of community in networks. Even if an entity wants to
use community detection with some mercantile objectives (maybe in order to target some specific
community), it would probably use spectral methods, no matter if the existing theory gives it
guarantee that it is going to work. At worst, our paper will provide a positive answer: the very specific
assumptions of stochastic block models are not required for theoretical (and certainly practical)
recovery.

On the other hand, theoretical robustness results as ours can lead to substantial follow up research on
finding the transition between regimes in complex models (almost ill-posed). Theory papers like this
one are therefore win-win.
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